@article{PSMIR_1993___2_A2_0, author = {Dehay, Dominique}, title = {Consistency of {Estimators} of {Cyclic} {Functional} {Parameters} for {Some} {Nonstationary} {Processes}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, eid = {2}, pages = {1--19}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {2}, year = {1993}, zbl = {0832.62081}, language = {en}, url = {http://www.numdam.org/item/PSMIR_1993___2_A2_0/} }
TY - JOUR AU - Dehay, Dominique TI - Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1993 SP - 1 EP - 19 IS - 2 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://www.numdam.org/item/PSMIR_1993___2_A2_0/ LA - en ID - PSMIR_1993___2_A2_0 ER -
%0 Journal Article %A Dehay, Dominique %T Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes %J Publications de l'Institut de recherche mathématiques de Rennes %D 1993 %P 1-19 %N 2 %I Département de Mathématiques et Informatique, Université de Rennes %U http://www.numdam.org/item/PSMIR_1993___2_A2_0/ %G en %F PSMIR_1993___2_A2_0
Dehay, Dominique. Consistency of Estimators of Cyclic Functional Parameters for Some Nonstationary Processes. Publications de l'Institut de recherche mathématiques de Rennes, no. 2 (1993), article no. 2, 19 p. http://www.numdam.org/item/PSMIR_1993___2_A2_0/
[1] Invariance principle under a two part mixing assumption. Stochastic Process. Appl. 22, 271-289 | MR | Zbl
and (1986),[2] Cycloergodic properties of discrete-parameter nonstationary stochastic processes, IEEE Transactions on Information Theory IT-29 (1), 105-114. | MR | Zbl
and (1983),[3] Almost periodic functions, Wiley (New York). | MR | Zbl
(1961),[4] On the product of two harmonizable processes, Stochastic Process. Appl. 39, 347-358 | MR | Zbl
(1991),[5] Estimation de paramètres fonctionnels spectraux de certains processus non-nécessairement stationnaires, Comptes Rendus de l'Académie des Sciences de Paris, 314 (4), 313-316. | MR | Zbl
(1992),[6] Spectral analysis of the covariance of the almost periodically correlated processes, to appear in Stochastic Process. Appl. | MR | Zbl
(1994),[7] Locally harmonizable covariances: spectral analysis, to appear in Kybernetika. | EuDML | MR | Zbl
and (1994),[8] Trace measures of a positive definite bimeasure, J. Multivariate Anal. 40, 115-131. | MR | Zbl
and (1992),[9] A counter example of the inner product of measures, Indiana Univ. Math. J. 21, 843-845 | MR | Zbl
and (1972),[10] Linear operators, parts I and II: general theory, Interscience Pub. (New York). | MR | Zbl
and (1957),[11] Introduction to random processes with applications to signals and systems, Macmillan (New York), 2nd ed. 1989 McGraw-Hill. | Zbl
(1985),[12] Correlation estimation and time series modeling for nonstationary processes, Signal Processing 15, 31-41 | MR
(1988),[13] Cyclostationarity in communications and signal processing, IEEE Press (New York). | Zbl
(1994),[14] Periodically and almost periodically correlated random processes with continuous time parameter, Th. Probability Appl. 8, 173-177. | MR | Zbl
(1963),[15] Convergence rates of the strong law for stationary mixing sequences, Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 49-62. | MR | Zbl
(1979),[16] Products and convolutions of vector valued set functions, Studia Math. 41, 119-129. | MR | Zbl
(1972),[17] Nonparametric time series analysis for periodically correlated processes, IEEE Transactions on Information Theory IT-35 (2), 350-359. | MR | Zbl
(1989),[18] Correlation theory for the almost periodically correlated processes with continuous time parameter, J. Multivariate Anal. 37 (1), 24-45 | MR | Zbl
(1991),[19] Estimation of the Fourier coefficient functions and their spectral densities for ɸ-mixing almost periodically correlated processes, Statistics and Probability Letters 14 (4), 299-306. | MR | Zbl
and (1992),[20] Strongly consistent and asymptotically normal estimation of the covariance for almost periodically correlated processes, Statistics and Decisions 10, 201-225 | MR | Zbl
and (1992),[21] An asymptotic normality of the spectral density estimators for almost periodically correlated stochatic processes, preprint. | MR | Zbl
(1992),[22] On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient, Stochastic Process. Appl. 42, 181-193 | MR | Zbl
(1992),[23] On Fourier Stieltjes integrals, Trans. Amer. Math. Soc. 69, 312-323. | MR | Zbl
(1950),[24] Harmonizable, Cramér, and Karhunen classes of processes, Handbook of Statistics 5, 279-310, Elsevier Science Publ. | MR
(1985),[25] Spectral analysis of abstract function, Th. Probability Appl. 4, 271-287. | MR | Zbl
(1959),