A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth 4-Manifolds with Definite Intersection Forms
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de M. Audin, D. Bernard, A. Bilal, B. Enriquez, E. Frenkel, F. Golse, M. Katz, R. Lawrence, O. Mathieu, P. Von Moerbeke, V. Ovsienko, N. Reshetikhin, S. Theisen, Tome 47 (1995), Exposé no. 11, 6 p.
@article{RCP25_1995__47__269_0,
     author = {Katz, Mikhail},
     title = {A {Proof} {Via} the {Seiberg-Witten} {Moduli} {Space} of {Donaldson{\textquoteright}s} {Theorem} on {Smooth} $4${-Manifolds} with {Definite} {Intersection} {Forms}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:11},
     pages = {269--274},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {47},
     year = {1995},
     language = {en},
     url = {http://www.numdam.org/item/RCP25_1995__47__269_0/}
}
TY  - JOUR
AU  - Katz, Mikhail
TI  - A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:11
PY  - 1995
SP  - 269
EP  - 274
VL  - 47
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://www.numdam.org/item/RCP25_1995__47__269_0/
LA  - en
ID  - RCP25_1995__47__269_0
ER  - 
%0 Journal Article
%A Katz, Mikhail
%T A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:11
%D 1995
%P 269-274
%V 47
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://www.numdam.org/item/RCP25_1995__47__269_0/
%G en
%F RCP25_1995__47__269_0
Katz, Mikhail. A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de M. Audin, D. Bernard, A. Bilal, B. Enriquez, E. Frenkel, F. Golse, M. Katz, R. Lawrence, O. Mathieu, P. Von Moerbeke, V. Ovsienko, N. Reshetikhin, S. Theisen, Tome 47 (1995), Exposé no. 11, 6 p. http://www.numdam.org/item/RCP25_1995__47__269_0/

[1] N. Elkies, A characterization of the 𝐙 n lattice, Math. Research Letters 2 (1995). | MR | Zbl

[2] J.-P. Serre, A Course in Arithmetic. | Zbl

[3] E. Witten, Monopoles and four-manifolds, Math. Research Letters 1 (1994) 769-796. | MR | Zbl

[4] J. Milnor and J. Stasheff, Characteristic classes. Princeton University Press, 1974. | MR | Zbl

[5] D. Kotschick, Non-trivial harmonic spinors on generic algebraic surfaces, Proc. of the AMS. | Zbl

[6] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Research Letters 1 (1994) 797-808. | MR | Zbl

[7] B. Booss-Bavnbek and K. Wojciechowski, Elliptic boundary problems for Dirac operators. Birkhauser, 1993. | MR | Zbl

[8] K. Wojciechowski and S. Klimek, Unique continuation property and surjectivity of elliptic operators of order 1, preprint.

[9] S. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geometry 26 (1987) 397-428. | MR | Zbl