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Abstract. We consider the space Ω of marked Galton-Watson trees. Each 
ω G Ω corresponds to a tree Τ = Τ (ω). The tree begins with the root 
0 G Τ(ω) representing the initial ancestor; each node ( indiv idual ) u G Τ(ω) 
gives birth to Nu = Nu(u>) > 0 children, denoted by ui G ω, 1 < i < Nu, 
and each child ui is marked with a non-negative number Au{ = Aui(u>). 
The individus in the same generation behave independently each other, with 
the same probability law given by the random variable (iV, Α χ , A N ) := 
(ΛΓφ, A 0 x , A w ) , which is normalized such that EJ2^LxAi = 1. Write 
Xu = AUlAUlU2 · · · AUl.„Un if u = t/i...u n, and put Yn = Y,\u\=nXu, where the 
sum is taken over all nodes u G Τ (ω) of length η. Then {Y^ : η > 1} forms a 
martingale, and converges almost surely to a non-negative random variable, 
Z , as η ~> oo. In the case where the limit is non-degenerate (P(Z = 0) < 1), 
we give necessary and sufficient conditions for existence of its moments of 
given order ρ > 1, obtain an equivalence of the tail probabilities P(Z > x) 
as χ —> oo, and prove that its distribution has a continuous density (with 
respect to the Lebesgue measure) on (0, oo) under some moment conditions. 
The results are of applications in the study of: (a) Mandelbrot's self-similar 
cascades, (b) invariant measures of some infinite particle systems, (c) branch­
ing random walks, (d) flows in trees and (e) exact Housdorff measures in ran­
dom constructions. The proofs make use of the random difference equation 
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Χ = ΑχΧχ + Βχ, where Χ1 is a random variable independent of (Au Βχ) €R\ 
and has the same law as X. 

1. Introduction and main results 

Let N* = { 1 , 2 , · · ·} be the set of positive integers with the discret topol­
ogy. Put Ν = { 0 } U N* and write 

oo 

υ = U (Ν*)* 
k=0 

for the set of all finite sequences i = iiiY-.in ( h G Ν*), where by convention 
N*° = {0} contains the null sequence 0. Let 

I = 

be the set of all infinite sequences i = iii 2— ( û G Ν*) with the product 
topology. If i = iii2-.in (n < oo) is a sequence, we write | i |= η for its 
length, and i | k = n^.-.u (k < n; ) for the curtailment of i after k terms; 
conventioally, |0| = 0 and i|0 = 0. If i € U and j G U or I we write ij = (i, j) 
for the sequence obtained by juxtaposition. In particular i0 = 0i = i. We 
partially order U by writing i < j to mean that for some i' G U, j = ii', and 
we use a similar notation if i G U and j G I- If i and j are two sequences, we 
write i Λ j for the common maximal sequence of i and j , that is, the maximal 
sequence q such that q < i and q < j . 

A tree Γ is a subset of U satisfying three conditions (cf. Neveu (1986)): 
i) 0 G Τ ; 

ii) if ij G Γ , then i G Τ ; 
iii) if i G Τ and j G N*, then i j G Γ if and only if 1 < j < Ni for a 

positive integer N\. 
We shall write Ν for Ν$. The boundary of a tree Τ is defined as 

dT = {i G I : i|n G Τ for all η G Ν } . 

As a subset of I, it is a metrical and compact topological space with 

£(i) = { j € 0 w : i < j } , i € Τ (ω), 

its topological basis; a possible choice of metric is 

4 ( i , j ) = c - i i A j l , 
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where c is a given number in (1, oo) . The set B(i) is then a ball of radius cT^. 
An element of Τ is called a node. Each node u G Τ is marked with a 

vector ηη = (Auï, A w 2 , ··.) of M^*, where IR+ = [0, oo) . If 1 < j < N u , we can 

imagine that the number Auj is associated with the edge (u,uj) linking the 

nodes u and uj\ the values Auj for j > Nu are of no influence for our purpose, 

and will be taken as 0 for convenience. The marked tree will be denoted by 

(r,(r/u,uer)). 
Let Τ be the set of all trees, and Ω be the set of all marked trees ω (marked 

as above). An element ω of Ω will be written as ( Τ ( ω ) , (r/u, u G Τ ( ω ) ) ) , where 
Τ(ω) is the underlying tree. We may regard Τ as the canonical projection 
from Ω to T. Thus Τ may stand for a tree or an operator, according to the 
context. If ω is a marked tree and if i G Τ (ω), we write Τ\(ω) = {j G U : 
ij G Τ(ω)} for the shifted tree of Τ(ω) at i. Note that Τ{(ω) G Τ . Denote by 

zk{u) = {i G Τ(ω) : |i| = k} 

the set of nodes of Τ (ω) with length k (k G M) , and consider the filtration 

Tk = *{{NU An, A i 2 , . . . ) : i G z * - i } , k > 1. 

Let Τ := a{Tk,k > 1). For simplicity, we write (iV, Αχ, A 2 , . . . ) for 

By a result of Neveu (1986), for each probability distribution q on Ν χ 
there is a probability law Ρ = Pq on ( Ω , ^ ) such that 

(i) the distribution of the random variable (iV, Αχ, A 2 , . . . ) is g; 
(ii) given .7^, the random variables (N'u Aix, Ai 2 . . . ) , i G ^λ(ω), are condi­

tionally independent, and their conditional distribution is q. 
The property (ii) is referred as the branching property. 
Assume that the initial distribution is normalized such that 

£(Σ>«) = i. 
i=l 

If u ^ Τ ( ω ) , the values Αη(ω) are of no influence for our problem, and may 
be non-defined; however, for convenience, we set 

A w = 0 i f u G U \ T ( u ; ) . 

In particular, for all u G Τ (ω), Au{ = 0 if u > Nu. Put 
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Χ$ = 1, Xu = AUI AUlU2 · · · A t t l . . . t t n if u = tii...iin G U 

and 

| i / |=n , t /€T(w) 

Then (Υη^η){η > 1) is a (non-negative) martingale, so the limit 

Z = \imYn 

exists almost surely. Similarly, we put 

Zu = lim V ^ A U V 1 V 2 · · · A w v l . . . V n if u G Γ ( ω ) 
η—>·οο 

V = V i . . . V n € T u ( w ) 

and Zu = 1 if u G U \ Γ ( ω ) . Then Ζ = Z0, and, by the branching property, 
given Tn-> the random variables Z u , u G ζη(ω), are conditionally independent, 
and their conditional law is the distribution of Ζ . It is easily seen that for 
almost all ω G Ω and all u G Τ (ω) , 

Nu 

XuZu = XujZUj. 

Therefore for almost all ω G Ω, there is a unique Borel measure, μ ω , defined 
on ΘΤ(ω), such that 

μω(Β(η)) = X U Z U for all ix G Γ ( ω ) . 

We extend this measure as a Borel measure on I by letting μω(Α) = 
μω(Α Π 3Τ{ω)). Then μω is a random measure on I with mass Ζ(ω). 

The preceding identity on Zu shows that the distribution of Ζ satisfies 
the equation 

Z = £ A , Z „ (1.1) 
i=l 

where the sum is taken to be zero if Ν = 0, and, given (Ν, Αχ, A.2,..-), the 
random variables Z t ( l < i < N) are conditionally independent, and their 
conditional distribution is the law of Z. In terms of characteristic functions 
or Laplace transforms, it reads 

φ(ή = Εΐ[φ(Α{ί), ( Ι . Ι ' ) 
1=1 
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where φ(ί) = E(euZ) or E(e~tZ),t G M or R + , and the empty product is 
taken to be 1. 

The problem is to study the measure μω and the distribution of Z. 
Kahane and Peyrière (1976), and Guivarc'h (1990) studied the problem 

in the case where Ν is constant and the A{ (1 < i < N) are i.i.d. Their 
works were motivated by questions raised by Mandelbrot related to a model 
of turbulence of Yaglom. Holley and Liggett (1981) studied the same problem 
in the case where Ν is constant and the A{ are fixed multiples of one random 
variable, and Durrett and Liggett (1983) considered the more general case 
where Ν is constant but the Ai have arbitrary joint distribution. Their works 
were motivated by a number of problems in infinite particle systems. Closely 
related results are given in Kahane (1987), Ben Nasr (1987), Holley and 
Waymire (1992), Collet and Koukiou (1992), Chauvin and Rouault (1996), 
and Liu and Rouault (1996), etc. 

If 1 < m = EN < oo and Ai = 1/ra (1 < i < N), then Yn becomes 
the well-known martingale card(zn)/mn of the Galton-Walton process, where 
card(zn) is the population size at n—th generation . Similar martingales arise 
in age-dependent branching processes or branching random walks. Many au­
thors have contributed to the subject, see for example Harris (1948), Kesten 
and Stigum (1966), Seneta (1968 and 1969), Athreya (1971), Doney (1972 
and 1973), Bingham and Doney (1974 and 1975) and Biggins (1977). 

The martingale (Yn) and the equation (1.1), in its various forms, were also 
used to study some fractal sets or flows in networks, implicitly or directly by 
Mauldin and Williams (1986), Falconer (1986 and 1987) and Liu (1993 and 
1996). 

If Ε is a set or a statement, we write 1# or 1{£*} for its indicator function. 
Let 

Ν 

i=l 
be the number of non-zero terms of A t , 1 < i < N. To simplify the discus­
sion, we suppose throughout the paper that 

P{N = 0 or 1) < 1, P(Vi G { 1 , . . . , Ν}, A{ = 0 or 1) < 1, (1.2) 

Ν 

EN < oo and Ε A{ l o g + Ai < oo, (1.3) 
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where log4" χ = max(0, logx) . For χ G [0, oo) , write 

Ν 

S{x) := £ A? and 7 ( x ) : = £ S ( z ) , (1.4) 
t=l 

where (and throughout) the sum is taken over all the Vs such that Λ» > 0. 
The function 7 is defined on [0,00) with values in [0,00] . Then 

Ν 

η(χ) < oo and ~f'(x) = E^A^log Ai < 00 
i=l 

exists for all χ G (0,1] (and 7'(1) denotes the left derivative); and 7 is strictly 
convex on (0,1) . 

The following results have been known. (We recall that Yi = J2iLi Ai by 
our notations.) 

Theorem 0· (Biggins 1977 and Liu 1997) (a) The following assertions are 
equivalent: (i) Ζ is non-degenerate [i.e. P(Z = 0) < 1]; (ii) Ε(Ζ\Τη) = Yn 

for all η > 1; (Hi) 

Ν 

Ε[Υλ l o g + Yi] < 00 and Ε ^ A{ log A{ < 0. (1.5) 
t=l 

(b) Assume only (1.2) and (1.3) [so 7(1) is not necessarily equal to I]. Then 
the equation (LI) has a non-trivial solution if and only if for some α G (0,1] , 
7 ( a ) = 1 and 7 ; ( a ) < 0; it has a nontrivial solution with unite mean if and 
only if 7(1) = 1 and (1.5) holds. Moreover, there is at most one solution 
with mean 1. 

Here, we only consider solutions of (1.1) in the class of probability laws on 
[0,00). We remark that Ζ = 1 if and only if Yi = 1 almost surely. Therefore 
we suppose throughout that Yi is not a.s.a constant. 

The main aim of this paper is to study the moments, the tail probabilities 
and the absolutely continuity of the distribution of Z, in the case where Ζ is 
non-degenerate . The following results will be shown. 
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Theorem 1 (Moments). Assume (1.5). Then For each fixed ρ > 1, 

E(ZP) < oo 

if and only if 
Ν 

E\Y?]<ooand # E A?] < 1. 

We remark that if η(ρ) < 1 for all ρ > 1, then || supx^N Ai\\p < 1 for 
all ρ > 1, and so || swpl<i<N Α,·||οο < 1. Therefore, by Theorem 1, Ζ has 
moments of all orders if and only if 

P(Wi G { 1 , . . . , Ν}, Α{ < 1) = 1 and E[Yf] < oo for all ρ > 1. (1.6) 

The problem will be called lattice if for some h > 0 and almost all ω G Ω, 
each log Ai is an integer multiple of h whenever 1 < i < Ν and Ai > 0; the 
largest such h will be called the span. Otherwise, it is called non-lattice. 

Theorem 2 (Tail probabilities). 

(a) (The case where P(3i G { 1 , i V } , Λ" > 1) > 0.) Suppose that for 
some χ > 1, 

ε[Σ Af} = 1 , ΕΙΣ Af l o e + M < 0 0 a n d £ [ ( Σ < oo. 
i=l t=l t=l 

If the problem is non-lattice, then there is a constant c G (0, o o ) such that 

lim xxP(Z > x) = c; 
x—too 

If the problem is lattice, then 

0 < liminf xxP(Z > x) < lim sup xxP(Z > x) < o o . 

(b)(The case where P(Vi G { 1 , . . . , Ν}, A{ < 1) = 1.) Suppose that 
Halloo < oo and that for some χ > 0, || Ei=i IU < 1· Let ρ be the least 
solution in (1, o o ) of the equation 

z=l 
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(Such a solution certainly exists under the preceding conditions.) Assume 
also that for some constants 0 < £ < 1 , 0 < α < ο ο , 0 < c < oo and all 
0 < χ < 1 sufficiently small, 

Ν 

Ρ(ΣΑί > 1 - * and Ai < δ for all 1 < % < Ν) > cx\ 
i=l 

Then for some constants 0 < ci < c 2 < oo and all χ > 0 sufficiently large, 

e x p { ~ c 2 x / ? / ( p - 1 ) } < P(Z >x)< expi-c^o-^}. 

In the non-lattice case, part (a) of the theorem is due to Guivarc'h (1990) 
if Ν = c > 2 is constant and A{ (1 < i < c) are i.i.d. Our proof develops an 
idea of Guivarc'h, linking the distributional equation (1.1) with the random 
difference equation (see sections 2 and 3). 

Let 

Ci = inf{z > 0 : Λ > 0 } , where inf 0 = oo, 

be the first (random) index % for which A{ > 0, and put 

Ofe+i = inf{z > ζ* : At- > 0 } , where inf 0 = oo, k > 1. 

Define 
Λ , ν ί Α{(ω) if (k(u) = i for some i G Ν*, 

Α ^ ω > = { 0 ifCfc(u>) = oo. 

Then Αζΐί(ω) > 0 if Ν (ω) > k > 1. It is easily seen that the functional 
equation (1 .Γ) is nothing but 

Φ(ή = Ε]ΐφ(Αζ,ή. 
t=l 

The advantage of the new equation is that Αζί > 0 for all 1 < i < N. 
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Theorem 3 (Absolute continuity). The distribution of Ζ is either ab-
solutely continuous or (purely) singularly continuous on R+ = (0, oo) . It is 
absolutely continuous if one of the following conditions holds: 

(i) Ν > 2 a.s. and, for some e > 0, 

Ν Ν 

E[A£ + A£] < oo, Ε Σ ΜΓ < oo and Ε £ A t M " c < oo, 
i=l t=l 

where M t = m a x ^ Aj. 
(ii) Ν > 1 a.s. and Αζλ has an absolutely continuous distribution on K+. 
Moreover, in case (i) , the density function of the distribution of Ζ is 

continuous (on R+) . 
We remark that the condition (i) holds if, for example, Ν > 2 almost 

surely and, given N, the random variables At-, 1 < i < N, are conditionally 
independent, and their conditional law is the law of Ai , which satisfies the 
property that ΕΑχ€ < oo for some c > 0. 

Informations on the rate of convergence of characteristic functions or 
Laplace transforms of Ζ will be given in proofs. 

2. The random difference equation 

In this section, ( Ω , ^ , Ρ) denotes an arbitrary probability space, (Α, β ) 
and (AnjBn)(n > 1) are i.i.d. random variable defined on (Ω,^" , P ) , with 
values in M 2 . 

Consider the random difference equation 

X = AX + B, (2.1) 

where X is a real random variable independent of (A, P ) , and = denotes 
equality in law; the law of X is unknown. In terms of characteristic functions, 
the equation reads 

φ(ί) = Ε[βίΑίφ(Βί)1 t 6 P. (2.1') 

A probability law, μ, is said to be a solution of (2.1) if there is a random 
variable X having μ as its law and satisfying (2.1); when we say that a random 
variable X is the unique solution of (2.1), we mean that the corresponding 
law is the unique solution. 
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Lemma 2.1 [Grintsevichyus (1974), Th.l and Prop J]. If 

P(A φ 0) = 1, - o o < Elog\A\ < 0 and Elog+\B\ < oo, (2 .2 ) 

then (2.1) has a unique solution, and this solution is given by 

X = BX + AXB2 + AXA2B3 + · · - + A i . . . A n - ι Β η + . . . (2 .3 ) 

the series being convergent a.s. 

Lemma 2.2 [Grintsevichyus (1974), Th.3]. Assume (2.2) and let μ be 
the unique solution of (2.1). Then there are only three possible cases: (α) μ 
is absolutely continuous; (b) μ is singularly continuous; (c) μ is concentrated 
at some point c. The case (c) holds if and only if P(c = Ac + B) = 1. 

Lemma 2.3.Assume (2.2) and let X be the unique solution of (2.1). Let 
ρ be any fixed number in ( 0 , oo ) . / / 

E{\A\P) < 1 and E(\B\P) < oo, (2 .4 ) 

then E(\X\P) < oo; the converse holds if additionally A > 0 and Β > 0 a.s. 
with P{B > 0) > 0 . 

Proof. We denote by | | . | | p the norm in L p , ρ > 0. By Lemma 2 . 1 , we can 
suppose that X is given by ( 2 . 3 ) . If | | A | | P < 1 and ||2?|| p < oo, then by (2 .3 ) 

and the triangular inequality in L p , we obtain 

ii*n„ < nan, + \\A\\,\\B\\P + . . . + IIAIIJ-^IBHP +.. . = J ^ i j j ; < °°-

Conversely if A > 0 and Β > 0 a.s. and if X is a solution of (2.1) with 
E(\X\*) < oo, then X > 0 by (2.3), and E{B>) < E[{AX + By] < oo by 
(2.1); since P(B > 0) > 0, we have also P(X > 0) > 0, 0 < E{XP) < oo and 

E[(AXy\ < E[(AX + By) = E(Xp), 

which implies E[ (A) P ] < 1 by the independence of A and X. 

Lemma 2.4 [Kesten(1973)- [Grintsevichyus (1975)]. Assume that 
P(A > 0) = P(B > 0) = 1, P{B > 0) > 0, and that for some λ € (0, oo) , 

E{AX) = l,E{Axlog+A) < oo and E{BX) < oo. 
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Let X be the unique solution of (2.1) and suppose that X is not a.s. a 
constant. [That is, there does not exist a constant c such that P(c = Ac + 
B) = 1.] Then 

(a) if log A is not of lattice type, then 

Jim xxP(X >x) = c, (2.5) 

where c G (0, oo) is a constant. 
(b)if log A is of lattice type with span h > 0, then for all real x, 

Jim e^nh)xP{X > e

{ x + n h ) x ) = c ( s ) , (2.6) 

where c(x) € (0, o o ) , x G is a strictly positive and h-periodic function on 
R. In particular, 

0 < l i m i n f x A P ( X > x) < lim s u p x A P ( X > x) < oo. (2.7) 

3. The random difference equation satisfied by xPz(dx); moments 
and tails. 

For a random variable X , we write Ρχ or L(X) for its law. 
For u G U, we use the notations A u , Xu and Zu introduced in section 1. 

For (ω, i) G Ω x I, put 

Z(w, i ) = Ζ # ( ω ) = Ζ ( ω ) , 

Λι(ω,ί) = ΑΆι{ω), 

Ζι(ω,ί) = Zi|i(u>). 

They are measurable functions on Ω χ I associated with the product σ-field 
of Τ and Β being the Borel σ-field on I. Let Q be the Peyrière's measure 

on Ω χ I, defined by 

Q(A) = E J 1Α(ω, i K ( i i ) , A G Τ χ Β. 

As Ε Ζ = 1, Q is a probability measure. We write Eç[f] for the integration 
of / with respect to Q. The following result give the distributions of the 
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random variables Z , ( Â i , J 9 i ) , and shows that the probability law xPz(dx) 
satisfies a random difference equation. 

Lemma 3.1. For all (ω,ΐ) € Ω χ I, 

Ζ(ω,ί) = Α^ω^Ζ^ω,ϊ) + Β^ω,ι), 

where 

Ν(ω) 

i=l 

Ζ\ is independent ο / (Α ι , Β\), and has the same distribution as Ζ. Moreover, 
for all non-negative Borel functions f,g and h (defined on Ε orR2), 

EqUiÂi)] = E\£f{Ai)Ai), 

Eq\f(Bi)] = E[ Σ Σ A&)1 
l<k<N l<i<N,i^k 

EqlhiÂuêx)] = E[ Σ Akh(Ak, Σ 
l<k<N l<i<N,i^k 

Eqlgfa)] = E[g(Z)Z] = EQ[g(Z)}. 

In particular, 
L{Z) = xPz{dx). 

Proof. We have 

AiiiZiu = AiZiiî'i\l = i 
OO 

= YJAiZil{i\l = i} 
1=1 

= £;Λ, ·Ζ, ·1{ϊ |1 = : } , 
t=l 
Ν 

ζ = ΣΑ<Ζ< 

= ΣΛ·Ζ,·[1{ί|1=.} + 1{ΐ |1#«'}] 
1=1 
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Ν 

= A I N Z I N + 53 Λ,-2,-1{ΐ |1 # t } . 
1=1 

Therefore 

Z(a;,i) = Â 1 (a;,i)Z 1 (a;,i) + F 1(a;,i). 

We claim that Z\ is independent of B\), and has the same distribu­
tion as Z ; by the way, we shall give the distribution of (Αχ, Βχ). In fact, for 
all non-negative Borel functions g and we have 

EQ[h(AuBl)g(Zl)] = E[ Σ h(Ak, Σ AZi)g(Zk)AkZk] 

l<k<N l<i<N,i^k 

l<k<N l<i<N&k 

Taking g = 1 or h = 1 gives the expressions of Eq[h(Ai, B\)] and Eq\g(Z\)\. 
Consequently 

EQ[h(Âu Él)g(Zl)} = £ ? Q [ M ^ I , B I ) ] £ ; Q [ / ( Z I ) ] . 

This gives the independence of (Ai , J9i] and Z i . The expressions of j E Q [ / ( A I ) ] 
and E Q [ / ( B I ) ] come from Eq[h(Ai, Βχ)) by taking h(x,y) = / ( x ) or f(y). 
So the proof is finished. 

Lemma 3.2. For all ρ > 1, 

ΕοΙ&Γ1] < E[Z>-1] Ε[(Σ, AkY]-
k=l 

Proof. By lemma 1, 

EqKBi)*-1] = ΕΙΣ Μ Σ M r 1 ] . 
\<k<N l<i<N,i^k 

Denote by / the expectation above. 
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If ρ - 1 < 1, then 

/ < £ { Σ Μ Σ (MY-1]} 
l<k<N l<t<JV,»#fc 

(by the inequality ( J i t ) 1 " 1 < Σ Χ Γ Χ ) 

= E[Z^}E[ Σ α*( Σ ^ Γ 1 ) ] 

(by the branching property) 

< ΕΙΖ'-^ΕΙΣΑ,,Σ,ΑΓ1} 
k=l k=l 
oo oo 

< ^ " Ί Ι Ι Σ ^ Ι Ι ρ Ι Ι Σ ^ Γ Ί Ι ρ Α ρ - ι ) 
A:=l k=l 

(by Holder's inequality) 
oo oo 

< ^ " Ί Ι Ι Σ ^ Ι Ι ρ Σ Ι Ι ^ Γ Ί Ι ρ Α ρ - ι ) 

(by the triangular inequality) 
oo oo 

= Ε[Ζ>-1]\\ΣΜ\ρ(ΣΕΑΪ)(ρ-1)/ρ 

k=l fc=l 
oo 

= ^ " Ί Ι Ι Σ ^ Ι Ι ρ ; 
k=i 

Since II ΣΓ=ι A f c | | p > || ΣΓ=ι Μι = U we have || £ £ ι M\v < Ε[(Σ?=χ A f c ) > ] , 
so the desired conclusion follows in the case where ρ — 1 < 1 . 

If ρ — 1 > 1, using the inequality 

( Σ α λ Γ 1 < Σ a ^ ' \ α,· > 0, Σ = 1, *i > 0 

(the convexity of the function ζ ι-> z p " x ) for α,· = Ai/ Aj and zt- = 
Z t , i φ fc, we obtain 

( Σ ^ - Γ 1 < ( Σ ^ - ^ Σ ^ Γ 1 ) 

(if Zlĵ A: = 0? the inequality is evident). Consequently 

/ < ^ ( ^ - ^ ^ Σ α ^ ς Λ Γ ^ Σ ^ ) ] 
Ar=l i£k i^k 
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< Ε{Ζ^)Ε[{ΣΑ{γ}. 
i=l 

Proof of Theorem 1· By Lemma 3.1, 

EQ[Z[-1] = E[Z»] and EQ[A\~l] = E[Jtap]. 
1=1 

So by lemmas 2.3 and 3.2, we see that for all ρ > 1, if 

E[Z*~l] < oo, Ε[(Σ, Ak)p] < oo and E[£ Ap

k] < 1, 
k=l k=l 

then E[ZP] < oo. Noting that Ε Ζ < oo, an easy induction argument on η 
shows that, for all η = 2 , 3 , i f 

ρ € (η - 1,η],£[(Σ Akf] < oo and E["£ Ap

k] < 1, 
fc=l Ar=l 

then £ [ Z P ] < oo. This gives the sufficiency of the conditions. The necessity 
is given in Liu (1997). 

Proof of Theorem 2. By lemmas 3.1 and 3.2, we have 

(i) EQ[Ar1} = E[f:Af} = l, 
1=1 

(«) EQ[Arl l o g + At] = Ε[Σ Af l o g + Ai] < oo, 
i'=l 

and 

μ EQiêr^^Eiz^EKt^n 

If the problem is non-lattice, then by Lemma 2.4, the limit 

Λ CO 

lim r ( x _ 1 ) / xPz(dx) = lim r ^ Q ( Z > t) 
t-H-oo Jt

 v ' ί-ί·+οο ^ v ' 
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exists and is strictly positive and finite. This implies that the limit 

lim rxP(Z > t) 
t-H-oo 

exists and is strictly positive. In the lattice case, the corresponding conclu­
sions are 

0 < liminf t^x'^Q(Z > t) < ]imswprlx'l)Q{Z > t) < oo 

and 

0 < lim inf txP(Z > t) < l i m s u p i x P ( Z > t) < oo. 

This gives part (a) of the theorem. Part (b) has been proved in Liu (1996). 

4. The absolute continuity 

The discussion will be heavily based on the functional equation (1.1') . We 
recall that Ν = J^iLi 1{A{ > 0} is the number of non-zero terms of {A t- : 1 < 
i < N}. Let 

Ν 

f(x) : = ] T P ( J V = z )x \ x G [ 0 , o o ) 
i=l 

be its probability generating function. 

Lemma 4.1. Assume Ν > 1 a.s. Let Ζ be any solution of (LI), and let 
φ(ί) = E(ettZ)(t 6 R) be its characteristic function. Then 

lim sup \φ(ί)\ = 0 or I. 
\t\-yoo 

Proof. By (1.1'), 

Μ)\<Εΐ[\φ(Μ)\, t e n 
t=l 

Letting |i| —>- oo and using Fatou's lemma gives 

/ < / ( 0 , 

where / := lim s u p ^ . ^ \φ(ί). Therefore / = 0 or 1, noting that f(x) < χ if 
0 < χ < 1. 
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Lemma 4.2. Write 
M = max Ai 

l<i<N 

and suppose that 
E | l o g M | < oo. 

Let φ be a solution of (1.1') in the class of characteristic functions, which is 
not of the form eltc for some constant c. Then 

l imsup|0(OI = 0. 
\t\-+oo 

Proof. By Lemma 4.1, it suffices to prove that limsup^i^^ \4>(t)\ < 1. 
(a) We first prove that for all t φ 0, |0(OI < 1. Otherwise, by Lemma 4 of 

Chap.IV.1 of Feller, there is some h > 0 such that |0 ( /* ) | = 1 and \φ(ί)\ < 1 
if 0 < t < h. By the equation (1 .Γ) , 

1 = \φ(ν\<Ε]1\φ(Α^\. 
i'=l 

Therefore, a.s. 
\φ{Α^)\ = 1 for al i i = Ι,.,.,ΛΓ. 

Since P ( 0 < M < 1 ) > 0 (this is necessary for the equation (1.1) to have a 
non-trivial solution), it follows that for some 0 < a < 1, \φ(αh)\ = 1, which 
is a contradiction with the definition of h. 

(b) We then prove that l imsup^j^^ |^(<) | < 1. By the functional equation, 
we have 

\φ(ί)\ < Ε\φ(Μί)\. 

We now use ideas of Grintsevichyus (1974) on random walks. Let M{(i > 1) 
be independent copies of M , then 

< £ |<ΚΜι. . .Μ η ί ) | , η > 1. 

Fix t φ 0, and write 

0 o = | 0 ( t ) | , 0 n = |0(M 1...AfnOI, n>l. 

Then {φη : η > 0} is a sub-martingale associated with the natural filtration 
of σ-fields generated by {M t- : 0 < i < n } , n > 0, where by convention 
M 0 = 1. Put 

So = 1 and Sn = log Mx + ... + log Mn for η > 1. 
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If J is an interval, we write 

r(J) = = mf{n > 0 : Sn G / } , where inf 0 = + o o , 

for the first time that the random walk ( £ „ ) hits / , and put 

rk+i(I) = inf{n > rk : 5„ € / } , where inf 0 = + o o , k > 1, 
oo 

U(I) = E(£ l{Sn € /}). 
n = 0 

Then 
OO 

P [ r f c ( / ) < oo] = P E € / } > k], k> 1, 
n = 0 

is the probability that there are at least k hits in / , U(I) is the expected 
number of hits in / , and 

oo 

k=l 

By the strong Markov's property, it is easily verified that for all 
—oo < a < b < oo, 

P[rk+l([a,b]) < oo] < P[r([a,b}) < oo]P[rk([a - 6,6 - a]) < oo] , k > 1. 

Summing for k=l,2, . . . , we obtain 

U([a,b]) < P[r([a,b]) < oo][l + U([a - 6 , 6 - a])]. 

Therefore, for all h > 0, 

£/([-/>, 0] - log < Ρ [ τ ( [ - Λ , 0] - log |t|) < oo][l + ί / ( [ -Λ , Λ])], k > 1. 

On the other hand, by the renewal theorem (cf. Feller Chap. 11.9), there 
is h > 0 such that 

& t r ( [ - M ) - log ΙΊ) = π 4 μ > ° · 
(We remark that £"[log M ] < 0 because 
£7[logM] = o T ^ ^ o g M " ] < α " 1 [log 7(a) ] = 0, where a is defined in Theo­
rem 0.) So there are numbers δ > 0 and ίο > 0 such that 

C/([-/i, 0) - log > δ for all |t| > t0. 
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It follows that for all \t\ > t0, 

Therefore, writing τ = r([—/i,0] — log and 

7 = max \φ(χ)\ 

(7 < 1 by part (a) above), and using the stopped martingale theorem, we 
obtain that, for all |ί| > ίο, 

\<f>(t)\ < l i m s u p £ | 0 ( e 5 " A r * ) | (η Λ τ = min(n,r)) 
η—foo 

< £ ; [μ (β 5 ^) |1{τ < oo}] + P ( r = 00) 
< 7 P ( r < 00) + (1 - P ( r < 00)) 
< ι - ( ΐ - 7 μ 1 . 

So l i m s u p ^ . ^ \<j>(t)\ < 1, as desired. 

Lemma 4.3. If Ν >2 almost surely and 

E[A£ + A£] < 00 

for some a > 0, then 

φ{ί) = 0 ( | ΐ | " α ) , |t| 0 0 , 

w/iere = E[eîtZ], ί G R . 

Proof Write 
^ ( t ) = sup \φ(ί)1 t > 0. 

I*l>* 

Then ψ(ί) is non-increasing, ψ(0) = 1, and limt-+oo = 0 by Lemma 4.2. 
(We remark that the conditions of lemma imply that E[M~a] < E[A^} < oo, 
so that Z?[ | logM|] < oo.) By the functional equation (1 .Γ) , it is easily seen 
that 

< E^(Ait) < Ε[(φ(Αί))2}, (*) 
1=1 
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where A = min(A^, Aç 2 ) , and the last inequality holds since Ν > 2 almost 
surely. As P(A < x) < E[A-a]xa < E[A^a + A^}xa by Markov's inequality, 
it follows that for Κ = E[A£* + Λ£*] and all 0 < u < 1 and t > 0, 

RP(T) < F ( A < u ] + (^(«i))2 

< Kua + (ip(ut))2 

< {{Ku)al2 + xl>{ut))\ 

Therefore, by Lemma 1.4.1.a of Barrai (1997), for all b < a/2, 

Φ(ί) = 0 ( r 6 ) , t -»· oo. 

Fix 6 < a/2. So for some constant C > 0 and all t > 0, φ(ί) < Ct~a/2. So 
φ(Αί) < C(At)-b and, by the inequality (*) , for all t > 0, 

φ{ί) < C2EA-2b(t-2b). 

The same argument applies for 6 t = 26 and C\ — C2EA~2b, yielding that for 
all t > 0, 

φ(ί) <C\EA-2bl{t-2bl). 

Taking b = a/4 gives the result desired. 

Lemma 4Λ. Assume Ν > 2 almost surely and put Mi = max j^ Aj. Let φ 
be a non-trivial solution of (1.1 '). If for some t > 0, φ{ί) = 0 ( | ί | - £ ) , |ί| > 1, 

Ν Ν 
Ε Σ ΜΓ <°° and Ε Σ AM~e < oo, 

t'=l ι=1 

then for some S > 0, 

0'( ί) = ο ( μ | - ( 1 + ί > ) , μι -> oo. 

Proof. From the functional equation (1.1') , we obtain 

# ) = £ΕΛ·Μ·ί)ΠΜ·ί)]· 

Since \φ(ί)\ < 1, it follows that \ \[^φ{Αμ)\ < φ{Μ^) and 

\φ'(ί)\ < £ [ £ > | 4 > ' ( A i ) l \Φ(ΜΜ- (**) 
1=1 
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Because \φ'{ί)\ < 1 and 

W)\ < K\t\-e 

for some constant Κ > 0 and all t G Μ*, the preceding inequality implies that 

\φ'(ί)\ < E\£AiK\M(tn < K,\t\-\ 
t=l 

where Kx = KE\£%LX AiM~e] < oo. 
If £ < 1, using the inequalities < Ki\Ait\~e, φ{Μ{ί) < K\Mit\-e 

and (**) , we see that 

\φ'(ί)\ < E^AiKMitl-'KlMitr] = K2\t\~2e, t € R* 
1=1 

where 7i 2 = A'A'^Eili A j ~ c M f c ] < oo. (We remark that the moment 
conditions in the lemma implies that i?[]£ili Af M~c] < oo for all χ G [0,1].) 

If 2e < 1, we continue the procedure, and so on. If η = maxjfc > 0 : ke < 
1 } , then ne < 1 but (n + l)e > 1, and the argument as above shows that for 
some constant 0 < Kn+i < oo and all t G Μ*, 

W(t)\ < Kn+l\t\-w<. 

Proof of Theorem 3. By Lemma 2.2, L(Z) is either absolutely contin­
uous or singularly continuous on ( 0 , o o ) . Since L(Z) = xPz(dx), the same is 
true for the distribution of Z. 

Let φ be the characteristic function of Z . 
If (i) holds, then by lemmas 4.3 and 4.4, 

φ'(ί) = 0 ( | ί | - ( 1 + ί > ) , \t\ -+ oo 

for some δ > 0. Since —ιφ\ί) is the characteristic function of the probability 
measure xPz{dx), by the inverse formula of Fourier transform, the measure 
xPz(dx) has a continuous density on E, so Pz{dx) has a continuous density 
on (0, oo) . 

Assume that (ii) holds. Without loss of generality, we can suppose that 
Ν > 1 and Αχ > 0 if 1 < i < Ν a.s. (Otherwise, we consider (iV, A C l , . . . , Αζ^) 
instead of (Ν, Α χ , A N ) ] see the discussion before the statement of Theorem 
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3.) Therefore Αι = Αζι is absolutely continuous on M and P(Z\ = 0) = 0. 
So by the lemma at page 166 of Grintsevichyus (1974), L(Z) = L(A\Z\ + B) 
is absolutely continuous on M, where Β = Σ2<ί<Ν Ai .(The sum is taken to 
be zero if Ν < 2.) 

Acknowledgment. The author is very grateful to Yves Guivarc'h for 
many valuable discussions. 
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