Les P-values comme votes d’experts
ESAIM: Probability and Statistics, Tome 4 (2000), pp. 191-204.
@article{PS_2000__4__191_0,
     author = {Morel, Guy},
     title = {Les $P$-values comme votes d{\textquoteright}experts},
     journal = {ESAIM: Probability and Statistics},
     pages = {191--204},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {2000},
     mrnumber = {1808926},
     zbl = {1061.62510},
     language = {fr},
     url = {http://www.numdam.org/item/PS_2000__4__191_0/}
}
TY  - JOUR
AU  - Morel, Guy
TI  - Les $P$-values comme votes d’experts
JO  - ESAIM: Probability and Statistics
PY  - 2000
SP  - 191
EP  - 204
VL  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/PS_2000__4__191_0/
LA  - fr
ID  - PS_2000__4__191_0
ER  - 
%0 Journal Article
%A Morel, Guy
%T Les $P$-values comme votes d’experts
%J ESAIM: Probability and Statistics
%D 2000
%P 191-204
%V 4
%I EDP-Sciences
%U http://www.numdam.org/item/PS_2000__4__191_0/
%G fr
%F PS_2000__4__191_0
Morel, Guy. Les $P$-values comme votes d’experts. ESAIM: Probability and Statistics, Tome 4 (2000), pp. 191-204. http://www.numdam.org/item/PS_2000__4__191_0/

J.R. Barra, Notions fondamentales de statistique mathématique. Dunod, Paris ( 1971). | MR | Zbl

J.O. Berger, Statistical decision theory and Bayesian analysis, second edition. Springer-Verlag, New York ( 1985). | MR | Zbl

J.O. Berger et T. Sellke, Testing a point null hypothesis: The irreconcilability of p-values and evidence. J. Amer. Statist. Assoc. 82 ( 1987) 112-122. | MR | Zbl

R.J. Buehler, Fiducial inference, An appreciation, edited by R.A. Fisher. Springer-Verlag, New York, Lecture Notes in Statistics ( 1980) 109-118. | MR

G. Casella et R.L. Berger, Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J. Amer. Statist. Assoc. 82 ( 1987) 106-111. | MR | Zbl

J.M. Dickey, Three multidimensional-integral identities with bayesian applications. Ann. Math. Statist. 39 ( 1968) 1615-1628. | MR | Zbl

R.A. Fisher, The fiducial argument in statistical inference. Annals of Eugenics 6 ( 1935) 391-398. | JFM

K.R. Gabriel, Simultaneous test procedures - some theory of multiple comparisons. Ann. Math. Statist. 40 ( 1969) 224-250. | MR | Zbl

H.M.J Hung, R.T. O'Neill, P. Bauer et K. Köhne, The behavior of the p-value when the alternative hypothesis is true. Biometrics 53 ( 1997) 11-22. | MR | Zbl

J. T. Hwang, G. Casella, C. Robert, M. T. Wells et R.H. Farell, Estimation of accuracy in testing. Ann. Statist. 20 ( 1922) 490-509. | MR | Zbl

S. Karlin, Decision theory for Pólya type distributions. Case of two actions, I, in Proc. Third Berkeley Symposium on Math. Statist. and Prob. Univ. of Calif. Press 1 ( 1955) 115-128. | MR | Zbl

A.H. Kroese, E.A. Van Der Meulen, K. Poortema et W. Schaafsma, Distributional inference. Statistica Neerlandica 49 ( 1995) 63-82. | MR | Zbl

E.L. Lehmann, Testing stastical hypotheses, second edition. Wiley, New York ( 1986). | MR | Zbl

E.A. Van Der Meulen et W. Schaafsma, Assessing weights of evidence for discussing classical statistical hypotheses. Statistics & Decisions 11 ( 1993) 201-220. | MR | Zbl

A. Monfort, Cours de statistiques mathématique. Économica, Paris ( 1982).

G. Morel, Expertises : procédures statistiques d'aide à la décision, Pré-publication. LAST-Université de Tours ( 1997) 182.

G. Morel, Probabiliser l'espace des décisions, Pub. Sém. 97 : Bru Huber Prum, Paris V ( 1998) 71-98.

C. Robert, L'analyse statistique bayésienne. Économia, Paris ( 1992). | Zbl

D. Salomé, Statistical inference via fiducial methods, Ph. D. Thesis, Rijksuniversiteit Groningen ( 1998).

W. Schaafsma, J. Tolboom et B. Van Der Meulen, Discussing truth and falsity by computing a Q-value, in Statistical Data Analysis and Inference, edited by Y. Dodge. North-Holland, Amsterdam ( 1989) 85-100. | MR | Zbl

H. Scheffé, The analysis of variance, sixième édition. Wiley, New York ( 1970). | MR | Zbl

M.J. Schervish, P-values: What they are and what they are not. Amer. Statist. 50 ( 1996) 203-206. | MR

P. Thompson, Improving the admissibility screen: Evaluating test statistics on the basis of p-values rather than power. Comm. Statist. Theory Methods 25 ( 1996) 537-553. | MR | Zbl