@article{RCP25_1972__14__A3_0, author = {Thirring, Walter}, title = {Free {Energy} of {Gravitating} {Fermions}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:3}, pages = {1--26}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {14}, year = {1972}, language = {en}, url = {http://www.numdam.org/item/RCP25_1972__14__A3_0/} }
TY - JOUR AU - Thirring, Walter TI - Free Energy of Gravitating Fermions JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:3 PY - 1972 SP - 1 EP - 26 VL - 14 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://www.numdam.org/item/RCP25_1972__14__A3_0/ LA - en ID - RCP25_1972__14__A3_0 ER -
%0 Journal Article %A Thirring, Walter %T Free Energy of Gravitating Fermions %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:3 %D 1972 %P 1-26 %V 14 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://www.numdam.org/item/RCP25_1972__14__A3_0/ %G en %F RCP25_1972__14__A3_0
Thirring, Walter. Free Energy of Gravitating Fermions. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de J. Bros, P. Schapira et W. Thirring et un texte de R. Gérard et A.H.M. Levelt, Tome 14 (1972), Exposé no. 3, 26 p. http://www.numdam.org/item/RCP25_1972__14__A3_0/
1) Statistical Physics, Phase transitions and Superfluidity, 1966 Brandeis University Suramer School in Theoretical Physics, lecture notes ;
inJ.Math.Phys. 8 (1967) 423 | MR | Zbl
and ,2) Phys. Rev. Letter 22. (1969) 631
and ,3) J.Math.Phys. 10 (1969) 806.
,4) Z. Phys. 235 (1970) 339;
,Annals of Physics 63 (1971).
and ,5) MR
and , CEEN preprint TH. 1338 (1971). |6) A typical "neutron star" of particles at a temperature of 5 MeV and enclosed into a sphere of 100 km radius corresponds to with , , and . Since , and are of order unity (if measured in their natural units) and since is sufficiently large, we will describe the above "neutron star" by the limit . For , and km we would have reached the same accuracy for .
7) Perturbation theory for linear operators, Berlin, Springer 1966. There the infinite volume case is studied, however, the result also holds for finite volume. | Zbl
,8) Analyticity of the partition function for finite quantum Systems, CERN preprint TH. 1299 (1971). | MR | Zbl
,9) Eléments d'analyse, Tome I, Paris, Gauthier-Villars 1969. | Zbl
,10) J.Math.Phys. 10 (1969) 1123. Again this estimate for infinité volume is a fortiori also valid for finite volume. | MR
,11) Statistical mechanics - rigorous results, New York, Benjamin 1961. | MR | Zbl
,12) Physica 32 (1966) 933. | MR
, ,