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CONVERGENCE OF SUBMARTINGALES TO A N INCREASING PROCESS 
UNDER DISCRETIZATION OF FILTRATIONS 

François Coquet*, Jean Mémin* 

*IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex, France 

I. Introduction. 

Let (í í ,^ 7 , (^t)te[o,T]?P) be a filtered probability space, where the filtration (Ft) = 
(F?) is generated by a càdlàg (right continuous and admitting left limits) process Y = 
(Ft, t G [0,T]). Note that, in general, (Ft) is not right-continuous. Let 

7r n = {0 = t£ < < . . . < tln = T } , n 6 IN, 

be a sequence of refining partitions of an interval [0, T] such that | 7 r n | := max |t" — | —• 0, 
i 

n —> oo. Denote ^ t

n = cr(Y?, s < i) , where 

Y?:=Yt? for * € [ * ? , t ? + 1 ) , 1 ? : = ^ . . ^ . 

We suppose that the set of fixed times of discontinuity of Y is included in the union of 7 r n . 

Given an integrable random variable X and a sequence of random variables Xn, n 6 
IN, converging to X in L1(P), consider the martingale M = (Mt = E(X\Ft)> t e [0,T]), 
and the sequence of martingales Mn = ( M t

n = E(Xn\F?), t G [0,T]), n 6 IN, with respect 
to the perturbed filtrations (^T)t€[o,T]? € IN. Since F? | "̂t, n —• oo, for each í £ [0, T], 
we have that M t

n —* Mt in probability. 

In paper [2] it was proved that : 1) In general, the convergence Mn —> M+ for the 

Skorokhod topology can fail; see the example of Sect. 2 in [2]. 

2) If Y is a Markov process (not necessarily continuous), then Mn —• M + in proba

bility for the Skorokhod topology,( [2]Theorem 1). 

A more general problem is the following : Suppose that X is a F adapted cádlág 
process, and consider Xn the càdlàg version of processes E ^ J ^ 7 7 1 ] : i. e. Xn is the 
^-optional projection of X (see [4], VI-43 and VI-47). The same example in [2] shows 
that in general we have not the convergence of Xn to X in probability for the J1 topology. 
This problem was studied in paper [3], under a general assumption of weak convergence 
of filtrations ([3] Theorems 1, 2 and 3), generalizing the situation here, when process Y is 
Markov. 

We shall prove in this small note that, without any condition on process Y, we get 

the desired convergence when X is a continuous increasing process. 

For shortening notations, the filtrations (F?), (Ft) will be denoted Fn , F. 
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Theorem. Let X is a T-adapted, continuous, increasing process. We assume that Xt is 

square integrable, and Xo = 0. Let us denote Xn = E [X | ,F n ] . Then : 

a) Xn is a positive submartingale, with the canonical decomposition Xn = Mn + An, 

where Mn is a square integrable !Fn-martingale of pure jumps, and An is a continuous 

increasing J771-adapted process, such that is square integrable. 
p p 

b) We have the convergences for the uniform topology in D ; Xn —>X, Mn —>0 

and An-^+X. 

Proof It will be driven in several steps. 

1) We have immediately, for every s and t, with s < t : 

E [X t

n - X?\F?} = E[Xt - Xa\F?} > 0 

hence the property of Fn-submartingale for Xn. 

Let us consider now for every n, the jump process 

i=1 

One can see that Mn is a square integrable martingale of jumps and that Xn - Mn is a 
continuous process because the times of jumps of Xn belong to the set of elements tf of 
partition 7rn and that Xn and Mn have the same jumps ; finally between 2 successive t 
An is increasing, hence the canonical decomposition given in a). 

2) Now we show that the sequence (M n ) is tight and that every limit is a law of 
continuous martingale. 

Let us use the Aldous criterion for tightness ; we are given 6 > 0, n, and a , r stopping 
times of filtration ( F n ) such that a < r < a+ 6, and let e' > 0. As previously, the elements 
of partition 7 r n are denoted or t£ for z, k < kn. 

P[ |M; - M; I > <*] < - ^ E [ ( M ; - M ; ) 2 ] 
Or 

ot 
(T<S<T 

Then 

E[ £ (AMD 2] = E[ ( A M " ? ) 2 ] 
<T<8<T <T<t?<T 

= E[ £ ( E [ A ( ? | ^ ] - E [ A t r | ^ _ J ) 2 ] 

< ¿ E[l [ l . | l . + 1 [ ( < 7) WA*? l^f 1 " E t A «? 1^?- J A 
fc=o {i>k;t?-q<6} 
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* E E[ l W , . . + i [ (^) £ ((E[A.? \T?n\)2 - (E[At? | ^ _ J ) 2 ) ] 
k=o {i>*;*f 

< E E[ l [ t n ) t n + 1 [ ( (7) ^ ((E[A t ? |JFT„])2 - ( E ^ | ^ _ J ) 2 ) ] 

fc=o {i>k;t?-q<6} 

< EE [ l [ t n ) t „ + 1 [ ( a ) ( A 2 n + i + 6 - (A?„)2)] 
Jfe=0 

(where s p with 0 < p < q(£) axe the points of a subdivision of interval [0, T] whose mesh 
is lower than £), 

«(*) 

P = l 

(as soon as n is large enough) 

< E[Al+26 - A 2 _ 6] + e' < 2e' 

for (5 small enough. 
Hence we have the following, which proves tightness of (M n ) : 
For every e > 0, for every a > 0, there exists 50, such that for every 6 < SQ 

lim sup sup P[\M? - M ; | > a] < e. 
n {(<r,r);<7<r<<7+£} 

Writing now for every ^-stopping time a 

P[|AM; I > a] < ^ E [ ( A M ; ) 2 ] . 

Then, exactly as above: 

E[(AM?) 2 ] = E [ £ ( A M T " „ ) 2 ] 

= E[ £ (E[i4«» |^r?] - E[A < ? | ^ _ J ) 2 ] 

< £ E[l { l. }(<r)(E[A t ? | - E[A t ? \T%JY\. 
k=0 
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Using the same tools we get finally, considering a = inf{t : | A M t

n | > e} : for every e, 

P[sup |AM t

n | > e ] - ^ 0 
t<T 

hence the desired result ([5], chapt.VI). 

3) Last step. The sequence ( ( X , M n , F ) ) is tight in C x D 2 . By representation The
orem of Skorokhod, we can find, on a suitable space ( f i , .^ ,P) a sequence ( ( X n , M n , F n ) ) 
relatively compact for the convergence in probability, and for a subsequence (indexed also 
by n), we have : 

(Xn,Mn,Yn)^(X,M,Y) 

where C{(Xn,Mn,Yn)\) = Mn, Y)\P) and £((X,Y)\) = C((X,Y)\P). 

Let us consider Yn the step process of order n of F n , and denote Xn = E [ X n | J r y n ] ; 
we have : 

£((Xn, X n , M n , r n , F n ) | ) = £ ( ( X , X n , Mn, r, F n ) | P ) . 

Let us denote An = X n - Mn ; then £ ( ( l n , M n ) | ) = £ ( ( A n , M n)|P). 

We have (for almost all t) the convergence X t

n —> X t in L 1 . 

Actually, 

E[|lr - * , | ] < E[|X t» - X t

n | ] + E[|X t" - Xt\]. 

We have E[ |X t

n - Xn |] = E[|E[X|J7*] - and this expression converges to 0 for n -> oo. 
_ P _ -

On the other hand, X? —>Xt and the sequence (X?) is bounded in L2. 
Finally we get that, for almost every f, A™ >Xt — M*. X — M is then a continuous 

increasing process A, the convergence is then uniform in t ; we deduce that M which is 
a continuous martingale and also difference of two increasing processes is 0. The proof is 
complete. 

Remark One can deduce the infinitesimality of jumps of Mn, from the Aldous work 
[1]. Since (X n ) is a sequence of ^-submartingale, that (Xj>) is uniformly integrable 
and X continuous, we get : for every £, lim sup n P [ s u p s < T ( X " — Xs) > e] = 0. We 
deduce immediately lim sup n P [ s u p 5 < r A M " > 2e] = 0, and under the martingality of 
Mn, lim sup n P [ s u p 5 < T |AM™| > e] = 0. This last deduction holds because of predictable 
character of jumps of Mn, it would be wrong if Mn was, for example, quasileft continuous. 
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