Bigèbres et probabilités, d'après M. Schurmann
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 44 (1993), Exposé no. 6, 10 p.
@article{RCP25_1993__44__153_0,
     author = {Meyer, P. A.},
     title = {Big\`ebres et probabilit\'es, d'apr\`es {M.} {Schurmann}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:6},
     pages = {153--162},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {44},
     year = {1993},
     language = {fr},
     url = {http://www.numdam.org/item/RCP25_1993__44__153_0/}
}
TY  - JOUR
AU  - Meyer, P. A.
TI  - Bigèbres et probabilités, d'après M. Schurmann
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:6
PY  - 1993
SP  - 153
EP  - 162
VL  - 44
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://www.numdam.org/item/RCP25_1993__44__153_0/
LA  - fr
ID  - RCP25_1993__44__153_0
ER  - 
%0 Journal Article
%A Meyer, P. A.
%T Bigèbres et probabilités, d'après M. Schurmann
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:6
%D 1993
%P 153-162
%V 44
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://www.numdam.org/item/RCP25_1993__44__153_0/
%G fr
%F RCP25_1993__44__153_0
Meyer, P. A. Bigèbres et probabilités, d'après M. Schurmann. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 44 (1993), Exposé no. 6, 10 p. http://www.numdam.org/item/RCP25_1993__44__153_0/

[1] M. Schurmann Positive and conditionally positive linear functionals on coalgebras. Quantum Probability II, Springer LN 1136, 1985, p. 475-492. | MR | Zbl

[2] M. Schurmann Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Prob. Th. Rel. Fields, 84, 1990, p. 473-490. | MR | Zbl

[3] M. Schurmann A class of representations of involutive bialgebras, Math. Proc. Cambridge Phil Soc, 107, 1990, p.149-175 | MR | Zbl

[4] M. Schurmann The Azéma martingales as components of quantum independent increment processes, Sem. Prob. XXV, Springer LN 1485, p. 24-30. | Numdam | MR | Zbl

[5] M. Schurmann White noise on involutive bialgebras, Quantum Probability VI, 1992, p. 401-419, World Scientific. | MR | Zbl

[6] M. Schurmann A central limit theorem for coalgebras, Probability Measures on Groups VIII, Springer LN 1210, 1986, p. 153-157. | MR | Zbl

[7] M. Schurmann Infinitely divisible states on cocommutative bialgebras, Probability Measures on Groups IX, Springer LN 1379, 1987, p. 310-324. | MR | Zbl

[8] M. Schurmann Noncommutative stochastic processes with independent and stationary additive increments, J. Multiv. Anal, 38, 1990, p. 15-35. | MR | Zbl

[9] M. Schurmann Gaussian states on bialgebras, Quantum Probability V, Springer LN 1442, p. 347-367. | MR | Zbl

[10] M. Schurmann Quantum q-white noise and a q-central limit theorem. Comm. Math. Phys., 140, 1991, p.589-615. | MR | Zbl

Evans (M.). Existence of quantum diffusions, Prob. Th. Rel. Fields, 81, 1989, p.473-483. | MR | Zbl

Evans (M.) and Hudson (R.L.). Multidimensional quantum diffusions, Quantum Probability III, Springer LN 1303, 1988, p. 69-88. | MR | Zbl

Glockner (P.)· Quantum stochastic differential equations on *-bigebras, Math. Proc. Cambridge Phil. Soc, 109, 1991, p. 571-595. | MR | Zbl

Hudson (R.L.) and Parthasarathy (K.R.). 1. Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, p. 301-303. | MR | Zbl

Mohari (A.). Quantum stochastic calculus with infinite degrees of freedom and its applications. PhD thesis, ISI Delhi 1992.

Mohari (A.) and Sinha (K.B.). Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhya (A), 52, 1990, p. 43-57. | MR | Zbl

Parthasarathy (K.R.). An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel 1992. | MR

Von Waldenfels (W.). Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. Quantum Probability I, Springer LN 1055, 1984. | MR | Zbl