Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 689-724.

We are interested in bifurcating Markov chains on Galton−Watson tree. These processes are an extension of bifurcating Markov chains, which was introduced by Guyon to detect cellular aging from cell lineage, in case the index set is a binary Galton−Watson process. First, under geometric ergodicity assumption of an embedded Markov chain, we provide polynomial deviation inequalities for properly normalized sums of bifurcating Markov chains on Galton−Watson tree. Next, under some uniformity, we derive exponential inequalities. These results allow to exhibit different regimes of convergence which correspond to a competition between the geometric ergodic speed of the underlying Markov chain and the exponential growth of the Galton−Watson tree. As application, we derive deviation inequalities (for either the Gaussian setting or the bounded setting) for the least-squares estimator of autoregressive parameters of bifurcating autoregressive processes with missing data which allow, in the case of cell division, to take into account the cell’s death.

Reçu le :
DOI : 10.1051/ps/2015007
Classification : 60E15, 60J80, 60J10
Mots clés : Bifurcating Markov chains, Galton−Watson processes, ergodicity, deviation inequalities, first order bifurcating autoregressive process with missing data, cellular aging
Bitseki Penda, S. Valère 1

1 CMAP, UMR 7641, École polytechnique CNRS, Route de Saclay, 91128 Palaiseau, France
@article{PS_2015__19__689_0,
     author = {Bitseki Penda, S. Val\`ere},
     title = {Deviation inequalities for bifurcating {Markov} chains on {Galton\ensuremath{-}Watson} tree},
     journal = {ESAIM: Probability and Statistics},
     pages = {689--724},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015007},
     zbl = {1335.60136},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2015007/}
}
TY  - JOUR
AU  - Bitseki Penda, S. Valère
TI  - Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 689
EP  - 724
VL  - 19
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2015007/
DO  - 10.1051/ps/2015007
LA  - en
ID  - PS_2015__19__689_0
ER  - 
%0 Journal Article
%A Bitseki Penda, S. Valère
%T Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
%J ESAIM: Probability and Statistics
%D 2015
%P 689-724
%V 19
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2015007/
%R 10.1051/ps/2015007
%G en
%F PS_2015__19__689_0
Bitseki Penda, S. Valère. Deviation inequalities for bifurcating Markov chains on Galton−Watson tree. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 689-724. doi : 10.1051/ps/2015007. http://www.numdam.org/articles/10.1051/ps/2015007/

K.B. Athreya, Large deviations for branching processes-I. Single type case. Ann. Appl. Probab. 5 (1994) 779–790 | Zbl

K.B. Athreya and P.E Ney, Branching Process. Springer, Berlin (1972). | Zbl

K. Azuma, Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 (1967) 357–367. | Zbl

V. Bansaye, J.F. Delmas, L. Marsalle and V.C. Tran, Limit theorems for Markov processes indexed by continuous time Galton−Watson trees. Ann. Appl. Probab. 21 (2011) 2263–2314 | Zbl

G. Bennett, Probability inequalities for sum of independant random variables. J. Am. Stat. Assoc.57 (1962) 33–45. | Zbl

B. Bercu, and V. Blandin, A Rademacher−Menchov approach for randon coefficient bifurcating autoregressive processes. Stochastic Processes Appl. 125 (2015) 1218–1243. | Zbl

B. Bercu, B. De Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electronic. J. Probab. 14 (2009) 2492–2526. | Zbl

S.V. Bitseki Penda and H. Djellout, Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models. Ann. Inst. Henri Poincaré 50 (2014) 806–844. | Zbl

S.V. Bitseki Penda, H. Djellout and A. Guillin, Deviation inequalities, Moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 (2014) 235–291. | Zbl

V. Blandin, Asymptotic results for random coefficient bifurcating autoregressive processes. Statistics 48 (2013) 1202–1232. | Zbl

R. Cowan and R.G. Staudte, The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769–783. | Zbl

B. De Saporta, A. Gégout-Petit and L. Marsalle, Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313–1353. | Zbl

B. De Saporta, A. Gégout-Petit and L. Marsalle, Asymmetry tests for Bifurcating Auto-Regressive Processes with missing data. Stat. Probab. Lett. 82 (2012) 1439–1444. | Zbl

B. De Saporta, A. Gégout-Petit and L. Marsalle, Random coefficients bifurcating autoregressive processes ESAIM: PS 18 (2014) 365–399. | Zbl

J.F. Delmas and L. Marsalle, Detection of cellular aging in Galton−Watson process. Stochastic Process. Appl. 120 (2010) 2495-2519 | Zbl

J.P. Dion and N.M. Yanev, Limit theorems and estimation theory for branching processes with increasing random number of ancestors. J. Appl. Probab. 34 (1997) 309–327. | Zbl

J. Guyon, Limit theorems for bifurcating markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. | Zbl

J. Guyon, A. Bize, G. Paul, E.J. Stewart, J.F. Delmas and F. Taddéi, Statistical study of cellular aging. Proc. of CEMRACS 2004. ESAIM: Proc. 14 (2005) 100–114. | Zbl

W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963) 13–30. | Zbl

R.B. Karp and Y. Zhang, Finite branching processes and AND/OR tree evaluation TR. International Computer Science Institute; 93-043, ICSI. Berkeley, Calif. (1994).

C. Mcdiarmid, On the method of bounded differences. Electron. Comm. Probab. 11 (2006) 64–77.

E.J. Stewart, R. Madden, G. Paul and F. Taddéi, Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45.

Cité par Sources :