In this paper we consider BSDEs with Lipschitz coefficient reflected on two discontinuous (RCLL) barriers. In this case, we prove first the existence and uniqueness of the solution, then we also prove the convergence of the solutions of the penalized equations to the solution of the RBSDE. Since the method used in the case of continuous barriers (see Cvitanic and Karatzas, Ann. Probab. 24 (1996) 2024-2056 and Lepeltier and San Martín, J. Appl. Probab. 41 (2004) 162-175) does not work, we develop a new method, by considering the solutions of the penalized equations as the solutions of special RBSDEs and using some results of Peng and Xu in Annales of I.H.P. 41 (2005) 605-630.
Keywords: reflected backward stochastic differential equation, penalization method, optimal stopping, Snell envelope, Dynkin game
@article{PS_2007__11__3_0, author = {Lepeltier, Jean-Pierre and Xu, Mingyu}, title = {Reflected backward stochastic differential equations with two {RCLL} barriers}, journal = {ESAIM: Probability and Statistics}, pages = {3--22}, publisher = {EDP Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007002}, mrnumber = {2299643}, zbl = {1171.60352}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps:2007002/} }
TY - JOUR AU - Lepeltier, Jean-Pierre AU - Xu, Mingyu TI - Reflected backward stochastic differential equations with two RCLL barriers JO - ESAIM: Probability and Statistics PY - 2007 SP - 3 EP - 22 VL - 11 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2007002/ DO - 10.1051/ps:2007002 LA - en ID - PS_2007__11__3_0 ER -
%0 Journal Article %A Lepeltier, Jean-Pierre %A Xu, Mingyu %T Reflected backward stochastic differential equations with two RCLL barriers %J ESAIM: Probability and Statistics %D 2007 %P 3-22 %V 11 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2007002/ %R 10.1051/ps:2007002 %G en %F PS_2007__11__3_0
Lepeltier, Jean-Pierre; Xu, Mingyu. Reflected backward stochastic differential equations with two RCLL barriers. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 3-22. doi : 10.1051/ps:2007002. https://www.numdam.org/articles/10.1051/ps:2007002/
[1] Jeux de Dynkin. Ph.D. dissertation, Univ. Franche-Comté, Besançon (1982).
,[2] Dynkin games. Lect. Notes Control Inform. Sci. 43 (1982) 23-42.
, and ,[3] Sur un problème de Dynkin. Z.Wahrsch. Verw. Gebiete 39 (1977) 31-53. | Zbl
,[4] Backward Stochastic Differential Equations with Reflection and Dynkin Games. Ann. Probab. 24 (1996) 2024-2056. | Zbl
and ,[5] Les aspects probabilistes du contrôle stochastique, in P.L. Hennequin Ed., Ecole d'été de Saint-Flour. Lect. Notes Math. 876 (1979) 73-238. | Zbl
,[6] Reflected Solutions of Backward SDE and Related Obstacle Problems for PDEs. Ann. Probab. 25 (1997) 702-737. | Zbl
, , , and ,[7] Reflected BSDE's with Discontinuous Barrier and Application. Stochastics and Stochastic Reports 74 (2002) 571-596. | Zbl
,[8] Backward SDE's with two barriers and continuous coefficient. An existence result. J. Appl. Probab. 41 (2004) 162-175. | Zbl
and ,[9] Penalization method for Reflected Backward Stochastic Differential Equations with one RCLL barrier. Statistics Probab. Lett. 75 (2005) 58-66. | Zbl
and ,[10] Adapted solutions of Backward Stochastic Differential Equations. Systems Control Lett. 14 (1990) 51-61. | Zbl
and ,
[11] Smallest
- Reflected backward stochastic difference equations and optimal stopping problems under
-expectation, Electronic Journal of Probability, Volume 28 (2023), p. 24 (Id/No 99) | DOI:10.1214/23-ejp989 | Zbl:1533.60084 - Optimal stopping of marked point processes and reflected backward stochastic differential equations, Applied Mathematics and Optimization, Volume 83 (2021) no. 3, pp. 1219-1245 | DOI:10.1007/s00245-019-09585-y | Zbl:1478.60184
- Reflected BSDEs with two optional barriers and monotone coefficient on general filtered space, Electronic Journal of Probability, Volume 26 (2021), p. 24 (Id/No 91) | DOI:10.1214/21-ejp655 | Zbl:1480.60160
- Reflected backward stochastic differential equations with two optional barriers, Bulletin des Sciences Mathématiques, Volume 158 (2020), p. 49 (Id/No 102820) | DOI:10.1016/j.bulsci.2019.102820 | Zbl:1471.60088
- Numerical Algorithms for Reflected Anticipated Backward Stochastic Differential Equations with Two Obstacles and Default Risk, Risks, Volume 8 (2020) no. 3, p. 72 | DOI:10.3390/risks8030072
- Reflected and doubly reflected backward stochastic differential equations with time-delayed generators, Journal of Theoretical Probability, Volume 32 (2019) no. 1, pp. 216-248 | DOI:10.1007/s10959-018-0829-x | Zbl:1499.60191
- Reflected BSDEs with general filtration and two completely separated barriers, Probability and Mathematical Statistics, Volume 39 (2019) no. 1, pp. 199-218 | DOI:10.19195/0208-4147.39.1.13 | Zbl:1482.60083
- Reflected BSDEs with regulated trajectories, Stochastic Processes and their Applications, Volume 129 (2019) no. 4, pp. 1153-1184 | DOI:10.1016/j.spa.2018.04.011 | Zbl:1488.60146
- Doubly reflected BSDEs and
-Dynkin games: beyond the right-continuous case, Electronic Journal of Probability, Volume 23 (2018), p. 31-p (Id/No 123) | DOI:10.1214/18-ejp225 | Zbl:1406.60060 - Mean Field Games with Singular Controls of Bounded Velocity, SSRN Electronic Journal (2017) | DOI:10.2139/ssrn.2932277
- Generalized Dynkin games and doubly reflected BSDEs with jumps, Electronic Journal of Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ejp4568
- Numerical approximation of doubly reflected BSDEs with jumps and RCLL obstacles, Journal of Mathematical Analysis and Applications, Volume 442 (2016) no. 1, pp. 206-243 | DOI:10.1016/j.jmaa.2016.03.044 | Zbl:1342.60113
- Obstacle problem for semilinear parabolic equations with measure data, Journal of Evolution Equations, Volume 15 (2015) no. 2, pp. 457-491 | DOI:10.1007/s00028-014-0269-8 | Zbl:1322.35074
- Stochastic control representations for penalized backward stochastic differential equations, SIAM Journal on Control and Optimization, Volume 53 (2015) no. 3, pp. 1440-1463 | DOI:10.1137/130942681 | Zbl:1328.60139
- Reflected BSDEs on filtered probability spaces, Stochastic Processes and their Applications, Volume 125 (2015) no. 11, pp. 4204-4241 | DOI:10.1016/j.spa.2015.06.006 | Zbl:1323.60079
- Stochastic quadratic BSDE with two RCLL obstacles, Stochastic Processes and their Applications, Volume 125 (2015) no. 6, pp. 2147-2189 | DOI:10.1016/j.spa.2014.12.009 | Zbl:1312.60076
- Second-order BSDEs with general reflection and game options under uncertainty, Stochastic Processes and their Applications, Volume 124 (2014) no. 7, pp. 2281-2321 | DOI:10.1016/j.spa.2014.02.011 | Zbl:1330.60074
- The mixed zero-sum stochastic differential game in the model with jumps, Advances in dynamic games. Theory, applications, and numerical methods for differential and stochastic games. Dedicated to the memory of Arik A. Melikyan. Selected papers presented at the 13th international symposium on dynamic games and applications, Wrocław, Poland, Summer 2008., Boston, MA: Birkhäuser, 2011, pp. 83-110 | DOI:10.1007/978-0-8176-8089-3_5 | Zbl:1218.91023
- Numerical algorithms and simulations for reflected backward stochastic differential equations with two continuous barriers, Journal of Computational and Applied Mathematics, Volume 236 (2011) no. 6, pp. 1137-1154 | DOI:10.1016/j.cam.2011.07.035 | Zbl:1243.65013
- Numerical method for reflected backward stochastic differential equations, Stochastic Analysis and Applications, Volume 29 (2011) no. 6, pp. 1008-1032 | DOI:10.1080/07362994.2011.610162 | Zbl:1243.60050
- Backward SDEs with two rcll reflecting barriers without Mokobodski's hypothesis, Bulletin des Sciences Mathématiques, Volume 134 (2010) no. 8, pp. 874-899 | DOI:10.1016/j.bulsci.2010.03.001 | Zbl:1208.60056
- BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game, Stochastic Processes and their Applications, Volume 119 (2009) no. 9, pp. 2881-2912 | DOI:10.1016/j.spa.2009.03.004 | Zbl:1229.60083
Cité par 22 documents. Sources : Crossref, zbMATH