
Recherche Coopérative sur
Programme no 25

OSCAR E. LANFORD
Construction of Interacting Quantum Fields : a Survey
Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1968, tome 6
« Le problème de Riemann Hilbert sur une variété analytique complexe par R. Gérard et
conférence de O.E. Lanford », , exp. no 2, p. 1-34
<http://www.numdam.org/item?id=RCP25_1968__6__A2_0>

© Université Louis Pasteur (Strasbourg), 1968, tous droits réservés.

L’accès aux archives de la série « Recherche Coopérative sur Programme no 25 » implique l’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RCP25_1968__6__A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CONSTRUCTION OF INTERACTING QUANTUM FIELDS : 

A SURVEY 

Oscar E. LANFORD III* 
Institut des Hautes Etudes Scientifiques 
91 - BURSS-sur-YVETTE - FRANCE 

Λ On leave from ; Department of Mathematics 
University of California 
Berkeley, California 



- 1 -

In this exposition, I attempt to summarize the main results, 

und the most: interesting methods, of an approach to the study of specific 

interactions in quantum field theory. This subject is largely historically 

Triotivatec', co I begin with a few historical remarks* When people first 

begai? to study Quantum field theory, they had in mind theories with speci

fic interactions (the electromagnetic field interacting with various 

things), which were to be treated by essentially the same methods are were 

used in non-relativistic quantum mechanics. This procedure led, after some 

very complicated manipulations, to infinite series (the renormalised per

turbation series) which were supposed to represent physical quantities, and 

the first f*w terms of the series gave remarkably good agreement with ex-

perinent in quantum electrodynamics. This agreement is probably the best 

justification for thinking that field theory has something to do with natur< 

Unfortunately, the series are very complicated, so that it is feasible to 

compute only a very few terms; besides, not much is known about their con

vergence. Hen?.e, for strong-interaction physics, the series are not of 

?4iich use, and, in the early 1950's, research took a different direction -

the investigation of the general properties that a satisfactory theory, 

if iw exists, should have. This led to such things as the Wightman axioms 

*nd the study of analytic!ty properties of scattering amplitudes. The 

work I av going to describe returns to the original direction of investi

gation : One writes down specific interactions between fields and tries 

to treat them in analogy with ordinary quantum mechanics. Instead of 

•nanipulatlng formally with power series expansions, however, one uses 
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Hubert space methods. The central problem is to construct the Hamiltonian 

as a self-adjoint operator on a Hubert space. In the end, one hopes to 

arrive at a theory which fits into one or another of the general theoreti

cal frame works for relativistic quantum mechanics which have been déve

loppée! in the past twenty years (Wightman fields, rings of local observables, 

etc.) and thus to obtain a non-trivial model for these systems of axioms. 

However that may come out, the subject has considerable interest in its 

own right, both from a physical point of view because it is closely tied 

to renormalized perturbation theory, and from a mathematical point of view 

because it leads into an area of concrete operator theory with as much 

structure as the theory of differentiation operators. 

With these remarks to serve as an introduction, I want next to 

explain the formal procedure one would like to use to construct interacting 

fields with a specific interaction, and to show why the construction proce

dure doesr;ft work. For purposes of illustration, we will consider a self-

interacting boson field; this theory is hot the most interesting one 

paysicallyj *but it has the advantage of giving rise to the simplest 

formulas. Although one is evidently most interested in a theory in four-di

mensional space-time, theories tend to become mqre tractable as the number 

of space dimensions is reduced. (Divergent integrals become convergent,) 

Hence, one frequently studies theories in 2 or 3 dimensional space-time. 

We will use V to denote the number of dimensions of space. 
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We start with a free scalar boson field at time zero î 

ik* χ ^ 
e [a(k) + a (~k)] 

Here, x, k denote space variables only, since we are considering the 

field at time zero. The creation and annihilation operators have the 

non-relativistic normalization 

[a(k), a*U)] = ô(k-t) , 

and 

μ the mass of the boson, ο 

There is a corresponding free Harailtonian s 

and we want to consider a total Hamiltonian s 

H - H + V ο 

V - λ f dx : 0 4 : (χ) , 
ι 

where λ is the "coupling constant11 and : : means Wick ordering. 

(Wick ordering is the operation on formal expressions for operators in 

terms of creation and annihilation operators which puts all the annihi

lation operators to the right of the creation operators; if there are 

fermion operators present, the resulting expression is also multiplied by 

(-1) to the number of interchanges of pairs of fermion creation and 
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annihilation operators necessary to carry out this re-arrangement.) 

Written out in terms of creation and annihilation operators : 

+ 4a^(k 1)a^(k 2)a*(k 3)à(-V 4) 

•M- -W* 
4- 6a (kj^a (k 2)a(-k 3)a(-K^)-K · · ] 

Interacting fields are to be constructed by propagating the free fields at 

time zero with the total Hamiltonian : 

wH, ν 1 Ht χ -i Ht 0 (x,t) - e 0(x) e 

and the "physical vacuum11 Y should be the lowest eigenstate of H 
ο 

The Wightman functions for the interacting fields pre then given by 

(ψ . 0 H(x 1 f o... 0 H(x %, tj r ) , 
O i l l il .o 

and from these Wight-nan fane tiens ο ;e ?^3uld ce able to compute such physical 

qua.£.titi*.s as scattering amplitudes, vacuum polarization, etc. 

In deriving the perturbation series for vacuum expectation values, 

one ;:fes the ahov-i formal procedure and treats V as a perturbation or; 

In point of fact, however, V is n"f enly not small in any reasonable pense? 

hut is so large that it is not an operator ac all. To see how this comes 

aboutf we remark as a rrle of thumb that a formal exprsssion 



- 5 -

•ft «ft f(k-,...,k ) a (k.)... a (k ) dk....„dk , I n 1 η 1 η 

with a symmetric kernel f , cannot define an operator on Fock space 

unless f is square-integrable. This i3 true because Fock space is a 
2 

space of symmetric tensors over the one-particle space L (dk) , and 
η 
1 -ft -ΜΙ f (k^,...,k^) a (k^)... a (k^) dk^...dk^ acts by tensoring with 

f(k^,...,kn) and symmetrizing; it is very hard to see how this action 

can give anything square-integrable unless f is square-integrable itself. 

(Conversely, if f is, square-integrable, it is well-known that 
f1 -ft 4fr 

f(k.,,.,,k ) a (k_).., a (k ) dk-.. .dk gives a densely defined opera-
J i n i n l n 
tor. ) 

•ft 

Now the kernel expressing V in terms of a'β and a 's contains 

a ô-function and therefore cannot be square-integrable. It is worth knowing 

that this particular difficulty, unlike some others we shall see later, is 

very persistent and cannot be eluded by operator-theoretic tricks. To see 

this, observe that the ô-function in the kernel is a reflection of the 

fact that V is defined to be translation-invariant. Thus, a self-adjoint 

operator on Fock space which is constructed by any reasonable interpretation 

of the formal expression for II 4- V should commute with translations, and 
ο * 

so should the one-parameter group of unitary operators which it generates. 

This one-parameter group should therefore map the subspace of translation 

invariant vectors onto itself; since this subspace is one-dimensional and 

is spanned by the no-particle state* the no-particle state must be an 

eigenvector for K o + V . But this contradicts the formal expression for 
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H q τ V , which is a sum of terms annihilating the no-particle state plus 

a term carrying the no-particle state to a four-particle state. 

Conclusion : It is impossible to give a reasonable definition for H o 4- V 

as a seIf-adjoint operator on Fock space. 

Some changes must therefore be made in the formal expression 

for V . We can either : 

a. Put the whole theory "in a box with periodic boundary conditions11 > 

i.e., replace physical space JRV by the torus T V . 

or 

b. Put a space cut-off in V , i.e., write 

V = λ J dx h(x) :04: (x) 

where h is non-negative and goes to zero at infinity. 

Both methods have their merits; for definiteness, we will consider the 

second. 

Then 

h (kj*.. .+k^) [a (k^.. . a (k4)-K .. ] 

We have thus to ask whether the kernel : 

is square-integrable. Here we get a first glimpse of the advantages or con

sidering space-time of dimension 2 ι The kernel is square-integrable if 
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Λ/ 

V ~ 1 (provided h decreases reasonably rapidly at infinity) but not 

la h i g h e r dimensions. ( μ(Ις)Α^ Jkj for large jkj ·) Thus, as it turns 

out, V needs only a space cut-off to make sense in two-dimensional 

sp;-ce-time. In more dimensions, we have to do something about the contri

butions from large values of k , i.e., from high energies. What we will 

do is simply to remove them by introducing an "ultraviolet cut-off1' ; 

let 

dk . 9 . dk /ν * # 

R 

Then ν(σ) and + ν(σ) are easily interpreted as densely defined syrametrXc 

operators on Fock space, and we are in a position to begin doing operator 

theory. 

At this point a straightforward, if ambitious, long-range progr*-/* 

suggests itself : Use 4- V(G) to construct interacting fields and the 

physical vacuum,, and hence construct the Wightman functions for the theory 

with cut-offs. Then study these Wightman functions as the cut-offs are re

moved and, hopefully, prove that they have a limit. The choice of Wi'ghirm̂ Ji 

functions as the right quantities to study is motivated mostly by the fact th*t 

t b ' - J . r construction is in principle straightforward and that there is r*s 

evidence from perturbation theory that they don't have limits as the 

cut-of ι - <".re removed,, The -study of the removal of the cut-offs in this 

conze-KZ has unfortunately not progressed very far, but there exist at l > a s t 

ν(σ) -
4 ( 2 π ) ν / Ζ 

Κ Ι ^ 
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fairly ccnpiete investigations of the theories with cut-offs, contained 

in the. theses of Jaffe and myself [l], [2] . 

we consider two specific interactions : 

a, self-interaction (jaffe). Let Ρ(ξ) be a polynomial in one 

variable vhlch is non-negative oc the real axis, and tcke (formally) : 

In a analysis recuiras both a box or space cut-off, and an ultra-violet 

cat-off, e yen in two-dimensional space-time where there are no ultra-violet 

di ̂ r^ene-'S, In fact, the cut-off must be strong enough so that V can be 

expressed as a polynomial in finitely many a 13 and a 'β · The problem 

rhrr reduces to studying the differential operator 

- A + E . 

£ * r.cn-negative polynomial, in a large but finite number ο ζ variables, 

;r.C. >he oetaod ?»t attack is to use the theory of partial differential equ*-

t .xODS . 

Κ Vukava interaction (Lanford), Eer2, there are two fields interacting 

with fcjch other, a Dirac field ψ and a scalar field 0 . The interaction 

is given formally by : 

0 + 

V = λ I <lx ifU) ψ(χ): 0(x) 
j 

>Je reed both a space cut-off or box and an ultra-violet cut-cC;, (In «;h.".i 

7 » λ ; dx :?(<ΰ) : (χ) 
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theory, there are ultra-violet divergences even in two-dimensional 

space-time.) With these cut-offs, V becomes a small operator with respect 

to Η , and the investigation of the theory with cut-offs Is based on 

perturbation techniques. 

Although attention has been directed primarily at these two 

interactions, it is possible to combine the techniques used to give fairly 

complete results for any cut-off interaction between fields provided that 

1. The total Hamiltonian is formally semi-bounded 

2. There are no zero-mass particles. 

The problem splits into three parts : 

a. The Hamiltonian. In both theories the Hamiltonian, defined on a natural 

domain, is a semi-bounded essentially self-adjoint operator/ 

b. Interacting fields. We want to define, for appropriate test-functions 

f(x, t) , 

f(x,t) 0 (x,t) dx dt • Λ* i Ht r dt e [ dX f(x ft) 0(X>] β" 1 H t 

-i Ht 

For this definition to make sense, we have to be sure that e does 

not disturb the domain of unbounded operators of the form : 

dx g(x) 0(x) 

too much. In both theories, this problem has been controlled; any polynomial 
C H 

in operators of the form f(x,t) 0 (x,t) dx dt $ f continuous and rapidly 
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decreasing at infinity, is densely defined. 

c. The vacuum. We want there to be an eigenvector of the total Hamiltonian 

(the vacuum) with eigenvalue at the bottom of the spectrum of H . More

over, we want the corresponding eigenvalue to have multiplicity one (unique

ness of the vacuum), and we want the eigenvector to belong to the domain of 

any polynomial in the smeared interacting fields. All these things are true 

for the boson self-interaction theory; they become true for the Yukawa in

teraction after a finite mass©normalization, i.e. after a finite change 

in the masses of the particles. 

These results combine to permit the construction of vacuum 

expectation values of the interacting fields as tempered numerical distri

butions. 

So much for the theory with cut-offs. I now turn to the more 

interesting question of the existence of limits as the cut-offs are re

moved. Here, one adopts the pragmatic position of seeking the simplest 

context to study any given limit. For the limit as the volume goes to 

infinity9 or as the space cut-off goes to a constant, Guenin [3] proposed 

to study the time-evolution of bounded local observables. This inve^stigatioi 

is simpler in at least two respects than the study of Wightman functions : 

a. Because one deals with bounded observables, rather than with unbounded 

smeared fields» domain difficulties are not present. 
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b. The difficult problem of the existence of a vacuum state is completely 

separated from other considerations. 

The formal idea is the following : If A is a bounded operator 

which is a function of the fields and their canonical conjugates at time 

zero smeared with test functions having support in some fixed bounded 

region Qf, and if 

1^ » H o + f dx h(x) Vc j(x) 

where i f j ( x ) , the interaction density, is a local quantity, i.e., a 

function of the fields at the point χ , then 

e A e 

is independent of h provided h is one on the set of all points from 

which light signals can be sent into 0^ in time |t| . Hence, trivially, 

lim . e A e 
h 1 

existe. If we let denote the von Neumann algebra of all opera

tors A and l/C the norm closure of the union of the 

then a one-parameter group of time-evolution automorphisms τ of QC 

may be defined by 

i H ht -i I^t 
Τ (A) » lim e A e 

C h 1 
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il^t -i H^t 
The key point in all this is the fact that e À e 

becomes independent of h as soon as h is equal to one on a large 

enough set. This assertion may be supported by a formal perturbation 

theory argument (see [3]), but more recently an essentially rigorous 

argument has been given for boson self-interactions in two-dimensional 

space-time. It is due to Segal [4] and goes as follows : Let 

V h « j h(x) ;P(0): (x) dx , 

where Ρ is a non-negative polynomial. It is known that H o and 

are self-adjoint operators and that their sum + m is densely 

defined. At this point, we come to the only place where the argument is 

not complete : We have to assume that is essentially self-adjoint 

for each h . Then the Trotter product formula (see [5] and the re

ferences given there) gives : 

i H Qt/n i V ht/n 
e » strong limit (e e ) 

For any bounded operator A4 , we have therefore : 

i H ut -i H,t 1H t/n iV, t/n n -i V. t/n -i Η t/n n 

e h A e 1 1 - 11m (e 0 e h ) A(e h e ° ) 
η ~^oo 

It has very recently?fft>wn by Glimm and Jaffe that this is true, and even 
that is self-adjoint. See [14] . 
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We now make two elementary remarks : 

1. If Β €(%((α, β)) , then e ° Β e 

2. If Β € ΟίΧ(α$ β)) i.and if α 1 < α , β 1 > β , then 

iV ht -iV ht 
e B e belongs to C/K(<Xf, β 1)) and depends only on 

the values of h on ( α 1 , β 1 ) 

Applying each of these remarks η times, then taking the limit η —* » , 

shows that, if A € ôtUa, b)) , 

* V , - i H h f c  

e A e 

depends only on the values of h on a neighborhood to [a - |t|,b-fjt|j 

and belongs to 
Λ « α , β)) for any a < a - t , 3 > b + t . 

Besides the existence of the infinite-volume limit *or £/utamorph>, 

there is a result, due to Jaffe and Powers [6], on the infinite-volume 1ΙΓΛΙ 

of tne vacuum state. The idea is as follows : Let f, g be two smooth func

tions of compact, support. For any cubical region Λ whose interior contains 

the supports of f and g , construct the cut-off 0^ Hamiltoni&o In che 

hou Λ with periodic boundary conditions; Jet be the corresponding 

vacuum state, and let 

w v ( f,g) = ( U v, e 1 (ϕ ( f ) + II ( g ) ) u v) 

(where π denotes the field canonically conjugate to 0 ). 
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If we take a sequence of cubes which eventually contains any bounded 

set, elementary compactness arguments show that there exists a subnet n^ 

such that 

0)(f, g) » lim U) (f, g) 
α η 

α 

exists for all f, g . Then UD defines a translation-invariant state 

of the Weyl algebra for the infinite-volume fields 0 and TT at time zero 

and is a reasonable candidate for the physical vacuum state. What Jaffe 

and Powers show is that u)(f, g) is continuous in (f, g) on finite-di

mensional subspaces and that therefore the state defined on the Weyl alge

bra is regular , i.e., gives rise to a representation of the canonical 

commutation relations. Although the proof in [6] applies only to the 

0^ interaction, the result may be extended to almost any physically reasonable 

interaction with ultraviolet cut-off, It could also be extended to boson 

self-interactions in two-dimensional space-time without an ultraviolet 

cut-off, if it could be shown for these theories that, for all values of 

the coupling constant, the vacuum energy in a box of volume V decreases 

at most linearly with V as V goes to infinity. 

I come now to the most substantial contribution which has been 

made to the solution of the problem of the removal of cut-offs ; Glimm's 

work on the definition of the total Hamiltonian without ultraviolet cut-offs. 

Glimm starts with a formal expression for the total Hamiltonian, containing 
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infinite counterterms which are supposed to cancel the worst-behaved 

parts of the interaction. The spirit of the investigation is to make 

these cancellations explicit and thus to construct (on an appropriate 

concrete Hubert space) a self-adjoint operator which can reasonably be 

interpreted as the total Hamiltonian without ultraviolet cut-offs. A 

space cut-off is always present in the interaction; moreover, problems 

concerning interacting fields and the vacuum state are at present un

touched. 

Glimm has studied two specific interactions : The Yukawa inter

action in two-dimensional space-time and the 0^ interaction in three dimen

sions. Although the same underlying formal ideas are used in the two cases, 

the technical details are quite different. The Yukawa interaction is by 

far the simpler, and I shall not discuss the methods of proof for the 

0^ interaction. However, to begin, I give a summary of the results that 

have been obtained for both interactions. 

First, the Yukawa theory. The problem is to define. 

Η - Η + h(x) :φ +(χ)ψ(χ): 0(x) dx 4- ~ ti (x) :0 :(x)dx+ c $ , ren ο τ τ 2 I 

2 
where 6m and c are infinite* i.e., are given as divergent integrals, 

c 2 0 2 2 

(The term I h (x) .0 :(x)dx is a mass renormalissation counterterm., and 

the constant c is to be thought of as adjusting the energy of the ground 
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state.) The procedure followed is first to introduce a cut-off α in the 

interaction and the counterterms; this gives a well-defined operator 

Η (σ) = Η + ίι(χ):ψ+(χΗ (χ): 0 (x)dx + - ^ V ^ h2(x):(Ζί2: (x)dx+c(a) d ren ο J τσ Ο Ο 2 j σ 

2 
where the quantities 6m (σ) and c(a) are finite numbers obtained by 

2 

putting a corresponding cut-off in the divergent integrals defining ôm 

and c . Next, one constructs a family of unbounded operators Τ(σ) on 

a dense domain 3D(T) , and a limiting operator Τ such that 

lim Τ(σ) Ψ - Τ Ψ 

for all Y € £(Τ) , and such that Τ 3D(T) is dense in Fock space. 

The operator Τ is called a "dressing transformation" ; its function is 

to take analytically well-behaved vectors into vectors which have a chance 

of being in the domain of the singular operator Η n · The first major 

result is the following : There is a symmetric bilinear form H
r e n

 o n  

Τ *S(T) such that 

lim (Η (σ) Τ(σ)Υ, Τ(σ)Φ) - (ïï TY, ΤΦ) ren ren 

for all Ψ, § € 3)(Τ) . This is essentially the content of [7] . 

The second step is to pass from the bilinear form to an operator. 
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In [8], Glimm shows that, if an appropriate finite change is made in the 
2 

mass renormalization (i.e., if a fixed finite constant is added to δπΓ(σ) 
for all σ ), then the bilinear form Η is semi-bounded and closeable 

ren 

and therefore corresponds to a self-adjoint operator by Friedrichs extension 

techniques. The finite change that must be made in the mass renormalization 

is annoying, especially since it seems to go to infinity as the space cut-off 

goes to one. Fortunately, in [9] it is shown that this finite change was not 

really necessary; ^ Y e n * s semi-bounded and closeable whatever finite change 

has been made in the mass renormalization. (In the same reference it is shown 

that, if P(§) is an even non-negative polynomial and if h is non-negative, 

then in two-dimensional space-time the total boson self-interaction Hamiltonian 

1^ + dx h(x) ;P(0): (x) 

is a semi-bounded operator on Fock space. This generalizes an earlier result 

of Nelson [10}) 

So much for the Yukawa interaction. In [ll], Glimm makes a similar 

attack on the 0^ interaction in three-dimensional space-time. Here again., 

one wantβ to define : 

Η » Η + λ dx ;0 : (χ) h(x) * I 2 :02: (x) h 2(x) dx + c ί , ren ο 2 

2 

where 6m and c are infinite. Again, one defines a cut-off Hamiltonian 

and a family Τ(σ) of cut-off dressing transformations on a fixed 

domain 3XT) in Fock space. This time, because the theory is "more divergent 
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than the Yukawa interaction in two dimensions, lim Τ(σ)Υ does not 

exist in Feck space. 

However, if $, Y belong to S(T) , 

lia (Τ(σ)$, Τ(σ)Υ) 
σ ̂  « ||τ(σ) $ 0 Ι!2 

exists ( $ ο is the Fock vacuum). This limit can be used to define a new 

Eilberc space / ^ r e n > *uul a dressing transformation Τ mapping 3D(T) to 

a dense subset of can be defined by 
ren 

(T$, TY) 
ren 

« l i m (Τ(σ)$, τ(σ)Υ) 
σ->« ||τ(σ) $ol|2 

The main result is the existence of a symmetric operator # r e n 

such that 

m ï 5)(T) c # 
ren 

(Η ΤΦ, TY) ren ' ren 
(H r e n(a) τ(σ)$, Τ(σ)Υ) 

lim r-
σ«4 » Τ(σ) I f ο 

for all 5, Y in S(T) . 

The appearance of a new Hilbert space on which the renormalized 

Hamiltonian acts is a phenomenon of considerable physical interest and 

deserves further investigation. Glimm constructs the Hilbert space 
r ren 

in a fairly concrete, if extremely complicated, way. It would be useful to 

have a simpler realization of it as a function space, to see whether the 

creation and annihilation operators act on this function space {i,e«, wn^ther 
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th. s corresponding formal operations give densely defined operators 

satisfying the canonical commutation relations in Weyl form) &nd$ 

if oo, to study the properties of the representation of the canonical 

commutation relations so obtained* It would also be useful to know 

to wh/iii extent the space is uniquely determined by the fact 

that H gives a densely defined operator on it* ren 

It is out of the question, in an exposition of reacorWble 

length, to give detailed proofs for any/the main results* Instead, 

it seems more useful to try to give an idea of how the proofs work 

"by illustrating the main* formal and technical ideas used in the 

construction of the Eamiltonian for the Yukawa interaction* To start, 

we v/ill look at an analytically transparent example to show bow ih* 

aressing~transformation technique can be used to define an operator 

which, on first sight, looks too singular to make any sense* The 

operator we want to define is s 

- î £ + IL 
dx 

on L (dx), where Mg means the operator of multiplication > y the 5 

function* 

To define this operator, we start by 11 introducing a out-c.?f 

i*e*, by approximating the δ-funotion by a continuous positive function 

f with integral one* Let 

h f(x) « βχρ(-1 Ç f(t)dt) 
mm QQ 
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and let T f « , the operator of multiplication ty h f * 

Then a simple calculation gives : 

[- i i + Μ ] Τ » i + T f[- i l + M f ] 
dx f dx 

[- ii + Μ ] Τ » i + Tf[ 

If we now let f — > δ in some reasonable sense, then the operators 

converge strongly to an operator which can call Tg , and we can 

define 

[- iJL + .Mg] Tg Y « lim Ε- i 1- * M f3 Τ Ψ« TgC- i — ] Y 

for Ψ i n S ( - i i ) . 
dx 

Note that this procedure does not give a definition of Mg 

hy itself. Instead, commuting the "free Hamiltonian" ~ i — — past the 
dx 

dressing transformation Tg gives something which cancels the singular 

"interaction Hamiltonian" Mg * 

We next turn to a more realistic example* The interaction 

Hamiltonian for the Yukawa theory splits into a sura of eight terms s 

A term which creates a fermion, an antifermion, and a hoson $ a terra 

which creates a fermion and an antifermion and annihilates a hoson | 

etc* 

αχ CDC 
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Let be the pure-creation term t 

r 
Q 1 « dp dp' d k ^ (p,p',k). a*(k) b*(p) 1>'*(ιή 

J 

( V denotes a fermion creation operator, b1** an antifermion creation 

operator)* This expression is only formal, ΐ·θ·, does not define an 

operator in any straight*forward way $ the kernel is not square-

integrable* We will show how to define 

H o + Q 1 + + Δ + ο 1 , 

Ythere Δ is an (infinite) mass-renormalization counterterm and c an 

(infinite) constant. We first look just at H q + , and we "proceed 

formally* Let 

Γ q.i(p*P%k) 
P Q , » dp dpt dk _ . a*(k) b*(p) V*(pt) 

J cu(p) + ω( ρι)+μ(ΐς) 

(<υ(ρ) « \ 4 2 + ρ 2 ' , U)c the fermion mass)* 

The kernel 
^ ( ρ , Ρ 1 ,k) 

ω ( ρ ) Ή ϋ ( ρ · ) + μ ( ΐ β ) 

is a^uare-integrable, so unlike 

Q 1 itself, defines an operator on Pook space· Note, however, that 

How 
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Ρ 
(Ko + 0(1(σ)) e- *VCT) « ΓΓ ^(*) ^ 

(Ko + 0(1(σ)) e- *VCT) « ΓΓ ^(*) ^ 

(We are making use of the fact that commutes with Ρ since both 

ε.Γβ made up out of creation operators alone and each contains an even 

number of fermion operators*) 

Formally, then, we should be able to define 

(Ko + 0(1(σ)) e- *VCT) « ΓΓ ^(*) ^ 

wherever the right-hand side makes sense* There remains r.he problem r>f 
Γη 

constructing e~ ^1 ; furthermore, to justify the ab-mrc def'xro*-on* 

we should check that 
(K o + 0(1(σ)) e- * V C T ) « Γ Γ ^(*) ^ 

for all values of the ultraviolet cut-off σ · The latter identity 

follows easily from the argument we just gave if e~ ^ΐ^ σ) c a n \^ 

defined by the power-series expansion for the exponential, i*e*? if 

there is a sufficiently large set of vectors Ψ such that 

τ. 1 - ii(rQl(ff))ilYi! < -
η η I 

Here, we need a technical lemma % 

η« ι n i 



- 23 -

Lennia. There exists a constant Κ such that, for any square-integrable 
kernel r(p,p*,k), the corresponding operator 

H « dp dp' dk r(p,pSk) a*(k) b*(p) V*(p-») 

satisfies : 

llHTll * K . I!ri!2 .||(H +1)T|| 

for all Y 6 ®(*0> where Ν is the total particle number operator. 

From this lemma, and the faot that Β increases the particle 

number by 3* it follows easily that, for |jr||2 small enough, 

(Ko + 0(1(σ)n«1 

for all Y in S) , the set of vectors with bounded total particle 

number· Unfortunately, 

f ι qi(p>PSk) 2 

dp dp f dk 
J K p ) « H y ( p f W ( k ) 

need not be small· To get around this difficulty, we use a technical 
device apparently first used by Nelson in [.12] j we introduce a lower 

cut-off on the momentat If, instead of PQ-j > we consider 

r lQ 1 -PQjCp) with ρ sufficiently large, we get an operator whose 
2 

kernel has L norm which is as small as we like* Thus, by making ρ 



- 24 -

large enough, we can guarantee that 

JL |!(nQl - p Q ^ p f f|| < ω for all Ψ in » 
η η! 

and also that s 

JL |!(nQl - pQ^pf f|| < ω f 

is dense in Pock space* Then, formally, 

(H 0 + β,) . - P W ? » . e - ^ r ' V P » ^ + ,,(ρ)) . 

The right-hand side is well-defined on »(H 0) Π ® o , so h o + q 1 

may "be rigorously defined on the dense domain 

e-(rQrrQi(^)){s) n©(H o)} 

hy this formula* Similarly, for Σ > ρ , 

(Η β * Q,(o)) JL |!(nQl - pQ^pf f|| < ω f β-( Γ«.( σ) -Λΐ(Ρ»(Η β • ,,ίρ)) 

so, letting 
JL |!(nQl - pQ^pf f|| < ω f f β-(Γ«.(σ) -Λΐ(Ρ»(Ηβ • 

υγθ &et 

lim Τ(σ)Υ » TT (V £ S) ) 

and 
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lim (H + 0^(σ)) Τ(σ)ψ » (H + Q,) ΤΨ (Y 6 S Π 5>(H )) · 

Thus, + has been constructed as a densely-defined operator 

which: is'.the limit, in a reasonable sense, of H q + Q-j(cr) as σ goe 

to infinity* Note that no renormalization counterterms have been 

needed in this construction* 

It remains to deal with Q^f + mass renormal izat ion* To 

simplify the formulas, we will assume that we don ft need the lower 

momentum cut-off ρ · Because we have left out some terms in the 

interaction, we can ft use the full mass renormalization counterterm, 

but only the number-conserving part, i*e*, 

Δ(σ) « const(σ) die d-t 

[ p(k ) u M ] 1 / 2 

h 2 (k-t) a*(k)a(<0 

|k|*a 
|-t|*cr 

(The constant will be determined later and will go to infinity as σ 

does*) 

What we have to do is to study t 

(<β(σ) + Δ(σ) + ο ( σ ) ί ) θ " ^ ^ 

a3 cr —> 0 9 « The technique used is to commute the operator on the 

left through the exponential and to write the result in Wick 'order? 

i*e*, with the annihilation operators on the right* This gives a 

polynomial of bounded degree in the creation and annihilation operators, 

multiplied on the left by Θ ~ " Π ^ 1 ^ · If the operator defined by 
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the polynomial has a limit as σ goes to infinity, so does 

(Q^(o) + Δ{σ) + ο(σ)1) e ~ P Q 1 ( a ) 

Thus, the problem reduces to studying the finite number of kernels 

defining the polynomial, i.e., to questions of computation^ The 

computations are forbiddingly complicated if approached in a straight

forward way $ fortunately, there is a formal device, due to Priedrichs 

[ 1 3 ]> which greatly simplifies the grouping of terms. 

To see how this formal device works, we have to recall how 

the operation of Wick-ordering a product of two polynomials in 

creation and annihilation operators goes* Let P, R be two such 

polynomials ; we will suppose R to be made up out of creation 

operators only and Ρ to be Wick-ordered· To get P.R expressed a 3 

a Wick-ordered polynomial, the annihilation operators in Ρ must 

be commuted through R , using the commutation relations» Each time 

an annihilation operator is commuted past a creation operator, one 

obtains a new term with a δ-function in the corresponding variables» 

Such a term we will refer to as a contraction* Each contracted term 

must itself be written in Wick order ; this gives new terms with 

more variables contracted. The net result is that P.R « R.P + the 

sura of all possible contractions between Ρ and R , Wick ordered. 

The operator that we actually want to analyze is of the form t 

Ρ e ~ R « Σ til! P. R n 

n*0 η J 
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For each η, we define the connected product Ρ — * R n to he the 

sum of all contractions between Ρ and S n in which at least one 

variable in each factor R is contracted* Note that P—-*~Rn β 0 if 

η is greater than the number of annihilation operators in Ρ # The 

formula of Friedrichs now says t 

P. e ~ H = e~ R[P + Σ izDl t P - * r f V ] 
n»1 η 1 

(For a proof of this formula, see [7] , ̂ 3· 3·) 

Thus we get : 

(Q,*(a) + Δ(σ) + ο(σ)*) Β~%(σ) » e Q 1 ( a ) { Q ^ ( a ) + Δ(σ) + ο(σ)ϋ 

(Q,*(a) + Δ(σ) + ο(σ)*) Β~%(σ) » e 

+ - : ^ ( % ( ^ ) ) 2 t - - * * , * ( σ ) ^ (Ρθ Μ(σ)) 3 *} 
2 6 

When written out in detail, i*e*, indicating the different ways the 

contractions may be made, the expression in braces becomes even more 

complicated* We will not discuss all the terms, but will look at a 

few representative ones to show what tricks are used for handling them* 

Before doing this, it will be useful to make a few remarks 

about the problem of finding dense domains for formal polynomials in 

the creation and annihilation operators* We have already discussed 

what happens for pure creation operators t An expression like 
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R = J f t k . , , . . . , ^ ) a * ( k 1 ) . . . a * ( k n ) d k , . . . ^ 

tnaVes cense as an operator if and only if r is square-integrable. 

Moreover, if r is square-integrable, then the domain of R contains 

3D and, for Y € & o , S Y varies continuously with r · The latter 

features persist if some of the creation operators are replaced "by 

annihilation operators j as long as we have to do with a suuare-

integrable kernel, everything is easily controlled. If there are 

annihilation operators present, however, the condition that the kernel 

be square - integrable can be weakened. For example, if r is any 

Lebesgue-measurable complex-valued function, then 

I r(k 1 5 ...,k n) a(k-j) ··· a(k n) dk 1««#dk n 

is in a natural way a densely-defined operator. (It is easily defined 

on those vectors Y which have bounded free energy and which are such 

that r(k 1 f...,k n) is essentially bounded on 

C(k r,.-.,k n) : a ^ ) . . . a(k n) Υ /-Ο.} « 

One can also easily make more precise statements 

7 ( ^ ) μ ( ^ η ) 

is square-integrable, then 

r ( k 1 F # . E , k n ) a i k ^ f . a ( k
n ) d k j » " â k n 
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2 

Returning to the consideration of the expression in braces 

in (*) , we apply first the remark just made to show that, if 

Y € S) fl S)(H2) , ο ο ' 

lim Q ^ i ^ Y 
σ—> » 

exists since the kernel qi(p*P f>k) 

ω(ρ)ω(ρ*) 

is square-integrable· 

Second, we write out : Q l * ( a ) <^(σ) t in terms of the various 

ways the contractions can be made ι 

(Q,*(a) + Δ(σ) + ο(σ)*) Β~%(σ) » e t Q*(cr) Hq (σ) s + : Q,*(a) 

+ t Q*(cr) Hq (σ) s + : Q,*(a) Ρο (σ) t 
2,0 2,1 1 

(Here means the sura of all terms with exactly i fermion 

contractions and j boson contractions*) The terms 

t Q<*(a) PQjCtf) 2 and s Q^(a) — ^ — pQi(^) $ 
1 1,0 1 0,1 

are all right 

for the same sort of reasons as they have enough fermion 

annihilation, variables free to take advantage of the fad; that they 

is defined on any Y in 3V Π ®(H ) , and R Ψ varies continuously 

with the kernel r in the obvious sense* This remains true if some 

or all of the annihilation operators a(k.j)*** aiK^g) a r e replaced 

by creation operators* Finally, although we have discussed only boson 

operators, the same remarks hold for fermion operators or for .mixed 

expressions* 

1,0 ο. 



- 30 -

are being applied to vectors in tD(H^) .The term Q/'(a) - £ y - P Q ^ a ) 

is just a number, which goes to infinity as σ does $ we adjust 

ο(σ) to cancel it. 

The terra 
2,0 

is more interesting * it has to be 

cancelled by the infinite mass renormalization. 

»$!*(<>·) -^0" Ρ ( Μ σ ) ' ' 
dp dp» dk ô.l 
dp dp» dk ô.l 

dp dp» dk ô.l 
ς!1(ρ»Ρ*»^)ςΐ'1(ρ»Ρ'><') 
ω(ρ) + (»(pt) + u(k) 

a*(k) β(*) · 

We now need an explicit formula for : 

q ^ p - P S k ) - h(p+pMk) 5 ( P > P , ) , 

where S(p,p') is real and bounded. Hence t 

dp dp» dk ô.l 
dp dp» dk ô.l dp dp 

dk dfc 
dk dfc a*(k) 

μ « ΐ / 2 μ ( * ) * |ρ|ίσ 
| ρ · μ σ 

v (S(p,p')) 2 

dp dp ' h(p+p ,+k)h(-p-p » -I) - — — 
tt)(p)+uu(p»)+ii(k) 
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h(s+k)h 
h(s+k)h 

dk àl a-::-(k)a(-t) 
h(s+k)h f 

I 
σ 

ds dt 
h(s+k)h(-3^)(S(n+t' , s-t)) 2  

2 2. 1 
w(s+t) + ^(s-t) + μ(^) 

2 2 

(We have changed variables from (ρ,p !) to s = P+P f ;t = p-p f; Ι σ dénotée 

the region of integration in the new variables*) For any fixed s,k, 

the integral over t diverges logarithmically as c r — · The above 

expression is to he subtracted from : 

Δ(σ) h(s+k)h 
h(s+k)h dk àt 

a*(k)a(*)  

μ Μ ΐ / 2 μ ( * ) ΐ / 2 

{ const(a) j ds h(s-rk) h(-s-£)J 

If we take 

Const(σ) a / 
J|t|*a 

d t [s(t,-t)12 

we get exact cancellation "between these two expressions for s = 0 , 

k = 0. It turns out that, with this choice for const(a) , the kernel 

of 

- : 0,*(σ) — ^ — pQ.j(a) : + Δ(σ) 
2,0 

2 
converges in L as cr goes to infinity,so 

lim {- ,· — a — P Q (σ) : + Δ(σ)} Ψ 

exists for every Y in S · 
ο 
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It will be left to the reader to investigate the "behavior 

of the remaining terms in (**) # To conclude, we summarise Glimm ?s 

treatment of the total Yukawa Hamiltonian* First, the interaction V 

is split into a pair creation and annihilation part Tj , and the 

remainder which is made up of terms corresponding to the emission 

and absorption of bosons "by fermions* We have shown how to deal with 

half of ITj · The whole of Ύ | can he handled "by similar 

techniques, vising a more complicated dressing transformation and the 

full mass renormalization counterterm* This gives t 

H + V] + counterterms ο 1 

as a symmetric operator (not just as a bilinear form) on the (dense) 

range of the dressing transformation* The remainder "V̂  of the 

interaction, without counterterms, is then shown to define a bilinear 

form on the range of the dressing transformation* 
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