@article{PS_2000__4__1_0, author = {Bercu, Bernard and Gamboa, Fabrice and Lavielle, Marc}, title = {Sharp large deviations for gaussian quadratic forms with applications}, journal = {ESAIM: Probability and Statistics}, pages = {1--24}, publisher = {EDP-Sciences}, volume = {4}, year = {2000}, mrnumber = {1749403}, zbl = {0939.60013}, language = {en}, url = {http://www.numdam.org/item/PS_2000__4__1_0/} }
TY - JOUR AU - Bercu, Bernard AU - Gamboa, Fabrice AU - Lavielle, Marc TI - Sharp large deviations for gaussian quadratic forms with applications JO - ESAIM: Probability and Statistics PY - 2000 SP - 1 EP - 24 VL - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/PS_2000__4__1_0/ LA - en ID - PS_2000__4__1_0 ER -
Bercu, Bernard; Gamboa, Fabrice; Lavielle, Marc. Sharp large deviations for gaussian quadratic forms with applications. ESAIM: Probability and Statistics, Tome 4 (2000), pp. 1-24. http://www.numdam.org/item/PS_2000__4__1_0/
[1] Séries d'observations irrégulières. Masson ( 1984). | MR | Zbl
and ,[2] On deviations of the sample mean. Ann. Math. Statist. 31 ( 1960) 1015-1027. | MR | Zbl
and ,[3] Asymptotic techniques for uses in statistics. Chapman and Hall, Londres ( 1989). | MR | Zbl
and ,[4] Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory 41 ( 1995) 1834-1844. | MR | Zbl
, and ,[5] A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28 ( 1979) 975-983. | MR | Zbl
,[6] Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory 5 ( 1982) 659-665. | MR | Zbl
,[7] Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl. 71 ( 1997) 75-90. | MR | Zbl
, and ,[8] Large deviation probabilities for weighted sums. Ann. Math. Statist. 43 ( 1972) 1221-1234. | MR | Zbl
,[9] Analysis of Toeplitz operators. Springer, Berlin ( 1990). | MR | Zbl
and .[10] Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist. 14 ( 1993) 207-222. | MR | Zbl
,[11] Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 ( 1997) 307-332. | MR | Zbl
and ,[12] On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett. 17 ( 1993) 281-285. | MR | Zbl
and ,[13] Large deviations techniques in decision, simulation, and estimation. Wiley ( 1990). | MR
,[14] A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory 39 ( 1993) 249-254. | MR | Zbl
and ,[15] Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci. Sér. I Math. 288 ( 1979) 769-770. | MR | Zbl
and ,[16] Random variables and probability distributions. Cambridge University Press ( 1970). | JFM | MR | Zbl
,[17] Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci. Sér. I Math. 288 ( 1979) 225-228. | MR | Zbl
,[18] Large deviations techniques and applications. Jones and Barblett Pub. Boston ( 1993). | MR | Zbl
and ,[19] Fourier analysis of distribution functions. Acta Math. 77 ( 1945) 1-25. | MR | Zbl
,[20] Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal. 27 ( 1996) 1129-1152. | MR | Zbl
and ,[21] Bayesian methods for ill posed problems. Ann. Statist. 25 ( 1997) 328-350. | MR | Zbl
and ,[22] On Szegös limit theorem. Math. USSR- Izv. 5 ( 1971) 421-444. | Zbl
and ,[23] Toeplitz forms and their applications. University of California Press ( 1958). | MR | Zbl
and ,[24] Random fields on a network/ modeling, statistics and applications. Springer ( 1995). | MR | Zbl
,[25] Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal. 32 ( 1969) 190-225. | MR | Zbl
and ,[26] Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2) 22 ( 1971) 147-159. | MR | Zbl
,[27] Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 ( 1995). | MR | Zbl
,[28] On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. 112 ( 1988) 257-304. | MR | Zbl
,[29] Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process. 42 ( 1993) 742-749. | Zbl
,[30] Testing statistical hypotheses. John Wiley and Sons, New-York ( 1959). | MR | Zbl
,[31] Real and complex analysis. McGraw Hill International Editions ( 1987). | MR | Zbl
,[32] Higher order asymptotic theory for time series analysis. Springer, Berlin ( 1991). | MR | Zbl
,[33] On the limit block Toeplitz determinants. Proc. Amer. Math. Soc. 50 ( 1975) 167-173. | MR | Zbl
,[34] Asymptotic behavior of block Toeplitz matrices and determinants IIAdv. Math. 21 ( 1976). | MR | Zbl
,