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PLURISUBHARMONIC FUNCTIONS AND

ENTIRE FUNCTICNS OF EXPONENTIAL TYPE (%)

par

Pierre Lelong

1 . Introduction and notations. Some new results were obtained recently on entire

functions of exponential type of n complex variables., We give here a survey
of these results which will appear in forthcoming papers of P, Lelong.

[4, e, f], A . Martineau [ 5, b ] and C. O. Kiselman [3]. A first pro-
blem is to characterize the regularization of the two indicators (the circular
indicator and the radial indicator) of entire functions of exponential type., This
problem has recently received a complete solution for the two indicators in
terms of plurisubharmonic functions, On the other hand the problems concer-
ning the indicators themselves reduce to the study of certain ""small' sets,

i. e., sets of points where the indicator is smaller than its regularization,
We give here properties of the class of "negligible' sets, a notion which pro-
bably can be used also for other -~ classical or non-classical -- problems in

the theory of functions of n complex variables.

We denote by j : C" = RZn the injection (x,y) = j(z) , zech
(x,y) ERzn , of the complex space Cc™ in the euclidean space R2n ; the

norm l|{zll is the distance of z from the origin 0. If {f(z) is a real valued

function

f* (z) = Reg. f(z) = lim sup #(z') , 2 ech
z',z

is the smallest upper semicontinuous majorant of f and is called the regula-

rization of f. An entire function ¥(z) = I:"(z1 Yoo Zn) is of exponential type
v if
lim sup Hz“-l logl F(z)| =Y, lzl] o + o, zech

¥ Ce texte correspond a un exposé faitpourla RCP n° 25 en octobre 1966. Il
avait été rédigé d'abord en anglais, ayant fait 1'objet d'un exposé au Séminaire
d'été sur la théorie des fonctions analytiques & La Jolla, Californie, Juillet 1961

D'accord avec l'auteur, nous l'avons laissé sous sa forme primitive.( L R)
Nd .



En denotes the ring of the entire functiors of finite exponential type in c”
We shall be concerned first with the two following indicators, the circular

indicator and the radial indicator of I' € En .

Definition 1, 1. Given FE& En , we define the circular indicator of center

QGCn , of variable zech , as follows :

LC(C ,z) = lim sup |u|-l log l F(C + uz)l , u complex

|UI"’+co

If n=1 , LC is the constant Y.

Definition 1.2. Given FEEn , the radial indicator of center (€ Cn , of

variable z€C" is defined by

Lr (G, z) = lim sup t'l log | F (C + tz) | , treal, t> 0,
t—+o

It is well known that for n=1 , Lr (C,z)} is a convex (and there-
fore continuous) function of z€C" for each fixed (. Such simplicity is no
longer true for n> 1 . Instead of the convex functions, we must consider

plurisubharmonic functions and negligible sets.

. Plurisubharmonic functions, P () denotes the class of the plurisubharmonic

functions on a complex analytic manifold (. Perhaps it is useful to state the
definition {although plurisubharmonic functions are now in textbooks on analy-

tic functions).

Definition 2, 1, A function { is a plurisubharmonic function in Q if

(i) £ is recal valued, -0 =Sf<+o;ff .o,

(ii) f is locally upper bounded (i.e., sup f(z) = M(K) is finite
for each compact KCQ), z2€K

(iii) given a linear mapping m : z, = zk0 tau, u-z= (zk) ec”
u.'ECl , of C1 in c™ , fom is locally subharmonic in

u or is the constant - o



The above definition was the original definition I gave in 1942
(r4, a1 and [4, bl ). The condition (ii} can be replaced by (ii)' : f is upper
semicontinuous. /. second {(ecquivalent) definition is the following, using the
injection j : f€P (0) acch |, if and only if

(i) f j-1 is & subharmonic function in ! (considered as a do-

, . in
main in R77)

(ii) for each complex lincar mapping & of CI:]Zk= z, toa ] z'j,
z = a (z'), “al‘l h # 0, the funiction f o @ o j’l is subharmonic

in the image ( in R%%) jea™l(q) .

For other (equivalent) definitions see [4, b] and [4, d] . The
definition 2.1 remains valid if (! is a domain in a complex linear topological
< 'lf flx+uy) dd (u);

1

(x)
x+ Dy€Q , where D is thedisk |u| <1, u€C", and d\ is the Lebesgue
2

space, the condition (iii) being formulated :
. 1
measure in C° = R

Given a family fs €P(Q2), s€J locally upper bounded on Q , we

consider

(2.1) W.o=supf , s&J

1 s S
(2.2) W, = lim sup fs in the case J is a directed set ;
< s

Wl and WZ are not in P (Q) , but the regularizations

w¥* = Reg. W

*
1 and W, = Reg. W

1 2 2

are in P(Q), For the proof, sece [4, d]. The property of Wii remains valid

if (i is an open set in a complex linear topological space with a countable base
of the neighborhoods at the origin, for example a Banach space (see [1] and
r3l).

. Polar sets and negligible sets, In the case n =1 , the sets defined by

I - .
Lz ; Wl(z) <W, (2)] or [z WZ(Z) < WZ (z) ] are sets of capacity zero,.

1
For n>1 , by the injection j : ct . RZn , it is obvious that such sets are




W
]

of R?_n -capacity zero. Eut it is not a sufficiently preeise property.

s . . n .
Definition 3.1. Given a complex manifold M ; E is called a polar set on
M®if there exists f€P (Mn) and

EC(z;flz)s -= J.

n

Theorem 3, 2, If M is a countable union of compact scts KmC M , such
. D .

that a given compact K<M "~ belongs to Km for sufficiently large m

then a countable union of polar sets on 2% is a polar set on M

For the proof sec [4 ,e, 1.

s - . . s . . .
Definition 3.3. ECM" is a negligible set on M~ if there exists an increasing

sequence quP(Mn) , locally upper bounded and such that if lim fq =W ,
then EC[z ; W(z) < W*(z) 1 , where W*: Reg . W on M™. For the coun-

. . . n
table union of such sets in & domeain of C we have

Theorem 3,4, /£ countable union of negligiblec sets in a domain of c® isa

negligible set,
For the proof see [4, f]. Now we return to classes of functions

. ey ) n n .
and consgider classes M(Q) , MO(‘J) in a domain ¢ of C (0 =C is not

excluded} defined as follows,

Definiticn 3.5, The class M (Q) is a countable union of the following classes
C  (£2) :
q

CO () = 2 {C2) (plurisubharmonic functions)

C1 (Q) is defined by : fECla (Q) if f= sup fs , ngP (Q) and the family fs,
s€J , is locally upper bounded ; fec, () if £ = 1lim fq , qu Cig Q) , fé-o

and fq is a decreasing sequence,

if Cq 1
ess : 0) i = 5Uj €
process fGan () if f= sup fs’ fs C

() is defined, we define Coa ((2) and Cq(Q) by the same

q-1 () , s€J, and the family fs is
locally upper bounded ; f¢€ Cq () if f is the limit of a decreasing sequence

f €C _(Q), and f % - o,
q qa



M (£2) is the union of the classes Cq () ; it is also the limit of

the increasing sequence of the Cq(@) , G -t

If we consider only countable families (i, e., J is a countable set),

we obtain a subclass M_ () M (Q) which contains only Baire functions.

Theorem 3. 6. (i) Given W& M () there exists W! EMO () such that

W's W and Reg. W'= Reg. W
(ii) W;K = Reg. W is 2 plurisubharmonic function

(iii) E = [z ; W(z) < W*(z) ] is a negligible set.

The part (iii) is a consequence of theorem 3.4, For the proof see
{4, f]. By (i) we have ECE' where E' is negligible and a Baire set, In
{4, c¢] other properties are given : if E is a negligible set in acch , we
have EC? ﬂk , where T]k is a Baire set whose sections by the cl (Zk) are

sets of RZ-Capacity zero. An important property is the following (see [4 , c]):

Theorem 3,7. The restriction of a negligible set on the real subspace RI;

. n
is a set of R -measure zero,

The subspace P;l is defined by putting zq T Xy + iyk , and Vi = 0,

1=k<n The property given by theorem 3.7. remains valid if we use a

’

holomorphic mapping ; for example , the restriction of a negligible set on
s . . . n .

the distinguished boundary of an n-cylinder in C is of Lebesgue measure

zero,

Theorem 3,8, If W((,z)éM (QQ X QZ) , we have

W™ (C, z) = Reg. (Xz W(C,=z) = Reg.g [Reg, W(C,z)] = Reg. [Reg.g W(C, z)].

As a corollary, if W(Zl’ R Zn) € M(Q) , then ,W* can be obtained by  using

the regularizing process successively for the n variables,



Comparison between the polar sets and the negligible sets, A polar set E

in { is negligible in & ; for if EC{z ; V{(z) = - » ] where VEP(), we

consider W(z) = lim sup%-\/(z) ; W*(z) =0 , and we have EC[z;W<W*].

N-teo
But is the converse true ? The following statement gives an answer only

in a particular case :

Theorem 3.9, If EClz; W(z)< W%(z) ] and ‘\7."—'Iim7fn s fHGP(Q) s

and if W is pluriharmonic, then I is a polar set in Q,

. Homogeneous plurisubharmonic functions, V(z) is positively homogencous

of order 3 if
Vitz) = t* V(z) t >0 ;

V(z) is complex homogenecus of order ) if

A

Viuz) = lu|® V(z), u complex.

In the following, homogencous means homogeneous of order 1. It is
convenient to introduce the following definition,

n

)

Definition 4, 1. V&€P (C') is of exponential type VY if

Cbviously if V& P(Cn - 0) is bounded in a neighborhood of the origin

0 , and positively homogeneous, then V €P(C™) and V is of exponential type.

Theorem 4,2, (i) For n=1 , if VGP(CI) is positively homogeneous, then

V(z) reduces by j to a convex and positively homogeneous function V(x,y)
in RZ.
(ii) I1f V EP(Cn) is positively homogeneous, then V{(z)> -«

z€ch

(iii) If Vv EP(Cn) is complex homogenecus, then V(z) 20, =z ECn,

and U =log V EP(Cn). Furthermore there exists a sequence Pm(z) of



homogencous polynomials, degree Pm:m , such that the sequence
1

V==
m m

log |P_|

is locally upper bounded and V."*(z) = U(z) , where V(z) = lim sup V__ (z).

m
m—+wo

The statement (i) is classical and can be proved by considering in an
angle @, 0<@ < 71, the positively homogeneous harmonic function h = ax+t+by
which takes the values of V on the boundary of the angle, The inequality

V £ h is equivalent to the convexity of V,

For (ii) and (iii) sce [4, f] and [3]. Thec open set D =[z; V(z)< 1],
if V is complex homogeneous, is a2 pscudo-convex domain. Let us put

z = u) , ”)\H =1 ; D is defined by V(ur) = luiV(?x)<l , Or |u| <R () with

Log @ (A) = -log V(1)

and, by a classical property of R{.) for the pseudo convex domains,

U(z) = log V(z) is a plurisubharmonic function,

Properties of the indicators L ((,z), L ({,z). Simplifications arise from

the following properties,

Theorem 5, 1, Reg. LC(Q, z} £ Reg. L (G, =)
Reg., L (&,z) < DReog. L ((2)
©

These are consequences of the following geometric situation., Let
us consider the mapping 7 : c® - {0} - Pn—l where P" is the projective
map, and z° 4 0 , u' is somc bounded ncighborhood of ¢® in c" ,
then there exists ty such that

-1

u' + 2%t ® + 7T (U)

for t=t .
o



Theorem 5.2, (i) Reg. .y Lr(ﬁ;,z) = Reg. L _(C,2).

{ii) Reg._ L _((,z) is independent of €.

(ii1) The same propertics are true for LC(Q, z).

Theorem 5.2, lcads to the following definitions.

Definitions 5,3, We put

= - . 1z a A
L . (z) = Reg. Xz LC( , z) (circular global indicator)
L . (z) = Reg'ng Lr(g, z) (radial global indicator)
6 . Circular global indicator. It is obvious that L C(uz) = lul L c (z) :

ook . . . .
L (z) is therefore a complex homogeneous plurisubharmonic function, The

converse is true (see [4,¢e,{7).

Theorem 6. 1. In order that V(z) be a global circular indicator of an entire

function F GEn , it is necessary and sufficient that V EP(Cn) be complex

homogencous of order one,

The proof miakes use of the fact that the domain [z ; V{(z) < 17 which
was considered in thecorem <4.2. is a holomorphy domzin (by the thecorem of
Cka-Norguect).

For fixed { , theset[z; L ({,z) < L* (2)] is a negligible sct of
complex lines L1 . Example : if n=2 , this set can be identified with a sect

. . o 1
of capacity zero in the projective space P,

. Radial global indicator, L*r(z) is a positively homogencous plurisubhar-

monic function. The converse is true and was proved recently and indepen-
dently by 1 Martineau [5,bland C,C. Kisclman [ 3], It is possible to asso-
ciate to L (z) an open set A of holomorphy (sec P, Lglong [4,f] defined by
AzAlUZ,whereA [z; L rz<1], =[lz; L r' ) £ -1] , but the

proof of the theorem given by Kiselman uses the following comstruction of a



domain of holomorphy.

Lemma 7,1, Let F be a positively homogenecous and plurisubharmonic func-

. n
tion in C~ . Then the open sct (Re means the real part) :

Q_=[z¢ ct

F ; inft(F‘(tz) -Ret)< 0], tcomplex,

is a pseudo-convex domain, and therefore a holomorphy domain.
’ phy

. .n+ 1 . .
Let us denote by 7 the mapping of ch L. {0} - P" on the projective
space, We consider in CnT;l the open set :
W ‘:szCnJ"l‘for some ‘t€C1 F(tz tz J<Retz .|
P ’ ’ """’ ""n n+l

= Ti(w

Op is a connected Stein manifold ; w'F F) determines F uniquely.
If F,GEP(Cn) , are positively homogeneous of order one, we have F = G
if and only if w'F 5 (D'G . As a conscquence, we have

Theorem 7.2. If FeP(C") is positively homogenecous of order one, then

there exists an entire function of exponential type having F as global radial

indicator,

Consequently, the regularization of the circular and of the radial
indicators are completely determined by domains of holomorphy in c™;a

classical result of the theory (n=1) is so extended to the genecral case n=1,

It is important to develop our knowledge of the entire functions of exponential
type of n variables not as a purec generalization of the classical theory (n = 1)
but in closc connection with the main problems of functional analysis. The
ring En contains the Fourier transforms of most of the usval linear operators
(convolution is the image of the multiplication of the ring En). On the other
hand, many problems of the theory of analytic functionzls reduce to problems

on En . Sometimes the properties of regularizations of the indicators are not



- 10 -

sufficient, and propcrties of negligible scts are to be used. /A ncgligible

. . ; n .
sct is of Lebesguce measure zero on the rceal subspace RX . As 2 conse-
quence of this property we have given in [, ¢l a theorem of Hartogs, for
the real subspace .RX , and applications to entire functions of cxponential
type. This method gives a generalization of o result of Martinean [5, al.

The '"Hartogs theorem for the reals' is the following [4,c]:

Theorem 8,1. Let us consider a domain acc? , such that &0 Rr; =d

3

] . n
where d is a domain in the real subspace RX of co . Let Vs (z)

?

s€J , where J is a directed sct be a family, V_€P () , locally upper boun-
ded in ¢ . We denote by z = x + iy the decomposition C' = RI; X R; LI
f(x) is o continuous function on d and T (z) a continuous continuation of

f to Q [for example, T (x+iy) = f(x) ], and if we have

lim sup VS (x) < f(x), =x€d, x real

then the following property is true : given K compact in chi , and
¢ >0, therc exists s_ and a neighborhood U(K) of K for the C" -topology,
such that

if s > S, - and z &£ U(K).

An equivalent property is the following : if W(z) € M (() , we have

V\’X(z) = lim sup W(z+x) , x real. For cach function W € M({2) the regulariza-
tion can be gﬂ%e using only the resiricticn of the function to the real values.

An easy consequence (sece [4,f] ) is the following :

Theorem 8.2. Let {(x) be a continuous function of the recal XERZ , and

¥ (x) be positive and positively hemogeneous of order one on Rz (i.e., ¥ (tx)

=ty (x), t>0). Then, to given &> 0, there correcsponds a finite number C(¢)


http://subspa.ce
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such that, if V is a plurisubharmonic function of exponential type Y , then
the condition

Lr(O,x) < ¢(x) for x real
gives
L™ (2) =4 (x) + e [x]| + cle) liyl]

and C(e¢) depends only upon Y and ¢ .

L.s a corollary we have : with the same hypothesis on §(x) , the
majorization lim sup t—l log |F(tx)] < ¥(x) , x reel, where F is an entire
. - .
function of exponétntlal type, gives,

Vi(z) = log |F(2)] = ¥(x) + ¢ |Ix]l + c(e) llyll + cr(e)

<
whecre C(¢) and C'(e) are two finite constants., /A particular situation for
entire functions or plurisubharmonic functions of exponential typeis obtained

if §(x)= 0 . Then Lr(O,x) < 0 gives L;'ér (x) =0, x real, and we have
% . % L
Lr (iy) = sup_ Lr (x+1y) = h{y)

and h(y) is a convex function in R; . For fixed y , the set [ ; LI(C,iy)<h(y)]
is a polar set Ey . On the other hand, if QQEY we have

3

lim sup ¢! vi(g, + te” yk) = h(‘/k) sin€ , 0<e<m

toteo k
(see [4,f] and [2]). Such results have applicatibns in functional analysis
(sce for example [2] ) and are gencralizations of classical results given for
entire functions of one complex variable or for subharmonic functions in a

half-plane,
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