@article{RCP25_1984__34__91_0, author = {Sibuya, Yasutaka}, title = {On the {Functional} {Equation} $f(\lambda )+f(\omega \lambda )f(\omega ^{-1}\lambda )=1$, $(\omega ^5=1)$}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:4}, pages = {91--103}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {34}, year = {1984}, language = {en}, url = {http://www.numdam.org/item/RCP25_1984__34__91_0/} }
TY - JOUR AU - Sibuya, Yasutaka TI - On the Functional Equation $f(\lambda )+f(\omega \lambda )f(\omega ^{-1}\lambda )=1$, $(\omega ^5=1)$ JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:4 PY - 1984 SP - 91 EP - 103 VL - 34 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://www.numdam.org/item/RCP25_1984__34__91_0/ LA - en ID - RCP25_1984__34__91_0 ER -
%0 Journal Article %A Sibuya, Yasutaka %T On the Functional Equation $f(\lambda )+f(\omega \lambda )f(\omega ^{-1}\lambda )=1$, $(\omega ^5=1)$ %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:4 %D 1984 %P 91-103 %V 34 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://www.numdam.org/item/RCP25_1984__34__91_0/ %G en %F RCP25_1984__34__91_0
Sibuya, Yasutaka. On the Functional Equation $f(\lambda )+f(\omega \lambda )f(\omega ^{-1}\lambda )=1$, $(\omega ^5=1)$. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 34 (1984), Exposé no. 4, 13 p. http://www.numdam.org/item/RCP25_1984__34__91_0/
1) A multiparameter eigenvalue problem in the complex plane, Amer. J. of Math., 99 (1977) 1015-1044 ; | MR | Zbl
,2) On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients, J. Math. Ana. Appl., 16 (1966) 84-103 ; | MR | Zbl
and ,3) Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl
,4) A generalization of Theorem 90 of Hilbert, under preparation ;
and ,5) An entire solution of the functional equation , Proc. of Symposium on Ordinary Differential Equations at Univ. of Minnesota, May 29-30, 1972, Lecture Notes in Math., No. 312, 194-202, Springer-Verlag, 1073 ; | MR | Zbl
and ,6) Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, Math. Studies 18, North-Holland, 1975 ; | MR | Zbl
,7) The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, Section A: Physique théorique, 39 (1983) 211-338 ; | Numdam | MR | Zbl
,8) The zeta function of the quartic oscillator, Nuclear Physics B165 (1980) 209-236 ;
,9) Asymptotic Expansions for Ordinary Differential Equations, John Wiley, 1965. | MR | Zbl
,