Cutoff for samples of Markov chains
ESAIM: Probability and Statistics, Tome 3 (1999), pp. 89-106.
@article{PS_1999__3__89_0,
     author = {Ycart, Bernard},
     title = {Cutoff for samples of {Markov} chains},
     journal = {ESAIM: Probability and Statistics},
     pages = {89--106},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1999},
     mrnumber = {1716128},
     zbl = {0932.60077},
     language = {en},
     url = {http://www.numdam.org/item/PS_1999__3__89_0/}
}
TY  - JOUR
AU  - Ycart, Bernard
TI  - Cutoff for samples of Markov chains
JO  - ESAIM: Probability and Statistics
PY  - 1999
SP  - 89
EP  - 106
VL  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/PS_1999__3__89_0/
LA  - en
ID  - PS_1999__3__89_0
ER  - 
%0 Journal Article
%A Ycart, Bernard
%T Cutoff for samples of Markov chains
%J ESAIM: Probability and Statistics
%D 1999
%P 89-106
%V 3
%I EDP-Sciences
%U http://www.numdam.org/item/PS_1999__3__89_0/
%G en
%F PS_1999__3__89_0
Ycart, Bernard. Cutoff for samples of Markov chains. ESAIM: Probability and Statistics, Tome 3 (1999), pp. 89-106. http://www.numdam.org/item/PS_1999__3__89_0/

[1] R. Bellman, Introduction to matrix analysis. McGraw-Hill, London ( 1960). | MR | Zbl

[2] N. Bouleau and D. Lépingle, Numerical methods for stochastic processes. Wiley, New York ( 1994). | MR | Zbl

[3] E. Çinlar, Introduction to stochastic processes. Prentice Hall, New York ( 1975). | MR | Zbl

[4] P. Diaconis, The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. USA 93 ( 1996) 1659-1664. | MR | Zbl

[5] P. Diaconis, R. Graham and J. Morrison, Asymptotic analysis of a random walk on a hypercube with many dimensions. Rand. Struct. Algorithms 1 ( 1990) 51-72. | MR | Zbl

[6] P. Diaconis and M. Shahshahani, Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18 ( 1987) 208-218. | MR | Zbl

[7] P. Doukhan, Mixing, properties and examples. Springer-Verlag, New York, Lecture Notes en Statist. 85 ( 1994). | MR | Zbl

[8] W. Feller, An introduction to probability theory and its applications, Vol. I. Wiley, London ( 1968). | MR | Zbl

[9] G.S. Fishman, Monte-Carlo concepts algorithms and applications. Springer-Verlag, New York ( 1996). | MR | Zbl

[10] E. Giné, Lectures on some aspects of the bootstrap, P. Bernard, Ed., École d'été de probabilités de Saint-Flour XXVI, Springer-Verlag, New York, Lectures Notes in Math. 1664 ( 1997) 37-151. | MR | Zbl

[11] J. Keilson, Markov chain models - rarity and exponentiality. Springer-Verlag, New York. Appl. Math. Sci. 28 ( 1979). | MR | Zbl

[12] A.W. Massey, Stochastic orderings for Markov processes on partially ordered spaces. Math. Oper. Research 12 ( 1987) 350-367. | MR | Zbl

[13] P. Mathé, Relaxation of product Markov chains on product spaces. Preprint WIAS, Berlin ( 1997). | MR

[14] A.E. Raftery and S. Lewis, Implementing MCMC, W.R. Gilks, S.T. Richardson and D.J. Spiegelhalter, Eds., Markov Chain Monte-Carlo in practice, Chapman and Hall, London ( 1992) 115-130. | MR | Zbl

[15] C.P. Robert, Méthodes de Monte-Carlo par chaînes de Markov. Economica, Paris ( 1996). | MR | Zbl

[16] L. Saloff-Coste, Lectures on finite Markov chains, P. Bernard, Ed., Ecole d'été de probabilités de Saint-Flour XXVI, Springer-Verlag, New York, Lecture Notes in Math. 1664 ( 1997) 301-413. | MR | Zbl