Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 13-32.

We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian Lévy process X , when we observe high-frequency data X Δ n , X 2 Δ n , ... , X n Δ n with sampling mesh Δ n 0 and the terminal sampling time n Δ n . The rate of convergence turns out to be ( n Δ n , n Δ n , n , n ) for the dominating parameter ( α , β , δ , μ ) , where α stands for the heaviness of the tails, β the degree of skewness, δ the scale, and μ the location. The essential feature in our study is that the suitably normalized increments of X in small time is approximately Cauchy-distributed, which specifically comes out in the form of the asymptotic Fisher information matrix.

DOI : 10.1051/ps/2011101
Classification : 60G51, 62E20
Mots-clés : high-frequency sampling, local asymptotic normality, normal inverse gaussian Lévy process
@article{PS_2013__17__13_0,
     author = {Kawai, Reiichiro and Masuda, Hiroki},
     title = {Local asymptotic normality for normal inverse gaussian {L\'evy} processes with high-frequency sampling},
     journal = {ESAIM: Probability and Statistics},
     pages = {13--32},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011101},
     mrnumber = {3002994},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2011101/}
}
TY  - JOUR
AU  - Kawai, Reiichiro
AU  - Masuda, Hiroki
TI  - Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 13
EP  - 32
VL  - 17
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2011101/
DO  - 10.1051/ps/2011101
LA  - en
ID  - PS_2013__17__13_0
ER  - 
%0 Journal Article
%A Kawai, Reiichiro
%A Masuda, Hiroki
%T Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
%J ESAIM: Probability and Statistics
%D 2013
%P 13-32
%V 17
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2011101/
%R 10.1051/ps/2011101
%G en
%F PS_2013__17__13_0
Kawai, Reiichiro; Masuda, Hiroki. Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 13-32. doi : 10.1051/ps/2011101. http://www.numdam.org/articles/10.1051/ps/2011101/

[1] M. Abramowitz and I.A. Stegun Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition, Dover Publications, Inc., New York (1992) | MR | Zbl

[2] Y. Aït-Sahalia and J. Jacod, Fisher's information for discretely sampled Lévy processes. Econometrica 76 (2008) 727-761. | MR | Zbl

[3] M.G. Akritas and R.A. Johnson, Asymptotic inference in Lévy processes of the discontinuous type. Ann. Stat. 9 (1981) 604-614. | MR | Zbl

[4] S. Asmussen and J. Rosiński, Approximations of small jumps of Levy processes with a view towards simulation. J. Appl. Probab. 38 (2001) 482-493. | MR | Zbl

[5] O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. A 353 (1977) 401-419.

[6] O.E. Barndorff-Nielsen, Normal inverse Gaussian processes and the modelling of stock returns. Research report 300, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus (1995)

[7] O.E. Barndorff-Nielsen, Processes of normal inverse Gaussian type. Finance Stoch. 2 (1998) 41-68. | MR | Zbl

[8] D.R. Cox and N. Reid, Parameter orthogonality and approximate conditional inference. With a discussion. J. R. Stat. Soc., Ser. B 49 (1987) 1-39. | MR | Zbl

[9] J. Jacod, Inference for stochastic processes, in Handbook of Financial Econometrics, edited by Y. Aït-Sahalia and L.P. Hansen, Amsterdam, North-Holland (2010) | Zbl

[10] B. Jørgensen and S.J. Knudsen, Parameter orthogonality and bias adjustment for estimating functions. Scand. J. Statist. 31 (2004) 93-114. | MR | Zbl

[11] O. Kallenberg, Foundations of Modern Probability. 2nd edition, Springer-Verlag, New York (2002) | MR | Zbl

[12] D. Karlis, An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution. Stat. Probab. Lett. 57 (2002) 43-52. | MR | Zbl

[13] D. Karlis and J. Lillestöl, Bayesian estimation of NIG models via Markov chain Monte Carlo methods. Appl. Stoch. Models Bus. Ind. 20 (2004) 323-338. | MR | Zbl

[14] R. Kawai and H. Masuda, On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling. Stat. Probab. Lett. 81 (2011) 460-469. | MR | Zbl

[15] L. Le Cam, Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses. Univ. California Publ. Stat. 3 (1960) 37-98. | MR | Zbl

[16] L. Le Cam and G.L. Yang, Asymptotics in Statistics. Some Basic Concepts. 2nd edition, Springer-Verlag, New York (2000) | MR | Zbl

[17] H. Masuda, Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling. Ann. Inst. Stat. Math. 61 (2009) 181-195. | MR | Zbl

[18] H. Masuda, Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Japan Stat. Soc. 39 (2009) 49-75. | MR

[19] K. Prause, The Generalized Hyperbolic Model : Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis, University of Freiburg (1999). Available at http://www.freidok.uni-freiburg.de/volltexte/15/ | Zbl

[20] S. Raible, Lévy Processes in Finance : Theory, Numerics, and Empirical Facts. Ph.D. thesis, University of Freiburg (2000). Available at http://www.freidok.uni-freiburg.de/volltexte/51/ | Zbl

[21] K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) | Zbl

[22] A.N. Shiryaev, Probability. 2nd edition, Springer-Verlag, New York (1996) | MR | Zbl

[23] H. Strasser, Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter & Co., Berlin (1985) | MR | Zbl

[24] A.W. Van Der Vaart, Asymptotic Statistics. Cambridge University Press, Cambridge (1998) | MR | Zbl

[25] J.H.C. Woerner, Statistical Analysis for Discretely Observed Lévy Processes. Ph.D. thesis, University of Freiburg (2001). Available at http://www.freidok.uni-freiburg.de/volltexte/295/ | Zbl

[26] J.H.C. Woerner, Estimating the skewness in discretely observed Lévy processes. Econ. Theory 20 (2004) 927-942. | MR | Zbl

Cité par Sources :