@article{RCP25_1993__44__153_0, author = {Meyer, P. A.}, title = {Big\`ebres et probabilit\'es, d'apr\`es {M.} {Schurmann}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:6}, pages = {153--162}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {44}, year = {1993}, language = {fr}, url = {http://www.numdam.org/item/RCP25_1993__44__153_0/} }
TY - JOUR AU - Meyer, P. A. TI - Bigèbres et probabilités, d'après M. Schurmann JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:6 PY - 1993 SP - 153 EP - 162 VL - 44 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://www.numdam.org/item/RCP25_1993__44__153_0/ LA - fr ID - RCP25_1993__44__153_0 ER -
%0 Journal Article %A Meyer, P. A. %T Bigèbres et probabilités, d'après M. Schurmann %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:6 %D 1993 %P 153-162 %V 44 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://www.numdam.org/item/RCP25_1993__44__153_0/ %G fr %F RCP25_1993__44__153_0
Meyer, P. A. Bigèbres et probabilités, d'après M. Schurmann. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 44 (1993), Exposé no. 6, 10 p. http://www.numdam.org/item/RCP25_1993__44__153_0/
[1] Quantum Probability II, Springer LN 1136, 1985, p. 475-492. | MR | Zbl
Positive and conditionally positive linear functionals on coalgebras.[2] Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Prob. Th. Rel. Fields, 84, 1990, p. 473-490. | MR | Zbl
[3] A class of representations of involutive bialgebras, Math. Proc. Cambridge Phil Soc, 107, 1990, p.149-175 | MR | Zbl
[4] The Azéma martingales as components of quantum independent increment processes, Sem. Prob. XXV, Springer LN 1485, p. 24-30. | Numdam | MR | Zbl
[5] White noise on involutive bialgebras, Quantum Probability VI, 1992, p. 401-419, World Scientific. | MR | Zbl
[6] A central limit theorem for coalgebras, Probability Measures on Groups VIII, Springer LN 1210, 1986, p. 153-157. | MR | Zbl
[7] Infinitely divisible states on cocommutative bialgebras, Probability Measures on Groups IX, Springer LN 1379, 1987, p. 310-324. | MR | Zbl
[8] Noncommutative stochastic processes with independent and stationary additive increments, J. Multiv. Anal, 38, 1990, p. 15-35. | MR | Zbl
[9] Gaussian states on bialgebras, Quantum Probability V, Springer LN 1442, p. 347-367. | MR | Zbl
[10] Quantum q-white noise and a q-central limit theorem. Comm. Math. Phys., 140, 1991, p.589-615. | MR | Zbl
Existence of quantum diffusions, Prob. Th. Rel. Fields, 81, 1989, p.473-483. | MR | Zbl
.Multidimensional quantum diffusions, Quantum Probability III, Springer LN 1303, 1988, p. 69-88. | MR | Zbl
and .Quantum stochastic differential equations on *-bigebras, Math. Proc. Cambridge Phil. Soc, 109, 1991, p. 571-595. | MR | Zbl
·Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, p. 301-303. | MR | Zbl
and . 1.Quantum stochastic calculus with infinite degrees of freedom and its applications. PhD thesis, ISI Delhi 1992.
.Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhya (A), 52, 1990, p. 43-57. | MR | Zbl
and .An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel 1992. | MR
.Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. Quantum Probability I, Springer LN 1055, 1984. | MR | Zbl
.