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SPECTRAL GAP

FOR

AN UNRESTRICTED KAWASAKI TYPE DYNAMICS

GUSTAVO POSTA

Abstract� We give an accurate asymptotic estimate for the gap of

the generator of a particular interacting particle system� The model
we consider may be informally described as follows� A certain number

of charged particles moves on the segment ��� L� � N according to a
Markovian law� If �k � Zis the charge at a site k � ��� L� �N one

unitary charge� positive or negative� jumps to a neighboring site� k� �

at a rate which depends on the charge at site k and at site k� �� The
total charge

PL
k��

�k is preserved by the dynamics� in this sense our

dynamics is similar to the Kawasaki dynamics� but in our case there is
no restriction on the maximum charge allowed per site� The model is

equivalent to an interface dynamics connected with the stochastic Ising
model at very low temperature� the �unrestricted solid on solid model	�

Thus the results we obtain may be read as results for this model� We

give necessary and su
cient conditions to ensure that gap shrinks as

L��� independently of the total charge� We follow the method outlined
in some papers by Yau �Lu� Yau ������ Yau ������� where a similar

spectral gap is proved for the original Kawasaki dynamics�

�� Introduction

In this paper we will prove a sharp asymptotic estimate for the spectral gap
of a particular interacting particle system� The system we consider may
be informally described as follows� Fix L � N and consider the segment
��� L� �Zin the one dimensional lattice Z� The points of this segment will
be called sites� The process we are going to study consists of a certain
number of charges moving on this segment according to a Markovian law�

Suppose that to every site k is attached an integer charge �k � Z� A
con�guration of our system will be an integer valued vector � � ���� � � � � �L��
For �xed N � Z	 � � 
 and J � �Jl� Jr� � �
� ��� �
� ��	 the equilibrium of
the system is described by the probability measure

�J�NL ��� � �

ZJ�N
L

���� � N�e
��
�
Jlj��j�

PL��

k��
j�kj�Jrj�Lj

�
�

Here ZJ�N
L is a normalization coecient and �� �PL

k�� �k stands for the total
charge of the con�guration �� The dynamics of the system is a reversible
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continuous time Markov chain with values in ZL and ergodic measure �J�NL �
The chain evolves in the following way� Suppose that the system is initially
in the state �	 then for every site k	 with certain rates which depends only
on the charges at sites k and k � �	 a unitary charge �positive or negative�
jumps from the site k to one of the neighboring site k�� or k��� This means
that only transition of the type � �	 �� �k 
 �k�� are allowed ��k stands for
the vector with all the components identically equal to zero except the kth

which is equal to one�� This dynamics obviously preserves the total charge
�� of the system	 and the jump rates may be chosen so that the generator of
the process is self adjoint in L���J�NL ��

This kind of processes	 in which the total number of particles �charges
in our case� is preserved	 have been studied by several authors� In par�
ticular we refer to Lu	 Yau ������	 Yau ������ and Landim	 Sethuraman	
Varadhan ������ where spectral gap for similar models are computed�

In Lu	 Yau ������	 for the �rst time	 the so called martingale approach

is used to prove the exact asymptotic convergence rate	 i�e� L��	 of the gap
of the original Kawasaki dynamics for the Ising model in a �nite cube of side
L in the one phase region� In this model only one particle per site is allowed�
New diculties arise if one tries to extend the proof to the case in which
more than one particle per site is allowed� These diculties are overcome in
Yau ������� Here the exact asymptotic estimate on the logarithmic Sobolev
constant	 and virtually on the gap	 is computed for a model in which a �xed
number of particles	 greater than one	 per site is allowed�

In Landim	 Sethuraman	 Varadhan ������ using the martingale ap�
proach	 a similar spectral gap is proved for a class of dynamics	 the so called
Zero�Range Processes� In this case a �xed number of particles moves on a
discrete segment �or cube� of side L and every particle jumps from a site to
another site at a rate which depend only on the number of particles at the
site that the particle is leaving� In this case there is not an upper bound to
the number of particles allowed for any site	 but because the total number
of particles is �xed it is clear that the number of particles at a site can not
excess this total number�

In our model the maximum charge per site is not �xed� From a technical
point of view	 this fact produces new diculties in the use of the martingale
approach� Moreover the asymmetry of the measure �J�NL forces us to use
heavily the large deviation apparatus�

The model we consider has the following physical motivation� Consider
the stochastic Ising model in the cylinder C � ��� L��N�Zwith boundary
conditions 	�x� � sign 
 n� x �	 where n � ��N�L�� A state � of this

system is an element of �C � f�����gC and the equilibrium of the system
is described by the usual Gibbs measure�

���� � e��H���

Z�C� �

Here Z�C� is a normalization factor and

H��� � �

�

X
jx�yj��
x�y�C

��� ��x���y�� �
�

�

X
jx�yj��
x�C�y�Cc

J�x� y� ��� ��x�	�y�� �
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where

J�x� y� �
�
Jl � �
� �� if x � ��� x��	 x� �Z
Jr � �
� �� if x � �L� x��	 x� �Z�

The function J gives the interaction of the system with the border of the
cylinder�

A Glauber dynamics is an �C�valued Markov process with generator
de�ned on cylindrical functions as

�Gf���� �
X
x�C

cx����f��
x�� f����� �����

self�adjoint in L����� Here �x denotes the con�guration obtained from � by
replacing the value of � at x with its opposite�

Consider now the lattices Z� and
�
Z
�
�� � Z� � ��

�
� �
�
� as graphs em�

bedded in R�� It is possible to associate to every con�guration � � �C
a polygonal in R� in the following way� Call bond every unitary segment
connecting two points of

�
Z
�
��

and site every point in Z�� Then we say
that two sites x and y in Z� are separated by the bond h if their Euclidean
distance from h is equal to �

�
� Given � � �C we denote by P ��� � R� the

collection of all bonds separating sites x and y in Z� where ��x� �� ��y��
If moreover we use the convention that any pair of orthogonal bonds that
intersects in a given site x� of the dual lattice

�
Z
�
��

are a linked pair of
bonds if they are both on the same side of the forty��ve degrees line across
x�	 then we immediately see that P ��� splits up in a unique way in a col�
lection of �nite closed contours ����� � � � � n���	 and a unique in�nite open
contour or interface ����� The correspondence between con�gurations and
contours we obtain in this way is � � �� An open contour � is said to be
admissible if there exists � � �C such that � � ����� It is possible to write
explicitly the probability to have a �xed admissible contour � using the low
temperature cluster expansion �see Dobrushin	 Konteck�y	 Shlosman �������	
if we assume for simplicity that Jl � Jr � � �being the general case easy to
�gure out� we have�

��� � ��s� � �� �
exp ����j�j�W ������

Z�C� � �����

Here j�j is the length	 i�e� the number of bonds	 of � andW ����� is a cluster
term� This cluster term becomes small for large values of ��

The study of the evolution of � under the Markovian dynamics ����� is
not an easy task� In order to attack the problem one can simplify the model
by supposing that�
i� � is the graph of an integer valued function ��
ii� there are no closed contours�
These are natural assumption in the limit � 	 �� The model we obtain is
the so called one dimensional solid on solid model� The equilibrium measure
of the model is de�ned on the set of all function � � ��� L� �N	 Zas�

�J�NL ��� �
�

ZJ�N
L ���

e
��
�
Jlj����j�

PL��

k��
j��k������k�j�Jr jN���L�j

�
�
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while the dynamics of the system is a reversible continuous time Markov
chain with values in ZL and ergodic measure �J�NL � The chain evolves in the
following way� Suppose that the system is initially in the state �	 then for
every k � �� � � � � L	 with certain rates which depends only on ��k � �� and
��k � ��	 the system evolves in one of the two con�gurations � � �k � The
transition rates are chosen so that the generator of the process is self adjoint
in L���J�NL ��

Notice that for any � � ���� � � � ��L� �ZL we have

�J�NL����� � ��� �� � �� � �� � � � � �� � � � �� �L � �L� �

� �J�NL����� � ��� �� � �� � ��� � � � � �L � �L � �L��� � �J�NL ����

Moreover if we de�ne for � � ZL�� the random variable ���� � ���� �� �
��� � � � � ���� � ���L� �ZL it simple to check that �����k
�k��� � ������k�
Thus our particles system with jumping charges is equivalent to the solid
on solid model	 and the results we will obtain may be read as results about
this model�

The solid on solid model is a good approximation of the Ising model for
large values of �� However in this paper we do not investigate the connection
between the solid on solid model and the Ising model�

�� Notation and Results

Our sample space is �L �ZL for �xed L � N� Sometimes it will be useful to
consider the in�nite product space � � ZN � Con�gurations	 i�e� 	 elements
of the sample space ��L or �� will be denoted by greek letters	 e�g� � �
���� � � � � �L� � �L� If f is a real function on �L	 are de�ned the following
discrete derivatives�

���i f���� � f�� � �i�� f���

���i f���� � f�� � �i�� f��� i� j � �� � � � � L

��i�jf���� � f�� � �i � �j�� f����

A function f � � 	 R is local in k � N if f � f��k�� For every U � N
and � � �L or � � �	 �U stands for the restriction of � to U � The minimal
���eld for which are measurable the functions�n

� � � �	 �U �ZjUj � U � N� jU j 
 �
o
�

is denoted by F � The restriction of F to �L will be denoted by FL� Finally
if fgi � i � Ig is a family of function indexed on a set of �nite cardinality
jI j	 the symbol Avi�I gi stands for the arithmetic mean �

jIj
P

i�I gi of the
family�

Given N �Z	 L � N	 � � 
 and J � �Jl� Jr� � �
� ��� �
� �� one de�nes

the probability measure �J�NL on ��L�FL� as�

�J�NL ��� � �

ZJ�N
L

���� � N�e
��
�
Jlj��j�

PL��

k��
j�kj�Jrj�Lj

�
�
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where

ZJ�N
L �

X
���L

���� � N�e
��
�
Jlj��j�

P
L��

k��
j�kj�Jrj�Lj

�
�

It is elementary to check that this de�nition is correct	 i�e� that ZJ�N
L 
 ��

Expectation with respect to �J�NL is set as E
J�N
L ���	 while variance is set

as VarJ�NL ���� Now we de�ne our process� This is a Markov process with

in�nitesimal generator GJ�N
L de�ned by its action on cylinder functions f

as�
�GJ�N

L f���� �
X
�

cJ�NL ��� 	� �f�	�� f����

where�

cJ�NL ��� 	��
��
�
�
�J�N
L

���

�J�N
L

���

� �
� if �J�NL ��� � 
 and 	 � � � �k 
 �k��

for some k � �� � � � � L� �

 elsewhere�

It is a simple to verify that these rates are uniformly bounded inN and L and
that GJ�N

L is self�adjoint in L���J�NL �	 it is negative de�nite and its largest

eigenvalue is 
� The process de�ned by the generator GJ�N
L is a reversible	

irreducible ergodic Markov chain with ergodic measure �J�NL � The spectral
gap of the process is de�ned as the absolute value of the largest negative
eigenvalue of the generator� ���G

J�N
L � � � sup

	
� � Spec�GJ�N

L � � � 
 



�

The gap can be also characterized as�

���G
J�N
L � � inf

f�L���J�N
L

�

GJ�NL �f� f�

VarJ�NL �f�
�����

where GJ�NL is the Dirichlet form associated with the generator GJ�N
L �

We are now in a position to state the main results of this paper�

Theorem ���� Suppose that � � �
� �� and de�ne J � ��� ��� Then there

exists K���� �� and K���� �� � 
 such that�

K�L
�� � ���G

J�N
L � � K�L

�� �����

for every L � 
 and N �Z�
Two corollaries follow from this theorem�

Corollary ���� Suppose that 
 
 Jl 
 Jr 
 � and de�ne J � �Jl� Jr��
Then there exists K���� Jl� Jr� and K���� Jl� Jr� such that�

K�L
�� � ���G

J�N
L � � K�L

�� �����

for every L � 
 and N �Z�
Corollary ���� Suppose that � � �
� �� and de�ne J � ��� ��� Then for

every N �Zthere exists K���� ��N� and K���� ��N� such that�

K�L
�� � ���G

J�N
L � � K�L

��� �����
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for every L � 
�

Remark ���� The approach we present here to prove a spectral gap estimate
is adapted from Lu and Yau�s method in Lu	 Yau ������ and Yau �������
The method works properly when the spectral gap is independent of the
number of particles N as in Corollary ���	 but it does not when the gap
depend on the number of particles as in Corollary ���� Since the constants
in ����� are dependent on N and we will not study this dependence	 this is
a very poor result� However this result still has a physical motivation� for
N � 
 it gives the correct bound for the gap of the solid on solid model �see
Section �� with horizontal interface�

It is interesting to understand physically why the symmetric case is so
di�erent from the asymmetric one�

A way to understand this problem is to think to the con�gurations �
which are �typical� for the measure �J�NL � In order to determinate these

con�gurations	 we have to minimize the energy Jlj��j �
PL��

k�� j�kj� Jrj�Lj
under the constrain �� � � � �� �L � N � It is easy to check that the solution
to this problem in the case Jl � Jr is given by the con�gurations � such
that �L � N � ��	 �� � 
� � � � � N and �k � 
 for k � �� � � � � L� �� This says
us that the energy landscape has	 in this case	 a �plateau� in its minimum�
The cardinality of the plateau is proportional to N 	 this suggest that the
spectral gap of the process should depend on N � This fact does not happen
in the asymmetric case� In fact if for example Jl 
 Jr 	 then the minimum of
the energy Jl j��j�

PL��
k�� j�kj�Jrj�Lj under the constrain ��� � � ���L � N

is attained only by the con�guration � � �N� 
� � � � � 
�� So in this case there
is no plateau and the gap does not depend on N �

The above discussion gives information about the solid on solid interface
�� In the symmetric case the �typical interface� is �at and stays over the
x axis at an height between 
 and N � In the asymmetric case the typical
interface is again �at	 but it prefer to stay at height N over the x axis�

Remark ���� The asymmetry introduced by � 
 � in Theorem ��� is
essential in proving a one site spectral gap of ���NL which does not depend
on the total charge N 	 as we will see in Section  � This uniform estimate
on the one site spectral gap is one of the basic technical tool to use the Lu
and Yau method �Lu	 Yau ������ and Yau �������	 as it will be clear by
reading Section �� In the symmetric case � � � the one site spectral gap
does depend on N �

The same problem	 i�e� how to prove a one site spectral gap	 is also in
Landim	 Sethuraman	 Varadhan ������	 but because in that case the model
is a �nite state Markov chain	 the solution is simpler�

�� Preliminary Results

The proof of the results stated in Section � unfortunately requires heavy
technical preliminaries� The aim of this section is to give a concise list of
this results in the hope that this will make more readable the next section in
which the main results are proved� The results stated in the present section
will be proved in sections  	 ! and "�
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We are particularly interested in the study of �J�NL for J � ��� �� and

� � �
� ��� In order to simplify the notation we will write ���NL instead of

�J�NL � In the particular case of � � � we will omit the index �� �NL � ���NL �
The same index notation is used for mean variance etc�

The �rst result we present is a one site Poincar�e inequality� This result
and others related to the one site marginal of �J�NL will be proved in Section  �

Proposition ��� �One Site Spectral Gap�� Suppose that � � �
� ���
�� � 
 and M � �
���� Then�
i� There exists K���� �� ��� and �L��� �� ��� � 
 such that�

Var��NL
�
f
��j��j �M

� � K�LE
��N
L

�
���� f�

�
��j��j �M


� �����

for every L � �L� N � Zwith jN�Lj � �� and for every f � L�����NL �
local in ��

ii� There exists K���� �� � 
� such that�

Var��NL �f� � K�E
��N
L ����k f�

��� �����

for every L � 
� N �Z� k � �� � � � � L and for every f � L�����NL � local in k�

The next two lemmas treat the large deviation of the one site marginal of
���NL �

Lemma ���� Suppose that � � �
� ��� Then there exists ����� ��� K���� ��
and K���� �� � 
 such that�

���NL ��� 
 
� � K�

p
Le�K�L� �����

for every L � 
 and N � ��L� while�

���NL ��� � 
� � K�

p
Le�K�L

for every N 
 ���L�

Lemma ���� Suppose that � � �
� �� and �x �� � 
� Then for every M � ��
there exists K���� �� and K���� �� ���M� � 
 such that�

���NL �j��j � ML� � K�

p
Le�K�L

for every L � 
 and N �Zwith jN�Lj � ���

The following proposition is of very technical nature� It is close to a similar
result obtained by Yau in Yau ������	 in the simpler context of bounded ran�
dom variables and it is one of the key ingredient in the proof of Theorem ����
De�ne the quadratic form

E��NL �f� f� �
L��X
k��

E
��N
L ���k���kf�

���

then�
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Proposition ��� �Two Block Estimate�� Suppose that � � �� �� � 

and de�ne for a bounded real function h the random variable hj � h��j� for
j � �� � � � � L� Then for every � � 
 there exists K��� �� and �L��� �� ��� � 

such that�

E
N
L �f�Avj hj�

� � KENL �f� f� �
�

L
VarNL �f� �����

for every f � L���NL �� L � �L and N �Zwith jN�Lj � ���

Here and later E
��N
L �f� g� denotes the covariance of f and h with respect to

���NL �
The following two proposition will be used in the next sections as a

starting point for an inductive procedure� The �rst one assure us that if
J � ��� �� with � � �
� �� the generator GJ�N

L exhibits a positive spectral gap
uniformly in N � The second proposition tell us only that if J � ��� �� the

spectral gap of the generator GJ�N
L is positive�

Proposition ���� Suppose � � �
� ��� Then there exists K��� �� L� � 

such that�

Var��NL �f� � KE��NL �f� f�� �����

for every N �Z� L � 
 and f � L�����NL ��

Proposition �� � There exists K���N� L�� 
 such that�

VarNL �f� � KENL �f� f�� ��� �

for every L � 
� N �Zand f � L���NL ��

�� Proof of Main Results� Lower Bound

In this section we will prove the �rst and more dicult inequality in ������
The proof we present is adapted from the proof of a similar result proved in
Yau �������

It is important to understand the following obvious property of ���NL �

���NL �	j�i� �i��� � � � � �L� �

� ��	i � �i� � � � � 	L � �L��
��N��i������L
i�� �	�� � � � � 	i���

for every i � �� This property will be used without any comment in the
sequel	 especially in the form�

E
��N
L �f j�i� �i��� � � � � �L� � E

��N��i������L
i�� �f��j�i� �i��� � � � � �L�� � �����

The notation f��j�i� �i��� � � � � �L� stresses the fact that �i� � � � � �L should be
considered as parameters� the expectation in ����� is taken only on the
variables ��� � � � � �i��� Remember that

E��NL �f� f� �
L��X
k��

E
��N
L ���k���kf�

���
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using the characterization �����	 reversibility and the bounds on the rates it
is simple to prove that�

e�� inf
f�L�����N

L
�

E��NL �f� f�

Var��NL �f�
� ���G

J�N
L � � e� inf

f�L�����N
L

�

E��NL �f� f�

Var��NL �f�

where � � �
� �� and J � ��� ��� We are going to use the �rst of these
inequalities to prove our lower bound on the gap� In order to make simpler
the notations in this section we suppose that � � 
 and � � �
� �� are �xed
constant� When we speak about constants in this section these constants
may depend on � and �� However if the constants depend on L or N this
fact is explicitly mentioned�

De�ne�

V �L� � sup
f�L���

��N
L �

N�Z

Var��NL �f�

E��NL �f� f�
�

for L � 
� By Proposition ��� V �L� 
 �� The aim of this section is to
show that

sup
L		

V �L�

L�

 �� �����

This yields immediately ������
The idea is to prove ����� recursively� This is done in the following

fundamental proposition�

Proposition ���� There exists a positive constant K such that�

V ��L� � �V �L� �KL� �����

V ��L� �� � �V �L� �KL�� �����

for every L � 
�

From this lemma the bound ����� follows easily� In fact	 for n � N	 de�ne

Wn � sup
L�
�n��n���

V �L�

L�
�

and notice that ����� is equivalent to prove that the sequence fWn � n � Ng
is bounded above by a constant� Let Ln � ��n� �n��� � N be such that

Wn � V �Ln�
L�
n

� Using Proposition ��� it is easy to check that�

Wn�� �
V �Ln���

L�
n��

� �

�
Wn �

K

�
� V ��� �K � K��

Proof of Proposition ���� We will prove �����	 the proof of the other estimate
����� being similar�

The general strategy of the proof is to show that for every � � �
� ��
there exists C��� and �L��� � 
 such that for every L � �L we have�

Var��N�L �f� � V �L�E��N�L �f� f� � C���L�E��N�L �f� f� � �Var��N�L �f�� �����
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taking � � ��� in the previous estimate we obtain�

Var��N�L �f�

E��N�L �f� f�
� �V �L� � �CL��

i�e� ������ The proof of ����� is divided into several steps for purposes of
clarity�

Fix L � N and de�ne the subsets f�j � j � L� � � � � �L� �g of N as�

�j �

��
�
f�� � � � � �Lg if j � L	
fj� � � � � �Lg if L 
 j 
 �L� �	
� if j � �L� ��

Step �� Suppose that f � L�����N�L � and de�ne fj � E��N�L �f j�
j�� Then�

Var��N�L �f� � V �L�E��N�L �f� f� �
�LX

j�L��

E
��N
�L

h
Var��N�L �fj j�
j��

�
i
� ��� �

Proof of Step �� A simple computation shows that�

Var��N�L �f� �

� E
��N
�L

h
Var��N�L �f j�
L��

�
i
�

�LX
j�L��

E
��N
�L

h
Var��N�L �fj j�
j��

�
i
�

���!�

Because Var��N�L �f j�
L��
� � Var

��N����L��

L

�
f��j�
L��

�

this term is bounded

above by

V �L�E��N����L��

L

�
f��j�
L��

�� f��j�
L��
�

�

� V �L�
L��X
k��

E
��N
�L

�
��k���kf�

�j�
L��


�

This implies�

E
��N
�L

h
Var��N�L �f j�
L��

�
i
� V �L�E��N�L �f� f��

Now substituting this estimate into ���!� we obtain ��� �� tu
To obtain ����� we shall bound each term in the sum on the right hand

side of ��� � with terms proportional to E��N�L �f� f� and terms proportional
to the variance of f � More precisely we would like to prove an inequality of
the form�

E
��N
�L

h
Var��N�L �fj j�
j��

�
i
� C���LE��N�L �f� f� �

�

L
Var��N�L �f�� ���"�

The next step is in this direction�
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Step �� Suppose that L � � � j � �L� Then there exists K and �� � 

such that if Bj is the set de�ned by Bj �

	
� � ��L � jN � ��
j j � ��L



the

following inequality holds�

E
��N
�L

h
Var��N�L �fj j�
j��

�
i
� KLE��N�L �f� f� � ��L� Var��N�L �f��

�KE
��N
�L

h
��Bj�E

��N
�L �f�Avj��i�� gij�
j��

i
�

�����

Here ��L� � o�L��� and gi��� � �i�N� �
j�e
���j�i��j�j�ij�� where �i�N� �
j�

is a bounded positive function�

Proof of Step �� Recall that Var��N�L �fj j�
j��
� � Var

��N����j��

j

�
fj��j�
j��

�

�

Because fj is a function of only �
j 	 then for �
j��
�xed	 fj��j�
j��

� is a
function of only �j	 i�e� is local in j � L� We can use the �one site spectral

gap� ����� to bound Var��N�L �fj j�
j��
��

Var��N�L �fj j�
j��
� � C�E

��N
�L

�
���j fj�

�j�
j��


� ����
�

Now we need to transform the Glauber type gradient on right hand side of
����
� in a Kawasaki type gradient� An elementary calculation shows that�

���j fj���� � �E��N�L ��j�if j�
j � �j� � E
��N
�L �f� gij�
j� ������

for every i � �� � � � � j � �� Here gi is de�ned as�

gi��� �
���N�L �� � �i � �j j�
j��

�

���N�L ��j�
j��
�

���N�L ��j j�
j��
�

���N�L ��jj�
j��
� �j�

�

It is simple to check that�

g���� � ���N� �
j�e
����j����j�j��j�

gi��� � �i�N� �
j�e
���j�i��j�j�ij� i � �� � � � � j � ��

������

where �i are bounded positive functions� Notice that the left hand side of
������ does not depend on i� Averaging over i � �� � � � � j� � this expression
yields�

���j fj���� � �E��N
�L �Avj��i�� ��j�if�j�
j � �j� �E

��N
�L �f�Avj��i�� gij�
j�� ������

De�ne Bj �
	
� � ��L � jN � ��
j j � ��L



	 where �� is a positive constant to

be �xed later� From ������	 ������ and some simple estimates we obtain�

E
��N
�L

�
���j fj�

�
 � C�

�
E
��N
�L

h
��j��f�

� � Avj��i�� ��j�if�
�
i
�

�E
��N
�L

h
��Bc

j �E
��N
�L �f� g�j�
j��

i
�

�E
��N
�L

h
��Bj�E

��N
�L �f�Avj��i�� gij�
j��

i� ������
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The three terms on the right hand side of this expression correspond to the
three term on the right hand side of ������ The last one is exactly the same	
while the �rst two can be easily transformed� We start estimating the �rst
one�

It is elementary to check that ��j�if� �
Pj��

k�i��k���kf���
j�k���� where

�s�t � � � �s � �t� This implies�

E
��N
�L

�
��j�if�

�
 � �L

L��X
k��

E
��N
�L

�
��k���kf�

���j�k���
 �

� C�LE��N�L �f� f��

������

which gives the �rst term on the right hand side of ������
For the second term on the right hand side of ������ we can use the

Schwarz inequality and ������ to prove that there exists a positive constant
C such that�

��Bc
j �E

��N
�L �f� g�j�
j�� �

� C��B
c
j ��

��N
�L ��� 
 �j�
j����N�L ��� � �j�
j��

���� �

By Lemma ��� we know there exists �� � 
 such that

���N�L ��� 
 �j�
j����N�L ��� � �j�
j� � o�L���

if jN � �
j j � ��L� This fact and the estimate ���� � imply that�

��Bc
j �E

��N
�L �f� g�j�
j�� � ��L� Var��N�L �f j�
j��

where ��L� � o�L���� tu
The next step to obtain ���"� is to bound the last term of ������ The

basic idea is to use on this term the �two block estimate� ������ Notice
that to apply this result we need identically distributed random variables
with bounded density � � �

L

PL
i�� �i� The naive way to obtain identically

distributed variables is to condition the covariance term on the left hand
side in ����� with respect to ��� Before doing so	 in order to have a bounded
density	 we have to bound above j��j�
Step �� There exists K and M���� � 
 such that�

E
��N
�L

h
��Bj�E

��N
�L �f�Avj��i�� gij�
j��

i
� ��L� Var��N�L �f��

�KE
��N
�L

h
��Bj�E

��N
�L �f� ��A� Avj��i�� gij�
j��

i
�

����!�

where ��L� � o�L��� and A � f� � ��L � j��j �MLg�
Proof of Step �� A simple calculation shows that�

E
��N
�L �f�Avj��i�� gij�
j�� �

� �E
��N
�L �f� ��A� Avj��i�� gij�
j�� � �kgk���Var��N�L �f j�
j����N�L �Acj�
j ��
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But by Lemma ���	 we know that there exists M so that

��Bj��
��N
�L �Acj�
j� � o�L����

This and a trivial estimate concludes the proof of ����!�� tu
In the next step we will condition with respect to �� the last term on

the right hand side of ����!� and we will use the �two block estimate�� This
will produce some �good terms� �the �rst three term on the right hand side
of ����"� and an �extra term� �the last term on the right hand side of ����"��
which will be estimated later�

Step �� For every � � 
 there exists K��� ��� � 
 such that�

E
��N
�L

h
��Bj�E

��N
�L �f� ��A� Avj��i�� gij�
j��

i
�

� KLE��N�L �f� f� �
�

L
Var��N�L �f� � ��L� Var��N�L �f��

� � E
��N
�L

n
��Bj� Var

��N
�L

h
E
��N
�L �f j��� �
j�

��A� �
ji�
� Var��N�L

h
E
��N
�L �g�j��� �
j�

��A� �
ji o�
����"�

where ��L� � o�L����
Proof of Step 	� It is elementary to check that�

E
��N
�L �f� ��A� Avj��i�� gij�
j� �

� E
��N
�L

h
E
��N
�L �f� ��A� Avj��i�� gij��� �
j�

���
ji�
�E

��N
�L

h
E
��N
�L �f j��� �
j�� ��A� Avj��i�� E

��N
�L �gij��� �
j�

���
ji �
Because gi is a function of �i and �
j only	

E
��N
�L �gij��� �
j� � E��N�L �g�j��� �
j�

for every i � �� � � � � j � �� Thus the term on the left hand side of ����"� is
bounded above by

�E
��N
�L

h
��A �Bj�E

��N
�L �f�Avj��i�� gij��� �
j��

i
�

� �E
��N
�L

n
��Bj�E

��N
�L

h
E
��N
�L �f j��� �
j�� ��A�E��N�L �g�j��� �
j�

���
ji� o�
������

By Proposition ��� we know that for every � � 
 if L is large enough	
jN � ��
j j � ��L and j��j �ML�

E
��N
�L �f�Avj��i�� gij��� �
j�� � E

N�������j
j��

h
f��j��� �
j��Avj��i�� gi

i�
�

� C����EN�������j
j��

�
f��j��� �
j�� f��j��� �
j�


�

�
��

L
Var

N�������j
j��

�
f��j��� �
j�


�
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In conclusion the �rst term on the right hand side of ������ is bounded

above by �C�E��N�L �f� f� � �
L
Var��N�L �f� for every � � 
 and L large enough�

To bound the second term on the right hand side of ������ an elementary
estimate �see Lemma ���� shows that�

E
��N
�L

h
E
��N
�L �f j��� �
j�� ��A�E��N�L �g�j��� �
j�

���
ji� �
� "

n
E
��N
�L

h
E
��N
�L �f j��� �
j��E��N�L �g�j��� �
j�

��A� �
ji��
� kgk������N�L �Acj�
j� Var��N�L

h
E
��N
�L �f j��� �
j�

���
ji o�
By Lemma ��� we know that ���N�L �Acj�
j � � o�L��� for jN � ��
j j � ��L�
Thus by the Schwarz inequality the second term on the right hand side of
������ is bounded above by�

� E
��N
�L

n
��Bj� Var

��N
�L

h
E
��N
�L �f j��� �
j�

��A� �
ji�
� Var��N�L

h
E
��N
�L �g�j��� �
j�

��A� �
ji o� ��L� Var��N�L �f�

where ��L� � o�L���� This and the previous estimates concludes the proof
of ����"�� tu

The �rst three terms on right hand side in ����"� don�t need further
investigation� Last term contains a variance product� Because �
j is �xed

in the conditional expectation	 E
��N
�L �f j��� �
j� and E��N�L �g�j��� �
j� are local

functions in ��� We will use the Poincar�e inequality ����� to bound this term�

Step 	� There exists K���� � 
 such that�

E
��N
�L

n
��Bj� Var

��N
�L

h
E
��N
�L �f j��� �
j�

��A� �
ji�
� Var��N�L

h
E
��N
�L �g�j��� �
j�

��A� �
ji o �
� KE

��N
�L

�
��A �Bj�

�
��� E

��N
�L �f j��� �
j�

���
�

����
�

Proof of Step 
� By the one site spectral gap ����� there exists a positive
constant C����� such that�

Var��N�L

h
E
��N
�L �f j��� �
j�

��A� �
ji �
� C�LE

��N
�L

��
��� E

��N
�L �f j��� �
j�

�� ���A� �
j
�

and

Var��N�L

h
E
��N
�L �g�j��� �
j�

��A� �
ji �
� C�LE

��N
�L

��
��� E

��N
�L �g�j��� �
j�

�� ���A� �
j
�
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if jN � ��
j j � ��L� Notice that E
��N
�L �g�j��� �
j� depends only on the density

N�������j
j�� because g� is local in ��� From this it should be clear that�

��� E
��N
�L �g�j��� �
j� � O�L����

this fact is formally proved in Lemma ���� In conclusion�

��Bj� Var
��N
�L

h
E
��N
�L �f j��� �
j�

��A� �
jiVar��N�L h
E
��N
�L �g�j��� �
j�

��A� �
ji �
� C�����E

��N
�L

��
��� E

��N
�L �f j��� �
j�

�� ���A� �
j
�
�

Since ���N�L �Aj�
j� � ��� for large L and jN � �
j j � ��L �see Lemma ����	
����
� is proved� tu

It remains to estimate the gradient term on the right hand side of ����
��
We will use the same technique we used in Step ��

Step 
� For every � � 
 there exist a positive constant K��� ��� such that�

E
��N
�L

�
��A � Bj�

�
��� E

��N
�L �f j��� �
j�

���
�

� KLE��N�L �f� f� �
�

L
Var��N�L �f��

������

Proof of Step �� An elementary calculation shows that�

��� E
��N
�L �f j��� �
j� � �E��N�L ����if j�� � �� �
j� �E

��N
�L �f� gij��� �
j��

for every i � �� � � � � j � �� This expression and some trivial estimates yield�

E
��N
�L

�
��A �Bj�

�
��� E

��N
�L �f j��� �
j�

���
� C�

n
E
��N
�L

h
Avj��i�� ����if�

�
i
�

�E
��N
�L

h
��A �Bj�E

��N
�L �f�Avj��i�� gij��� �
j��

i o
������

for a positive constant C�� Now	 the same argument used in Step � to prove
������ can be used here to estimate the �rst term on the right hand side of
������� We obtain�

E
��N
�L

h
Avj��i�� ����if�

�
i
� C�LE��N�L �f� f�� ������

It remains to estimate the second term on the right hand side of ������� Fix
� � 
	 if L � 
 is large enough the two block estimate ����� says that�

E
��N
�L �f�Avj��i�� gij��� �
j�� � C����E��N�L �f� f j��� �
j� �

�

L
Var��N�L �f j��� �
j��

������
for j��j �ML and jN� ��
j j � ��L� From ������	 ������ and ������ we obtain
������� tu
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We are �nally in a position to prove ������ By �����	 ����!�	 ����"�	
����
� and ������ for every � � 
 there exists C��� and �L��� � 
 such that
for any L � �L the following inequality holds�

E
��N
�L

h
Var��N�L �fj j�
j��

�
i
� C���LE��N�L �f� f� �

�

L
Var��N�L �f��

From this estimate and ��� � we have�

Var��N�L �f� � V �L�E��N�L �f� f� � C���L�E��N�L �f� f� � �Var��N�L �f��

i�e� �����	 which implies ����� for L � �L� By adjusting the constant K and
recalling that by Proposition ���

sup
L��L

sup
N�f

Var��NL �f�

E��NL �f� f�
� K���L� 
 ��

����� is proved for every L � 
�

The same proof we used to prove ����� may be used to prove ������ We
only need to replace the index �L with �L � �� We will omit this tedious
repetition� This concludes the proof of Proposition ���� tu

�� Proof of Main Results� Upper Bound � Generalizations

In this section we complete the proof of Theorem ��� and we prove corol�
laries ��� and ���� The proofs of the corollaries are similar to the proof of
Theorem ���	 so we will skip most of technicalities�

The next result gives the correct upper bound on the spectral gap of
GJ�N
L and concludes the proof of Theorem ����

Proposition ���� Suppose that � � �
� ��� Then there exists K���� �� � 

such that�

inf
f�L�����N

L
�

E��NL �f� f�

Var��NL �f�
� K�

L�
�����

for every L � 
 and N �Z�
Suppose that � � �� Then there exists K���� � 
 such that�

inf
f�L���N

L
�

ENL �f� f�

VarNL �f�
� K�

L� �N�
�����

for every L � 
 and N �Z�
Proof� We will �rst prove ������ We will show that for every L � 
 and
N �Zthere exists a function FL � L���NL � such that�

ENL �FL� FL�

VarNL �FL�
� C

L� �N�
�
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where C��� is a positive constant� Direct calculation shows that for every
L � N there exists g�L� such that�

LX
i�j��
i��j

�
i

L
� g�L�

��
j

L
� g�L�

�
� 
� �����

Furthermore g�L�	 ��� if L	 �� If we de�ne

FL��� �
LX

k��

�
k

L
� g�L�

�
�k�

a straightforward calculation shows that ��k���kFL���� � � �
L � This implies

that ENL �FL� FL� � �
L � From property ����� and some simple estimates it

follows that�

VarNL �FL� � VarNL ����
LX
k��

�
k

L
� g�L�

��

� C�LVarNL �����

where C� is a positive constant� To complete the proof of ����� it remains

to prove that VarNL ���� � C�

�
N�

L� � �
�
� This simple estimate is proved in

the appendix �Lemma �����
We now turn to the case � � �
� ��� We will use the same test function

FL� Obviously E��NL �FL� FL� �
�
L 	 so we need only to estimate the variance

of FL� A simple estimate yields�

Var��NL �FL� � E��NL
h
Var��NL �FLj���

i
�

Because Var��NL �FLj��� � VarN���L�� �FL���	 ����� follows from ������ tu
We conclude this section proving corollaries ��� and ����

Proof of Corollary ���� For J � �Jl� Jr� � de�ne the quadratic form

EJ�NL �f� f� �
L��X
k��

E
J�N
L ���k���kf�

���

As we did in the proof of Theorem ��� we claim that to prove Corollary ���
it suces to show that

K�

L�
� inf

N�f

EJ�NL �f� f�

VarJ�NL �f�
� K�

L�
� �����

where K���� J� and K���� J� are positive constants� We start proving the
�rst of these inequalities�
The variance of every f � L���J�NL � may be written as�

VarJ�NL �f� � E
J�N
L

h
VarJ�NL �f j�L�

i
�VarJ�NL

h
E
J�N
L �f j�L�

i
�����
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De�ne #J � �Jl� ��	 then VarJ�NL �f j�L� � Var
�J�N��L
L�� �f��j�L�� so that by

Theorem ��� the �rst term on the right hand side of ����� can be estimated
as�

E
J�N
L

h
VarJ�NL �f j�L�

i
� C���� Jl�L

�EJ�NL �f� f�� ��� �

Now we may use the same technique used to prove ����� to prove the fol�
lowing Poincar�e inequality�

VarJ�NL �g� � C���� J�E
J�N
L

�
���L g�

�


for every g local in �L� In particular�

VarJ�NL

h
E
J�N
L �f j�L�

i
� C���� J�E

J�N
L

��
��L E

J�N
L �f j�L�

���
�

This relation and the analog of ������ give�

VarJ�NL

h
E
J�N
L �f j�L�

i
�

� C���� J�
n
E
J�N
L

�
��L�L��f��


�E

J�N
L

h
E
J�N
L �f� gL��j�L��

io
�

for a bounded function gL�� local in �L��� By the Schwarz inequality and
��� � we have�

VarJ�NL

h
E
J�N
L �f j�L�

i
� C��� J�L

�EJ�NL �f� f��

This estimate and ����� prove the �rst inequality in ������
The proof of the second inequality in ����� is a repetition of the proof of
Proposition ���� tu
Proof of Corollary ���� This corollary may be proved in the same way we
proved Corollary ���� The only di�erence is that in this case the constant
C� depends on N � tu

	� One Site Marginal

In this section we will study the one site marginal of the measure ���NL with
� � �
� ��� In particular we will prove Proposition ���� Our main tools are
the so called Cheeger inequality �see Lawler	 Sokal ���""�� and the local limit
theorem �see Petrov ���!��	 Chapter VII	 Theorem ���� To keep notation

simple we shall write �k�x� � ���NL ��k � x��

We begin de�ning some auxiliary probability measures� For every real
number � with j�j 
 � de�ne on Zthe probability measures�

��j ��� �
e��j�j���

Z��� ��
� #��j ��� �

e���j�j���

Z���� ��
� j � N
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where Z��� �� � P
� e

��j�j��� � �� Consider now the in�nite product
measures on � given by

�� �
��O
j��

��j � #� � #�	� �
��O
j��

�	j �

it is clear that ���NL ��� � #���j�� � � � �L � N�� Expectation with respect
to �� will be denoted by E���� while m��� and ����� stands respectively
for the mean and the variance of �� with respect to ��� For � � 
 we will
omit the superscript 
	 e�g� E��� � E	���� The following lemma shows some
simple properties of ��� the elementary proof is left to the reader�

Lemma  ��� De�ne p�L�x� � ����� � � � �� �L � x�� Then�
�� for every L � 
 and x �Zwe have pL�x� � pL�jxj��
�� pL�x� � pL�y� for jxj � jyj�
�� for every �xed �� � �
� �� and k � N we have�

sup
j�j���

E
��j��jk� 
 ��

	� m��� is an increasing� odd� C� function in � � ���� ��� moreover�

lim
�	�

m��� � ��


� for every � � R with j�j 
 � and x �Zwe have�

p�L�x� � e�xpL�x�

�
Z��� 
�

Z��� ��

�L
� � ���

In what follows will be crucial the following result that can be proved by
direct computation�

Lemma  ��� Suppose that x �Zand � � �
� ��� Then�

e��
� sign�x���� � ���x� ��

���x�
� e��
� sign�x����� � ���

and for k � �� � � � � L�

e��
sign�x���� � �k�x� ��

�k�x�
� e��
sign�x����� � ���

Proof of Proposition ���� For k � �� � � � � L de�ne the generator Gk on
L��Z� �k� as �Gkf��x� �

P
y ck�x� y��f�y�� f�x��	 where�

ck�x� y� �
��

k�y�
k�x�

� �
�

if jx� yj � �


 otherwise�

The rates ck�x� y� are uniformly bounded� It is simple to check that Gk is
a self�adjoint	 negative de�nite Markov generator� Thus in order to prove
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Proposition ��� we have to give a lower bound for its spectral gap ���Gk��
The estimates we will prove are based on the so called Cheeger inequality	
which in our case says �see Lawler	 Sokal ���""�	 Theorem ��� and Remark �
in that paper��

���Gk� � q�

�M
� ���

where�

q � sup
x�Z

�
�� inf

a	x
���k �a������

�k�a�

�k �a���

�
�
�
� inf

b�x
���k ����b	��

�k�b�

�k��� b�

�
A
�
�

and M � supx fck�x� x� �� � ck�x� x� ��g� Because in our case M is a
bounded constant the proposition is proved if we can show that�

sup
x�Z

�
�� inf

a	x
�����a������

���a�

���a���

�
�
�
� inf

b�x
��������b	��

���b�

����� b�

�
A
�
� � K�p

L
�

� ���
and that�

sup
x�Z

�
�� inf

a	x
���k �a������

�k�a�

�k�a���

�
�
�
� inf

b�x
���k����b	��

�k�b�

�k��� b�

�
A
�
� � K��

� � �
for k � �� � � � � L� The following �telescopic� representation is useful�

�k�a���

�k�a�
� � �

X
x	a

x��Y
z�a

�k�z � ��

�k�z�
� � �!�

�k��� b�

�k�b�
� � �

X
x�b

b��Y
z�x

�k�z�

�k�z � ��
� � �"�

By this representation we have immediately � � �� In fact by � ��� for k � �

and z � 
 we know that k�z���
k�z�

� e������� 
 � and k�z�
k�z��� � e������� 
 �

for z 
 
� Using � �!� and � �"� it is simple to prove respectively that for

every a � 
 the ratio k�a�
k
a���� is bounded below by a positive constant and

that the same is true for every b � 
 for the ratio k�b�
k����b�

� This proves

� � ��
The proof of � ��� is conceptually similar but the study of the ratio

��z���
��z�

is not so simple� To understand why it is so	 recall that by de�nition

���z � ��

���z�
� e��� sign�z�

pL���N � z � ��

pL���N � z�
�

For jz � N j � cost�
p
L by local limit theorem we have pL���N�z���

pL���N�z� � ��

Thus in this case ��z���
��z�

� e��� sign�z� � This gives an �inward drift� as
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in the previous case� Problems arise when jz � N j � p
L� Suppose that


 
 N � z � ��L for a positive constant ��� By the �Cram�er trick� � ��� we
have that�

���z � ��

���z�
�
p�L���N � z � ��

p�L���N � z�
e��� sign�z����

for every � � ���� ��� Now let �z be such that m��z� � N�z
L�� 	 such a �z

exists by Lemma  ��� By local limit theorem
p�z
L��

�N�z���
p�z
L��

�N�z� � � and in this

case ��z���
��z�

� e��� sign�z���z � This equation implies that ��z���
��z�


 � for

��� sign�z� � �z 
 
� In particular if z � 
 we have ��� � �z 
 
 if and
only if z � N �m�����L� ��� So we have to study �z carefully�

De�ne �x � N � m�����L � ��� We claim that for every �� � 
 there
exists K��� �� ��� and �L��� �� ��� � 
 such that�

�
� inf

a	�x
	
�����a������

���a�

���a���

�
A �

�
� inf

b��x
	
��������b	��

���b�

����� b�

�
A � Kp

L
� � ���

for every L � �L and N � Zsuch that jN�Lj � ��� This relation and � ���
gives ������ The proof of � ��� is divided into several lemmas� Each lemma

bounds the ratio ��z���
��z�

in an interval where �� has a di�erent qualitative

aspect� Because ���NL ��k � �x� � ����NL ��k � x� it is not restrictive to
suppose that N � 
�

Lemma  ��� Suppose that z � N � 
� Then�

���z � ��

���z�
� e���� � ��
�

Proof� By part � of Lemma  ��	 we know that�

���z � ��

���z�
� e���

pL���N � z � ��

pL���N � z�
�

but since z � N 	 part � of the same lemma implies that � is an upper bound

for the ratio pL���N�z���
pL���N�z� � tu

Lemma  ��� Suppose that � � �
� m������ �� � 
 and N�L � �
� ���� Then

there exists K���� �� �� and K���� �� ��� � 
 such that�

���z � ��

���z�
�
�
� �

K�

L

�
e�K� � ����

for every z �Zsatisfying ��x� ��L� ���� 
 � z � N �

Proof� Let �z � ���� �� be so that E�z��� � N�z
L�� � Lemma  �� yields�

���z � ��

���z�
�
p�zL���N � z � ��

p�zL���N � z�
e����jz��j�jzj���z �
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Because 
 � z � N � ��L	 the ratio
���N�zL��

��� is bounded above by ���� This

implies that j�zj � m������� 
 � and local limit theorem can be used�

p�zL���N � z � ��

p�zL���N � z�
�

�p
��

� O�L���
�p
��

� O�L���
� � �O�L����

uniformly in N and z with
���N�zL��

��� � ���� Thus there exists C���� �� ��� � 


such that�
���z � ��

���z�
�
�
� �

C�

L

�
e�����z � � ����

for 
 � z � N � ��L� Now because z � �x���L���	 the ratio N�z
L�� is bounded

above by N��x
L�� � � � m���� � �� This means that �z � m��

�
N�z
L��

�
�

m�� �m����� ��� This estimate together with � ���� gives � ����� tu
Lemma  ��� Suppose that �� � 
 and N�L � �
� ���� Then there exists

����� �� ��� � 
 such that for every � � �
� ��� it is possible to �nd K���� �� ��
and K���� �� ��� � 
 so that�

���z � ��

���z�
�
�
� �

K�

L

�
e�K�� z�
x

L����o�L
��� � ����

for every z �Zsatisfying �x � 
 
 z 
 ��x � ��L� ��� � 
�
Proof� Let � � 
 be small enough such that 
 � z � N � By � ���� we may
write�

���z � ��

���z�
�
�
� �

C�

L

�
e�����z � � ����

for a positive constant C���� �� ���� Because

�z � m��
�
N � z

L� �

�
� m��

�
N � �x

L� �
�

�x� z

L� �

�

and �x�z
L�� � ���� 
�	 for � small enough we can expand �z in Taylor series�

This yields�

�z � �� � C�

�
�x� z

L� �

�
� o�L���

for a positive constant C���� �� ���� This estimate together with � ���� com�
pletes the proof� tu

The following three lemmas can be proved in the same way we proved
lemmas  ��	  �� and  �� respectively� We omit the proof for brevity�

Lemma  � � Suppose that z 
 
� Then�

���z�

���z � ��
� e����

Lemma  �!� Suppose that � � �
� m������ �� � 
 and N�L � �
� ���� Then

there exists K���� �� �� and K���� �� ��� � 
 such that�

���z�

���z � ��
�
�
� �

K�

L

�
e�K�
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for every z �Zsatisfying 
 � z 
 ��x� ��L� ���� 
�

Lemma  �"� Suppose that �� � 
 and N�L � �
� ���� Then there exists

����� �� ��� � 
 such that for every � � �
� ��� it is possible to �nd K���� �� ��
and K���� �� ��� � 
 so that�

���z�

���z � ��
�
�
� �

K�

L

�
e�K�� 
x�z

L����o�L
���

for every z �Zsatisfying ��x� ��L� ���� 
 � z 
 �x � 
�

We are now in a position to prove � ���� Suppose that a � N 	 then from
the estimate � ��
� it follows that�

X
x	a

x��Y
z�a

���z � ��

���z�
� � �

X
x	a

e����x�a� �
e���

�� e���
� � ����

Suppose that ��x� ��L� ��� � 
 � a � N 	 a simple calculation gives�

X
x	a

x��Y
z�a

���z � ��

���z�
�

�
NX

x�a��

x��Y
z�a

���z � ��

���z�
�

�
N��Y
z�a

���z � ��

���z�

�X
x	N

x��Y
z�N

���z � ��

���z�
�

because of � ���� the last sum in this expression is bounded above by a
positive constant so that�

X
x	a

x��Y
z�a

���z � ��

���z�
� C���� ��

NX
x�a

x��Y
z�a

���z � ��

���z�
�

Now � ���� can be used to bound the last term of this expression�

NX
x�a

x��Y
z�a

���z � ��

���z�
�
�
� �

C�

L

���L ��X
x�	

e�C�x � C��� �� �� ����

In conclusion� X
x	a

x��Y
z�a

���z � ��

���z�
� C���� �� �� ��� � �� �

for every a such that ��x � ��L� ���� 
 � a � N �
Suppose now that �x� 
 
 a � �x� ��L� �� and de�ne �y � �x� ��L� ���

A simple calculation yields�

X
x	a

x��Y
z�a

���z � ��

���z�
�

�

�yX
x�a��

x��Y
z�a

���z � ��

���z�
�

�
�y��Y
z�a

���z � ��

���z�

�X
x	�y

x��Y
z��y

���z � ��

���z�
�
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By equation � �� � the last sum in this expression is bounded above by a
positive constant and we have�

X
x	a

x��Y
z�a

���z � ��

���z�
� C���� �� �� ���

�yX
x�a��

x��Y
z�a

���z � ��

���z�
� � ��!�

The estimate � ���� may be used to bound last term in � ��!��

�yX
x�a

x��Y
z�a

���z � ��

���z�
�

�yX
x�a

x��Y
z�a

�
� �

C�

L

�
e�C�� z�
x

L����o�L
��� �

�
�
� �

C�

L

�N
eo�L

����y

�yX
x�a

e�
C�
L��

Px��

z�a
�z��x� � C�

�yX
x�a

e�
C�
L��

Px��

z�a
�z��x��

� ��"�
where C���� �� �� and C���� �� ��� are positive constants� A few calculations

show that
Px��

z�a�z � �x� � �
�

�
�x� a�� �

�

� � �
�
for every a � ��x� x�� This

estimate and some elementary inequalities yield�

�yX
x�a

e�
C�
L��

Px��

z�a
�z��x� � C�	

��X
x�	

e�
C�

��L��� �x� �
� �

�

�

� C��

Z ��

	

e�
C�

��L��� �x� �
� �

�

dx � C����� �� �� ���
p
L�

This inequality together with � ��!� and � ��"� shows that

X
x	a

x��Y
z�a

���z � ��

���z�
� C��

p
L � ����

for every a such that �x 
 a � �x � 
 � ��L � ��	 where C����� �� �� ��� is a
positive constant�

By � �!�	 � ����	 � �� � and � ���� we have�

inf
a	�x
	

�����a������

���a�

���a���
�

Cp
L

� ��
�

for a positive constant C��� �� �� ��� and L large enough�
In order to complete the proof of � ��� we need to prove that�

inf
b��x
	

��������b	��

���b�

����� b�
�

Cp
L
� � ����

The proof of this inequality is omitted since it follows closely the proof of
� ��
�� This concludes the proof of Proposition ���� tu

The last part of this section is dedicated to the proofs of some large devi�
ation results for ��� More precisely we will prove Lemma ��� and Lemma ����
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Proof of Lemma ���� Because ���NL ��� 
 
� � ����NL ��� � 
�	 we will prove
only ������

De�ne � � N�L and �� such that m���� � � �see Lemma  ���� A
simple calculation shows that�

���NL ��� 
 
� �
X
x�	

#���� � x� �� � N�

#���� � N�
�
X
x�	

e���jxjpL���N � x�

Z���� 
�#���� � N�
�

� e��N
�
E�e����

L��
pL���
�

X
x		

e���xp��L���N � x�e����N�x� �

� e�������N
�
E�e����

L��
pL���
�

X
x		

e���x �
e���

�� e���
e�������N E�e����L��

pL���
�
�

� C���� ��
p
Le�������N E�e����L��

where we used the trivial estimate #����� � � ���L � N� � #���� � N�pL���
�
and the local limit theorem� In order to prove ����� we have to show that
there exists C���� �� and ����� �� � 
 such that e��������E�e���� 
 e�C� for
� � ����� ��� Direct calculation yields�

E�e��� �
�

Z��� 
�

�
e������

�� e������
�

�

�� e���

�
� C����

�� e���
�

for � � �
� �� so that

e��������E�e���� � C����
e��������

�� e����
�

We claim that the last factor in this estimate can be made smaller than
� taking � large enough� In fact a simple calculation permits us to write
explicitly the �Cram�er transform��

�� � log

�
��e� � e��� �

p
���e� � e���� � �

���� ��

�
�

and it is easy to check that �� e���� � O����� for �	 �� tu
Proof of Lemma ���� Notice that ���NL �j��j � ML� � ���NL ��� � ML� �

����NL ��� � ML�	 so we need to estimate only ���NL ��� � ML��
An elementary calculation yields�

���NL ��� � ML� �
X

x	ML

���NL ��� � x� �

�
�

#���� � N�Z���� 
�

X
x	ML

e���xpL���N � x� �

� e��N

pL���
�

X
x	ML

e���xpL���N � x� �

� e��N

pL���
�

X
x	ML

e���x � C���� ��
p
L
X

x	ML

e���x �

� C���� ��
p
Le����ML�N� � C���� ��

p
Le����M����L�

where we used the trivial estimate� #����� � � ��L � N� � #���� � N�pL���
�
and the local limit theorem� tu
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� Two Block Estimate

In this section we will prove Proposition ���� This is a generalization of a
similar result obtained by H� T� Yau �see Yau ������� in the simpler context
of bounded random variables� Our main tool is again local limit theorem
�see Petrov ���!��	 Chapter VII	 Theorem ���� Throughout this section we
will assume � � � and jN�Lj � �� 
 �� We will use notation and results
from Section  �

The proof of Proposition ��� requires some preliminary results� Let
k � L be a positive �xed integer� Consider the partition A � 	��� � � � � �L�k

of ��� L��N	 where �i � ����i���k� ik�� ��� L��N� Let fg
g
�A be a family
of random variables indexed on A	 we denote by Av
 g
 the arithmetic mean

of the family Av
 g
 � k
L

PL�k
i�� g
i �

Lemma !��� Suppose that F � Rk 	 R is such that�

jF �x�� � � � � xk�j � K� �
K�

k

kX
i��

jxij �!���

for two constants K� and K� � 
� For any � � A de�ne F
��� � F ��
� and
suppose that EN

L �F
� � 
� Then there exists ����� ��� F � � 
 so that�

E
N
L ��Av
 F
�

�� � �

��
logENL �e�Av� F�� �!���

for any j�j � ���

Proof� A formal expansion of the exponential function yields�

E
N
L �e�Av� F�� � � �

��

�
E
N
L ��Av
 F
�

�� � o���� �!���

from which �!��� follows for � small enough� Thus the lemma is proved if
we can show that the expansion �!��� is correct� It is elementary to prove
that �!��� is true if there exists a positive constant K��� ��� F � such that

E
N
L �jAv
 F
jn� � Knn$� Because of condition �!��� this is true if we can

show that

E
N
L �j��jn� � Cn

� n$� �!���

We are going to prove this estimate�
Let �� be such that E����� � � � N�L �see Lemma  ���� By part � in

Lemma  �� we can write�

E
N
L �j��jn� �

X
jxj�

p
L

jxjn���� � x�
p
��
L���N � x�e��x

p
��
L �N�Z��� ���

�

�
X

jxj	
p
L

jxjn���� � x�
p
��
L���N � x�e��x

p
��
L �N�Z��� ���

�

�!���
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Local limit theorem may be invoked to claim that the ratio
p
��
L��

�N�x�
p
��
L

�N�
is

bounded by a positive constant depending only on �� for jxj � p
L� This

implies that the �rst term on the right hand side of �!��� is bounded above
by C���� ���E�j��jne������

Again local limit theorem can be used to claim that p
��
L �N� � O�L�����	

thus there exists a positive constant C���� ��� such that the second term on
the right hand side of �!��� is bounded above by�

C�

p
L

X
jxj	pL

jxjn���� � x�e��x � C�

p
Le�t

p
L
X

jxj	pL
jxjn���� � x�e����t�x

where t � 
 is such that jt � ��j 
 � for any j�j � ��� If L is large
enough the term on right hand side of this inequality is bounded above
by C��� ���E�j��jne����t��� ��

In conclusion EN
L �j��jn� � C�E�j��jne����� for a �xed �� � ���� ��� In

order to prove �!��� we have to show that for any � � ���� �� there exists
C��� �� � 
 such that E�j��jne���� � C��� ��nn$� This fact may be proved
by direct calculation� tu

Next lemma is useful to calculate some probabilistic quantities related
with the measure �NL � If f� g� h are random variables we de�ne E��f� g� h�
as

E
��f� g� h�� E�

�
�f �E��f���g�E��g���h�E��h��


�

Proposition !��� In the same setting as in Lemma ���� except that not

necessarily ENL �F
� � 
� there exists ����� ��� F � � 
 such that�

�

�
logEN

L

�
e�Av� F�

�
� E�� �F
� �

k

L
�G��F
� �� � �G��F
� ��� � o�L���

�!� �
for any j�j � ��� Here �� is such that E

������ � � � N�L and�

G��F
� �� � �

�

�
E
�� ���
� ��
� ��
�E

�� �F
� ��
�

Var�� ���
�
�

� E
�� ���
� ��
� F
�

Var�� ���
�

�
�!�!�

G��F
� �� � �

�

�
E
��
�
F �



�� E�� �F
� ��
��
Var�� ���
�

�
� �!�"�

Proof� Notice that there exists ����� ��� F � � 
 and  � ��� such that�

E
��
�
��
e�F���������


E
��
�
e�F���������

 � k� �!���

for any j�j � ��� In fact �!��� is equivalent to�

E
��
h
���
 � k��e�F��������k��

i
� 
�
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by the implicit function theorem there exists ����� ��� F � � 
 and a function
 � C������ ��� satisfying �!���� The same theorem implies that�

�
� � 
� ��
� � �E
���F
� ��
�

Var�����
�
� �!��
�

Fix some j�j 
 ����� ��� F � and de�ne on � the probability measure ����� �N

 �

����

 	 where

�����
 ��
� � e�F���������

E
��
�
e�F���������

 �
With respect to this measure f��
g
�A are independent identically distribu�

ted random variables with expected value E�������
� � k� and variance�

������ �� �
E
��
�
���
 � k���e�F������


E
�� �e�F�������

�
E
��
�
���
 � k���e�F��������k��


E
��
�
e�F��������k��

 �

De�ne �F � F
�
� � � �� F
L	k and notice that�

E
N
L �e�

�F � �
E
��
h
e�

�F
���� � N�

i
E
�� ����� � N��

�
�������� � N�

����	��� � N�
E
��
h
e�

�F������N�
i
�

�

s
������ 
�

������ ��

�p
��

� k
Lq

�����k
� �
� � o�L���

�p
��

� k
Lq

���	�k
� �
� � o�L���

E
��
h
e�F��������k��

iL�k
�

where we used local limit theorem in the last line �q� is a quadratic poly�
nomial de�ned in Petrov ���!��	 Chapter VII	 Theorem ���� Substituting
� � k

L
� the previous formula may be rewritten as�

E
N
L �e�Av� F�� �

s
������ 
�

��
�
���

�k
L

� �p
��

� k
Lq

���

k
L �k

� �
� � o�L���
�p
��

� k
L
q
���	�k
� �
� � o�L���

�

�E��
h
e�Av� F���� 
kL ������k��

iL�k
�

�!����

Taylor�s expansion	 �!��
�	 and a few calculations yields�

�p
��

� k
Lq

���

k
L �k

� �
� � o�L���
�p
��

� k
Lq

���	�k
� �
� � o�L���

� � � o�L���

E
��
h
e�Av� F����


k
L ������k��

iL�k
�

� � � �E
�� �F
� �

��k

L
G��F
� �� � o�L���

s
������ 
�

��
�
���

�k
L

� � �� G��F
� ��
�k

L
� o�L����

�!����
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Now using �!���� and �!����	 it is elementary to prove �!� �� tu
As a consequence of Proposition !�� we have the following results that

can be read as �equivalence of ensembles��

Corollary !��� In the same setting as in Proposition !�� we have�

E
N
L �F
� � E

�� �F
� �
k

L
G��F
� �� � o�L���� �!����

Proof� For every � � �
� ��� the Jensen inequality yields

E
N
L �F
� � E

N
L �Av
 F
� �

�

�
E
N
L �log e�Av� F�� � �

�
logE

N
L �e�Av� F��

and�

E
N
L �F
� � ��

�
E
N
L �log e��Av� F�� � ��

�
logENL �e��Av� F���

These estimates and �!� � give�

� k�

L
G��F
� �� � o�L��� � EN

L �F
��E�� �F
�� k

L
G��F
� �� �

� k�

L
G��F
� �� � o�L����

Taking the limit for � � 
 we have �!����� tu
Corollary !��� In the same setting as in Proposition !�� we have�

VarNL �Av
 F
� � �
k

L
#G��F
� �� � o�L���� �!����

where�

#G��F
� �� � �

�

�
Var�� �F
�� E

�� �F
� ��
�
�

Var�� ���
�

�

Proof� We can suppose ENL �F
� � 
� Lemma !�� and Proposition !�� give�

E
N
L

�
�Av
 F
�

�
 � �

�������
logENL �e




� Av� F�� �

�
�

������

�
E
�� �F
� �

k

L

�
G��F
� �� �

��

�
G��F
� ��

��
� o�L����

But by Corollary !�� we know that E�� �F
� � � k
LG��F
� ���o�L���	 thus�

E
N
L

�
�Av
 F
�

�
 � �

k

L
G��F
� �� � o�L���� �!����

Notice that

G��F
� ��� #G��F
� �� � E
�� �F
�

� � o�L���
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and that E�� �F
�
�
� o�L���� This fact together with �!���� implies �!�����

tu
We are �nally in a position to prove Proposition ����

Proof of Proposition ���� The proof is divided into several steps for purpose
of clarity�

Step �� For every � � 
 there exists �n��� ��� and �k��� �� ��� F � � 
 such that

for any k � �k it is possible to �nd �L��� ��� �� k� � 
 so that�

E
N
L �f�Avj hj�

� � �

L
VarNL �f� � �E

N
L �f�Av
 ��j��
j � �nk� Avj�
 hj �

�
�

�!�� �
for every L � �L�
Proof of Step �� A few calculations yields�

E
N
L �f�Avj hj�

� � �E
N
L �f�Av
 ��j��
j � �nk� Avj�
 hj �

�
�

� �VarNL �f� VarNL �Av
 F
��
�!��!�

where F
��� � F ��
� and

F �x�� � � � � xk� � ��jx� � � � �� xk j � �nk�
�

k

kX
j��

h�xj��

Corollary !�� shows that�

VarNL �Av
 F
� � �k

L
#G��F
� �� � o�L���� �!��"�

But #G��F
� �� � o�k��� because�

j #G��F
� ��j � Var�� �F
� � �khk�������j��
j � �nk��

and Cram�er�s theorem �see for example Varadhan ���"��� can be used to esti�
mate the last term� So there exists �k��� �� ��� F � � 
 such that k

L
#G��F
� �� �

�
�L for every k � �k� For every �xed k � �k it is possible to �nd �L��� ��� �� k� so
that for every L � �L the last term in �!��"� is bounded from above by �

�L �

In conclusion	 �!��"� becomes VarNL �Av
 F
� � �
L � Using �!��!� we obtain

�!�� �� tu
Step �� Let �n and k be �xed positive integer� Then there exists C��� �n� k� �

 such that�

E
N
L �f�Av
 ��j��
j � �nk� Avj�
 hj �

� �
� CENL �f� f� � �ENL �f�Av
 #h
�

��
�!����

where�
#h
 � ��j��
j � �nk�ENL �Avj�
 hj j��
��

Proof of Step �� Jensen inequality yields�

E
N
L �f�Av
 ��j��
j � �nk� Avj�
 hj �

� �
� �ENL

�
f�Av
 ��j��
j � �nk� Avj�


�
hj �EN

L �hj j��
�
��

�

� �ENL
�
f�Av
 ��j��
j � �nk� Avj�
ENL �hj j��
�

�
�

�!��
�
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We have to estimate the �rst term on the left hand side of �!��
�� Denote
by �
 the density ��
�k in the interval � and de�ne

g
 � Avj�

�
hj �ENL �hj j��
�

�
�

so that�

E
N
L

�
f�Av
 ��j��
j � �nk� Avj�


�
hj �EN

L �hj j��
�
�

�

� Av
E
N
L �f� ��j�
j � �n�g
� �

A simple computation shows that�

E
N
L �f� ��j�
j � �n�g
� � E

N
L

�
��j�
j � �n�E

N
L �f� g
j�
c�


�

Using Jensen and Schwarz inequalities we obtain�

E
N
L �f�Av
 ��j�
j � �n�g
�

� �
� �khk���Av
E

N
L

�
��j�
j � �n� VarNL �f j�
c�


�

�!����

Now recall that VarNL �f j�
c� � Var���
 �f��j�
c�� where E���

 ��� is the expected

value with respect to ���
j��
�� By Proposition �� we know that there exists
a positive constant C���� �n� k� such that�

��j�
j � �n� VarNL �f j�
c� � ��j�
j � �n� Var���
 �f��j�
c�� �
� ��j�
j � �n�C�E ���


 �f��j�
c�� f��j�
c�� �
� ��j�
j � �n�C�EN����c


 �f��j�
c�� f��j�
c��

This inequality and �!���� give�

E
N
L �f�Av
 ��j�
j � �n�g
�

� � C���� �n� k� F �ENL �f� f��

Using this estimate and �!��
� we have �!����� tu
Step �� For every � � 
 there exists �n��� ��� and �k��� �� ��� F � � 
 such that

for any k � �k it is possible to �nd �L��� ��� �� k� � 
 so that�

E
N
L �f�Av
 #h
�

� � �

L
VarNL �f�� �!����

for every L � �L�
Proof of Step �� Let a� b � R be two constant to be �xed later� De�ne
#F
 � #h
�a� b��
��� where � � N�L and �
 � ��
�k� Obviously we have
that�

E
N
L �f�Av
 #h
�

� � VarNL �f� VarNL �Av
 #h
� � VarNL �f� VarNL �Av
 #F
��

and Corollary !�� may be used to estimate the last variance� A simple
calculation yields�

VarNL �Av
 #h
� � �
k

L
Var��� #F
� � o�L���� �!����
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We claim that we can choose a and b so that Var��� #F
� � o�k���� If this is
true by �!���� we have immediately �!���� because for any � � 
 there exists
�k��� �� ��� F � such that for every k � �k we have kVar��� #F
� 


�
�
� For any

such k there exists �L��� ��� k� so that for every L � �L��� ��� k� the o�L��� in
�!���� is bounded above by ���L�

It remains to show that Var��� #F
� � o�k���� We notice that

#h
 � ��j��
j � �nk�E
N
L �Avj�
 hj j��
� � ��j��
j � �nk�E

���

 �h��

and that by Corollary !�� for j��
j � �nk	 the latter expectation may be
rewritten as�

E
���

 �h�� � E

��� �h�� �
�

k
G��h�� �
� � o�k��� � gk��
� � o�k����

where�

gk��
� � E��� �h���
�

�k

�
E
��� ���� ��� ��� Var

��� ����

Var��� ����
� � E

��� ���� ��� h��

Var��� ����

�
�

Clearly gk��
� is a smooth function in the variable �
 and�

#F
 � ��j�
j � �n�gk��
�� a� b��
� �� � o�k����

Take a � gk���	 b � g�k��� and �x �� � 
� Then�

Var��� #F
� � E��� #F �

� �

� E
��
h
#F �

��j�
 � �j � ���

i
�E

��
h
#F �

��j�
 � �j � ���

i
�

� E
��
h
#F �

��j�
 � �j � ���

i
� o�k���

where in the last line we used Cram�er�s theorem �see Varadhan ���"���� For
�� small enough and j�� �
j 
 ��	 we can expand gk��
� in Taylor series�
gk��
� � gk��� � g�k������ �
� �Rk where jRkj � C��� ������ �
��� For ��

small enough and �n � �j�j we have�

E
��
h
#F �

��j�
 � �j � ���

i
�

� E��
h�
gk��
���j�
j � �n�� a� b��� �
� � o�k���

��
��j�
 � �j � ���

i
�

� E��
h�
gk��
�� a� b��� �
� � o�k���

��
��j�
 � �j � ���

i
�

� E��
h�
Rk � o�k���

��
��j�
 � �j � ���

i
� E��

h�
Rk � o�k���

��i �
� E��

h�
C��� �
�

� � o�k���
��i � �C�

E
��
�
��� �
�



� o�k��� �

� o�k����

This concludes the proof� tu
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Now we can conclude the proof of Proposition ���� Fix � � 
 and
f � L���NL �� By �!�� � there exists �n��� ��� and �k��� �� ��� F � � 
 such that
for every k � �k it is possible to �nd �L��� ��� k� � 
 so that�

E
N
L �f�Avj hj�

� � �

�L
VarNL �f� � �E

N
L �f�Av
 ��j��
j � �nk� Avj�
 hj �

�
�

for any L � �L� Because of �!���� the last term in this estimate is bounded
above by

�C��� �n� k�ENL �f� f� � �ENL �f�Av
 #h
�
��

Finally using �!���� we obtain�

E
N
L �f�Avj hj�

� � �C��� �n� k�ENL �f� f� �
�

L
VarNL �f�

for k � �k � � and L � �L� tu

�� �A Priori Estimates

In this section we will prove Proposition ��� and �� � These are lower bounds
on the spectral gap of some processes� The estimates we will obtain are not
sharp	 but this is not important for what they are used�

Proof of Proposition ���� We shall prove this proposition by induction on L�
Suppose L � �	 then �� � N � �� almost surely� De�ne for every

f � L�����N� � the local function %fN ���� � f�N � ��� ���	 then Var��N� �f� �

Var��N� � %fN�	 and the Poincar�e inequality ����� follows in this case from
Proposition ���� Suppose now that ����� is true for a �xed L � �� For

every f � L�����NL��� conditional variance formula gives�

Var��NL���f� � E
��N
L��

h
Var��NL���f j�L���

i
� Var��NL��

h
E
��N
L���f j�L���

i
� �"���

The proposition is proved if we can show that any term in this expression is
bounded above by the form E��NL���f� f� multiplied by a factor independent
of N �
Recall that Var��NL���f j�L��� � Var

��N��L��

L �f��j�L���� then induction as�
sumption yields�

Var
��N��L��

L �f��j�L���� � K��� �� L�E��N��L��

L �f��j�L���� f��j�L���� �

This inequality	 shows that the �rst term on the right hand side of �"��� is

bounded above by K��� �� L�E��NL���f� f�� It remains to estimate the last term

in �"���� We can apply Proposition ��� to the local function E
��N
L���f j�L���

to obtain�

Var��NL��

h
E
��N
L���f j�L���

i
� C���� ��E

��N
L��

h
���L��E

��N
L���f j�L����

�
i
�
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Now ������ and a some simple estimates give�

Var��NL��

h
E
��N
L���f j�L���

i
�

� C���� ��
n
E
��N
L��

�
��L���Lf�

�

�E

��N
L��

h
Var��NL���f j�L���

io
�

Again induction assumption shows that the last term in this expression is
bounded above by K��� �� L�E��NL �f� f� so that�

Var��NL��

h
E
��N
L���f j�L���

i
� C���� �� L�E��NL���f� f��

This concludes the proof� tu
In order to prove Proposition �� we need a technical estimate on the

ratio
ENL �f�f�

VarN
L
�f�

�

Lemma "��� Suppose f � L���NL � and de�ne fN��� � f���� � � � � �L��� �L �
N�� Then�

e��N � VarNL �f�

Var	L�fN �
� e�N e���N � ENL �f� f�

E	L�fN � fN�
� e��N � �"���

for any L � 
 and N �Z�
Proof� We can suppose N � 
� De�ne hN �x� � e���jx�Nj�jxj� and notice
that

e��N � hN ��� � e�N � �"���

This formula enable us to compare objects connected with �NL for di�erent
values of N � For example�

ZN
L �

X
�

���� � N�e��
PL

i��
j�ij �

X
�

���� � 
�hN����e
��
PL

i��
j�ij�

and by �"��� we know that e��N � ZN
L �Z

	
L � e�N � A similar calculation

shows that�

VarNL �f� �

�
Z	
L

ZN
L

��
�

�

X
���

�fN ���� fN�	��� hN ����hN�	���
	
L����

	
L�	��

from which follows the �rst one of the estimates �"���� The second one can
be proved in a similar way� tu
Proof of Proposition �� � Notice that the map f �	 fN is a bijection of
L���NL � onto L���	L�� Lemma "�� implies that�

inf
f�L���N

L
�

ENL �f� f�

VarNL �f�
� e���N inf

f�L����
L
�

E	L�f� f�
Var	L�f�

� e�����L inf
f�L����

L
�

E	L�f� f�
Var	L�f�

�

�"���
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so that we need only to estimate this last ratio� De�ne H��� � PL
i�� j�ij

and the jump rates�

c��	 �i�j� �

��
�

� if H��i�j� 
 H����
e��� if H��i�j� � H����

 otherwise	

where �i�j � � � �i � �j � The Markov generator de�ned as�

�Gf���� �
X
i�j

c��	 �i�j�
�
f��i�j�� f���



is a bounded and self adjoint in L���	L�� Notice that�

f��i�j�� f��� �
i��X
k�j

��k���kf���
i�k���

for every i� j with i � j� This equation and an elementary calculation shows
that�

G�f� f� � C���� ��L
�E	L�f� f�

for every f � L���	L�� Here G�f� f� stands for the Dirichlet form associated
with G� This inequality together with �"��� shows that to prove the propo�
sition we have to show that ���G� � 
 for every L � 
� This fact is not
obvious in our case because the state space of the Markov chain associated
with G is not �nite� The technique we used to prove this lower bound can be
found in Lawler	 Sokal ���""�� We consider a rooted graph �V�E��� where
the vertex set V and the edges set E are de�ned as�

V � f� � �L � �� � 
g
E � 	��� 	� � V � V � � i� j �Zsuch that 	 � �i�j



�

The root is the vertex � � �
� � � � � 
� � V � For every � � V we can de�ne a
geodetical path between � �� � and � in the following way�
� Let i� be the �rst index such that �i� � 
 and j� the �rst index such

that �j� 
 
� De�ne e� � ��� �i��j�� � E� e� is the �rst edge in our path�
If �i��j� � � then the geodetic path is fe�g else we repeat the procedure
starting from the vertex �i��j� �

It is easy to convince ourselves that this procedure leads up to the con�
struction of a geodetical path

	
e�� e�� � � � � ek���



� Notice that if ��h� � V is

the �rst vertex of the edge eh then H���h� ��� � H���h��� � for every
h � �� � � � � k���� �� This means that the geodetical distance of � from the
root is �

�H���� We are in the setting of the random walk on a rooted graph
treated in Lawler	 Sokal ���""�� By Corollary ��� in that paper we have
that�

���G� � �

�Mz�����

where M � �L� and z���� � �Z���� 
��L� This concludes the proof� tu
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�� Appendix

Lemma ���� Let ���F � �� be a probability space� Suppose that f � L����
and g � L����� Then for every A � F such that ��A� � 
 we have�

E�f� ��A�g�� � �E�f� gjA�� � "kgk�����Ac� Var�f�� �����

Proof� By the de�nition of covariance we have�

E�f� g� �

ZZ
d��x�d��y���x � A���y � A� �f�x�� f�y�� �g�x�� g�y���

�

ZZ
d��x�d��y� ��� ��x � A���y � A�� �f�x�� f�y�� �g�x�� g�y�� �

A simple calculation yields�

E�f� g�
� � ���A� E�f� gjA��� "kgk��Var���Ac�� Var�f�

� �E�f� gjA�� � "kgk����Ac� Var�f��

By replacing g with ��A�g in this formula we have ������ tu
Lemma ���� Suppose g � g���� � L���NL �� with jN�Lj � �� 
 �� Then�

E
N��
L �g�� ENL �g� � O�L����

Proof� De�ne � � N
L

and �� � N��
L

	 the by Corollary !�� we have that�

E
N��
L �g�� ENL �g� � E

��� �g��E���g� �
�

L
�G��g� �

���G��g� ���� o�L����

It is easy to check that the term in square bracket is bounded	 so we need
only to show that E��� �g� � E���g� � O�L���� This fact is true because
an explicit computation shows that E���g� is a smooth function of �	 and
�� � �� �

L � tu
Lemma ���� There exists a positive constant K��� such that�

VarNL ���� � K

�
N�

L�
� �

�
� �����

Proof� We consider separately the two cases jN�Lj � cost� and jN�Lj � ��
Fix �� � 
	 Corollary !�� gives�

VarNL ���� � Var������ �O�L���� �����

for jN�Lj � ��� Here �� is such that E������ � � � N�L �see Lemma  ����

We claim that � � 
 minimizes ����� � Var������ If this is true	 by �����	
there exists a constant C���� � 
 so that VarNL ���� � C� for jN�Lj � ���
The fact that � � 
 minimizes ����� is a trivial consequence of the fact
that ����� is a positive convex symmetric function	 as easily checked by an
explicit calculation�
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The estimate VarNL ���� � C���� � 
 is not a good estimate if jN�Lj is
large� We claim that in general there exists a positive constant C���� such
that�

VarNL ���� � C�
N�

L�
� �����

The proof of ����� is by induction on L�
An explicit calculation shows that ����� holds for L � �� Assume that

for a �xed L � 
 that ����� holds for every N �Z� We shall show that�

VarNL������ � C�
N�

�L� ���
� �����

for every N �Z� A simple calculation shows that

VarNL������ � EN
L��

h
VarN��LL ����

i
an by inductive hypothesis�

VarNL������ �
C�

L� E
N
L��

�
�N � �L�

�

�
C�

L� E
N
L��

�
��� �N��


� ��� �

Last term in this estimate may be explicitly calculated�

E
N
L��

�
��� �N��


�

�
NL

L� �

��

� VarNL�������

and �nally by ��� ��

VarNL������

�
�� C�

L�

�
� C�N

�

�L� ���
� ���!�

This relation implies ������ tu
I would like to thank F� Martinelli who posed me this problem and helped

me with many constructive discussions� I would also like to thank H�T� Yau

for the enlightening discussion we had in Rome in the Spring of �����
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