@article{RCP25_1977__24__209_0, author = {Laskar, W.}, title = {Highest {Weights} of {Semisimple} {Lie} {Algebras}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:7}, pages = {209--248}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {24}, year = {1977}, language = {en}, url = {http://www.numdam.org/item/RCP25_1977__24__209_0/} }
TY - JOUR AU - Laskar, W. TI - Highest Weights of Semisimple Lie Algebras JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:7 PY - 1977 SP - 209 EP - 248 VL - 24 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://www.numdam.org/item/RCP25_1977__24__209_0/ LA - en ID - RCP25_1977__24__209_0 ER -
%0 Journal Article %A Laskar, W. %T Highest Weights of Semisimple Lie Algebras %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:7 %D 1977 %P 209-248 %V 24 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://www.numdam.org/item/RCP25_1977__24__209_0/ %G en %F RCP25_1977__24__209_0
Laskar, W. Highest Weights of Semisimple Lie Algebras. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 24 (1977), Exposé no. 7, 40 p. http://www.numdam.org/item/RCP25_1977__24__209_0/
[1]- The classical groups (Princeton Univ. Press 1946).
.[2] Theorie der Transformations gruppen (Leipzig 1893). | JFM
and .[3] Topological groups (Princeton Univ. Press 1939). | JFM
.[4] Tables of branching rules (Presses de l'Université de Montreal 1973). | MR
and .[5] Lecture Notes of the Summer School (Université de Montreal juin 1976) on Lie Groups, Lie algebras and Representation Theory. The theory of groups. (Chelsea 1958).
.[6]
. These, Paris 1894. 2nd ed.(Vuibert, Paris 1933),[7] Théorie des groupes de Lie (Hermann, Paris 1968). | Zbl
.[8] Leçons sur la théorie des groupes (Gordon & Breach 1968).
.[9] Am. Math. Soc. translations n° 17 (1950) | MR
.Am. Math. Soc. translations serie 2, 6 (1957), p.111-244.
[10] Linear Lie Groups (Academic Press 1969). | MR | Zbl
& de Vries.[11] Lie algebras (John Wiley, Interscience, 1962). | MR | Zbl
.[12] Introduction to Lie algebras, etc. (Springer, G.T.M. 1972). | MR | Zbl
.[13] Group Theory and elementary particles.(Longmans 1966). | Zbl
.[14] Classification theory of semi-simple algebraic groups .(M. Dekker, New-York 1971). | MR | Zbl
.[15] Algebres de Lie semisimples complexes (Benjamin ; 1966). | MR | Zbl
,[16] Rept. Math. Phys. 5, 2, 145 (1974) | Zbl
, and .[17,a] Subgroups of the Poincaré group and their invariants (J.M.P. 17, 6, 1976). | MR | Zbl
, , and .[18,a] Group theory and its application to physical problems. (Addison-Wesley 1962). | MR | Zbl
.[18,b] Groupes et algèbres de Lie. Chap. 8, p. 214.( Hermann 1975). | Zbl
.[19] On the irreducible representations of the Lie algebra chain (J.M.P. 17, 11, 1976). | MR | Zbl
.[20] Highest weight of smi-simple Lie algebras (5ième Colloque sur la théorie des groupes ; Montréal 5-9 Juillet 1976). | Zbl
.