Highest Weights of Semisimple Lie Algebras
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 24 (1977), Exposé no. 7, 40 p.
@article{RCP25_1977__24__209_0,
     author = {Laskar, W.},
     title = {Highest {Weights} of {Semisimple} {Lie} {Algebras}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:7},
     pages = {209--248},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {24},
     year = {1977},
     language = {en},
     url = {http://www.numdam.org/item/RCP25_1977__24__209_0/}
}
TY  - JOUR
AU  - Laskar, W.
TI  - Highest Weights of Semisimple Lie Algebras
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:7
PY  - 1977
SP  - 209
EP  - 248
VL  - 24
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://www.numdam.org/item/RCP25_1977__24__209_0/
LA  - en
ID  - RCP25_1977__24__209_0
ER  - 
%0 Journal Article
%A Laskar, W.
%T Highest Weights of Semisimple Lie Algebras
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:7
%D 1977
%P 209-248
%V 24
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://www.numdam.org/item/RCP25_1977__24__209_0/
%G en
%F RCP25_1977__24__209_0
Laskar, W. Highest Weights of Semisimple Lie Algebras. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 24 (1977), Exposé no. 7, 40 p. http://www.numdam.org/item/RCP25_1977__24__209_0/

[1]- H. Wcyl. The classical groups (Princeton Univ. Press 1946).

[2] S. Lie and F. Engel. Theorie der Transformations gruppen (Leipzig 1893). | JFM

[3] L.S. Pontrjagin. Topological groups (Princeton Univ. Press 1939). | JFM

[4] J. Patera and D. Sankoff. Tables of branching rules (Presses de l'Université de Montreal 1973). | MR

[5] H. Zasscnhaus. Lecture Notes of the Summer School (Université de Montreal juin 1976) on Lie Groups, Lie algebras and Representation Theory. The theory of groups. (Chelsea 1958).

[6] E. Cartan. These, Paris 1894. 2nd ed.(Vuibert, Paris 1933),

[7] C. Chevalley. Théorie des groupes de Lie (Hermann, Paris 1968). | Zbl

[8] H. Bacry. Leçons sur la théorie des groupes (Gordon & Breach 1968).

[9] E.B. Dynkin. Am. Math. Soc. translations n° 17 (1950) | MR

E.B. Dynkin Am. Math. Soc. translations serie 2, 6 (1957), p.111-244.

[10] H. Freudenthal & de Vries. Linear Lie Groups (Academic Press 1969). | MR | Zbl

[11] N. Jacobson. Lie algebras (John Wiley, Interscience, 1962). | MR | Zbl

[12] J.E. Humphreys. Introduction to Lie algebras, etc. (Springer, G.T.M. 1972). | MR | Zbl

[13] P.A. Rowlatt. Group Theory and elementary particles.(Longmans 1966). | Zbl

[14] I. Satake. Classification theory of semi-simple algebraic groups .(M. Dekker, New-York 1971). | MR | Zbl

[15] J.P. Serre, Algebres de Lie semisimples complexes (Benjamin ; 1966). | MR | Zbl

[16] H. Bacry, Ph. Combe and P. Sorba. Rept. Math. Phys. 5, 2, 145 (1974) | Zbl

[17,a] J. Patera, R. Sharp, P. Wintemitz and H. Zassenhaus. Subgroups of the Poincaré group and their invariants (J.M.P. 17, 6, 1976). | MR | Zbl

[18,a] M. Hamermesh. Group theory and its application to physical problems. (Addison-Wesley 1962). | MR | Zbl

[18,b] N. Bourbaki. Groupes et algèbres de Lie. Chap. 8, p. 214.( Hermann 1975). | Zbl

[19] M. Perroud. On the irreducible representations of the Lie algebra chain G 2 A 2 (J.M.P. 17, 11, 1976). | MR | Zbl

[20] W. Laskar. Highest weight of smi-simple Lie algebras (5ième Colloque sur la théorie des groupes ; Montréal 5-9 Juillet 1976). | Zbl