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À non solvable operator satisfying condition (y) 

by 

Nicolas LERNER 

Abstract : The main goal of the present paper is to provide an example of a classical principal 

type pseudo-differential operator P = p(x,D x) , with an homogeneous principal symbol p of 

order 1 , satisfying condition (y), so that the equation P u = f has no L 2 solution for 

most f in Lr . 
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1. Introduction 
We are interested in local solvability properties for pseudo-differential operators: the 

operator P is said to be locally solvable if for any smooth f satisfying a finite number of 

compatibility conditions, there is a distribution u local solution of P u - f ( see definition 

26.4.1 in [5] for a precise statement). Most of the research in this domain was oriented toward a 

characterization-of local solvability of a principal type pseudo-differential operator in terms of a 

geometric property of its principal symbol, the so-called condition (\|/). We briefly recall here some 

of the basic facts related to this problem. 

Let P be a pseudo-differential operator of principal type (i .e. the hamiltonian field Hp of 

the principal symbol p is independent of the Liouville vector field). If the principal symbol is real-

valued, a propagation-of-singularities result is true and implies global existence (see theorem 

26.1.9 in [5]). When the principal symbol is complex-valued,the situation is much more 

complicated ; in 1957, Hans Lewy found a principal type differential operator without solution. 

His example, 

a! + i z l i n c * x K r 

is the Cauchy-Riemann operator on the boundary of a strictly pseudo-convex domain. The simple 

models Mfc = Dt + i t k D x , k € N , studied by Mizohata [8] for the analytic-hypoellipticity, were 

the starting point in Nirenberg-Treves [10] : the Hans Lewy operator is equivalent to Mi and the 

M2k+i are non-solvable whereas the degenerate Cauchy-Riemann operators M2k are solvable. 

Local solvability of differential operators is now known to be characterized by condition (P) : the 

symbol p is said to satisfy condition (P) if the imaginary part Imp does not change sign along the 

bicharacteristic curves of Hep (see Nirenberg-Treves [11] with an analyticity assumption, Beals-

Fefferman [1] in the general case for local solutions, Hormander's theorem 26.11.3 in [5] for a 

semi-global existence result). 

In the pseudo-differential case, a (quite natural) extension of condition (P) is condition (\|/): 

the imaginary part Imp does not change sign from - to + along the oriented bicharacteristic curves 

of IRep (see definition 26.4.6 in [5]). This condition was proven invariant by multiplication by an 

elliptic factor in [11] (see also lemma 26.4.10 in [5] ). The importance of this geometrical 

condition was stressed by Nirenberg and Treves [11] who conjectured condition (\|/) is equivalent 

to local solvability and proved it in a number of cases. The necessity of condition (y) for local 

solvability was established for general pseudo-differential equations after the works of Moyer [9] 

in two dimensions and Hormander in the general case (Corollary 26.4.8 in [5]) . Moreover, the 

sufficiency in two dimensions is proved in [6], yielding condition (\|/) as an iff condition for 

solvability in that case . Hormander's work on subellipticity (theorem 27.1.11 of [5]) showed that 

if the symbol p satisfies condition (y) and a finite type assumption ((27.1.8) in [5]) then the 

quantization of p is hypoelliptic and thus the operator with symbol p is solvable. 
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It was shown by Nirenberg and Treves [11] that a solvability problem for a principal type 

operator is equivalent by localisation and canonical transformation to proving an a priori estimate 

for a first order pseudo-differential operator 

} | + i Q ( U , D X ) , 

where Q(t,x,D x) is a first-order pseudo-differential operator with real principal symbol q . In that 

framework, condition (\|/) for the adjoint operator is expressed as 

(1.1) q(t, x £ ) > 0 and s > t imply q(s,x,£) > 0. 

In this paper, we give first the construction a symbol q(t, x,£) in the class, i.e. a smooth 

function of five real variables such that, for any five-uple of integers k , (Xi, 0C2, (3i, ($2> 

v „ » A a. -I+IP1I+IP2I 
(1.2) S U p ' ( D t D x i D x 2 D ^ i D ^ 2 ^ ^ t , X l , X 2 ^ h ^ I [ l * « + « § 2 l ] < + ~ 

t , x i x 2 ^ i ^ 2 e l R 5 

? 1 3 
such that q satisfies (LI) and such that no L estimate can be proved for j ^ + i q(t,x,D x) : 

we have 

(1.3) inf l t l * i * w W I L ^ - 0 
u e C o ( Q ) J u H L 2 ( 3 R 3 )

 = 1 

for any Q. neighborhood of ( ^ 3 .We thus prove that the equation ^ + q(t,x,D x)v = f has no 

L 2 solution for a general right -hand side f in L 2 although the operator 3 t + q(t,x,D x) satisfies 

condition (y). 

Next, we provide an homogeneous symbol q(t, x £ ) of order 1, i.e. a smooth function of 

five real variables t,x.i fX2,^i,^2 > homogeneous of order 1 with respect to £ 1 , %i. which 

satisfies (LI ) on { £ 2 ^ 0 } and such that (L3) is satisfied for i + i Op( q(t,x£) y ( T £ ) ) , 

where Op(a) stands for the operator with symbol a, y (T,£) is an homogeneous function of degree 

0 supported in the cone { %i > 0 } * This gives an example of a classical homogeneous pseudo-

differential operator of order one without local \r solution for a general right -hand side in L . 

Lets remark here that we only disprove the L 2 solvability, which is satisfactory for a first order 

principal type operator. At any rate, this counterexample shows that no L 2 estimate can be proved 

for a classical homogeneous pseudo-differential operator j ^ + i q(t,x,D x) under the sole 

assumption of condition (LI) . 
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The reader eager for precise statements and proofs may proceed directly to the main body 

of the text, starting in section 2. However, we wish to devote some space to an informal 

introduction to the main ideas involved in the construction, as well as outlining the steps of the 

proof. Let's choose first our notations: we want to discuss the solvability of an evolution operator 

^ + Q( t ) , where each Q(t) is a selfadjoint operator ( unbounded) on a Hilbert space IH . This is 

equivalent to discussing a priori estimates for ^ - Q(t) = i [ D t + i Q(t) ] . It is quite clear that 

the above problem is far too general, and so we wish to start our discussion with the simplest non 

trivial example : instead of dealing with infinite dimensional Hilbert space, let's take H = JDR2, so 

that Q(t) is a 2 x 2 symmetric matrix, defining a (bounded!) operator on 1R 2 , allowed to 

depend on large parameters. Since it could be still complicated, let fs assume 

(1-4) Q ( t ) « H ( - t ) Q i + H ( t ) Q 2 . , 

where H is the Heaviside function(characteristic function of E?4"), Qi and Q2 (2 x 2) symmetric 
dv 

matrices. There is of course no difficulty solving the equation + Q(t) v = f ; however, if 

we want to get uniform estimates with respect to the size of the coefficients of Q(t), we have to 

choose carefully our solutions, even in finite dimension. When Qi = Q2 , the good fundamental 

solution is given by H(t) E | exp -t Qi - H( - t ) E j exp -t Qi , where E | and Ej are the 

spectral projections corresponding to the half axes. If we go back to (1.4) with Qi * Q2, there is a 

trivial case in which the operator ^ + Q(t) is uniformly solvable : the monotone increasing 

situation Qi < Q2 yielding the estimate 

II D E u + i Q(t)u II 9 > || D t u || 9 , where L 2 stands for L2QR, H) . 
1 / 1 / 

We eventually come to our first point: 

d d is it true that solvability for + Q(t) implies the same property for ^ + <x(t) Q(t) , 

where a is a non-negative scalar function ? This question is naturally linked with condition (y), 

since whenever q(t,x,^) satisfies (1.1) so does a(t,x,£) q(t,x,^) for a non-negative symbol a. 

We are thus quite naturally led to discuss the uniform solvability of ^ + Q(t) , with 

(1.5) Q(t) = H(-t) Qi + H( t - 6 ) Q2 , Qi < Q2 , (2 x 2) symmetric matrices , 0 > 0. 

The most remarkable fact for the pair of matrices Qi £ Q2 is the " DRIFT " : the best way to 

explain it is to look at the following picture ( E t will stand also for its range) : 

1 5 * 
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( f c u > , w ) < 0 / 

rpt «,<»)>o ^ Z Z ^ ^ ^ ^ ^^^^^^^ 

- figure 1 -

The condition Qi < Q2 implies that the cones {co, (Q2co, G)) < Q } and {co, (Qi co, co) > 0 } are 

disjoint but does not prevent E | and to get very close : let's define the drift for the pair 

Qi ,Q2 as the absolute value of the cotangent of the angle between E | and E^ , so that 

the drift is zero when E ^ c E j and E | c E^ , 

the drift is infinite when E"[ n E^ is not reduced to zero , 

the drift is unbounded when the distance between the spheres of E^ and E^ is zero. 

It is easy to see that a bounded drift is equivalent to the invertibility of the non-negative operator 

E -̂f- Ej and this provides the "good" definition for the drift in infinite dimension i f we consider 

for instance the following pair of 2 x 2 symmetric matrices : 

(1.6) v = < e ^ e v = Q2, v 

L 0 -v J L 0 -v J 

where v is a large positive parameter, e 1 < X v the rotation of angle a v , with c o s 2 a v = 2/v , the 

drift goes to infinity with v , since 

(1.7) the square of the distance between the spheres of E* and E"2 is equivalent to 2 /v. 

We now claim the non-uniform solvability of the operator ^ + Q(t) ,with Q(t) given by (L5), Qi 

and Q2 by (1.6). We set up,with coi and o>2 unit vectors respectively in E | and E^ , 
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e coi on t < 0 

( 1 8 ) U ( t ) = < 0 3 ! + ^ ( 0 ) 2 - 0 ) 0 on 0 < t < 6 

( t - e ) C h 
v e 0)2 on t > 0 

Let's compute now 

0.9) J J S t e ^ d t = e - ' k W , 

where! I stands for the norm on 1H. On the other hand, since coi, 0)2 are unit vectors, we get 

8 

(1.10) II U ||^2 > J 10)! + ^ ( 0 ) 2 - C 0 ! ) | 2 d t > j - e i 0 ) 2 - G ) i ! 2 > | 

2 1 

if I02 - coil , an easily satisfied requirement subsequent t o (L7) . Consequently, using 

(1.9), (1.10), we get 

(1.11) I U I I ^ 2 II ^ - Q ( t ) u | | ^ 2 ^ 0- 2 IC02«co!i2 4 . 

Since coi and 0)2 can be chosen arbitrarily close and independently of the size of the "hole" 0, we 

get easily a non-solvable operator on I (IN) by taking direct sums. Note that (1.11) can be 

satisfied by a compactly supported u since the eigenvalues corresponding to coi and C02 are 

going to infinity with v, in such a way that there is no difficulty to multiply u by a cut-off function. 

In the next sections, we '11 say more about the drift of an ordered pair (Qi , C h ) of selfadjoint 

operators; it will turn out that the solvability of ^ + Q(t) will depend very closely upon the 

drift of the family (Q(t)), and that the solvability of all the operators ^ + oc(t)Q(t) , when a 

is a non-negative scalar function, will require more or less that the drift for the family Q(t) is 

bounded. 

What we've done so far is to get an "abstract" non-solvable operator obtained by change of 

time-scale from a monotone increasing situation ; the basic device for the construction was the 

unbounded drift of Qi < Q2 . Since we are interested in pseudo-differential operators, the next 

question is obviously : is an unbounded drift possible for Qi < Q2 , both of them pseudo-

differential ? We '11 see the answer is yes, leading to our counterexample. It is quite interesting to 
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remark that operatprs satisfying condition (P) do not drift ( i n particular differential operators 

satisfying condition (\j/), equivalent to (P) in the differential case ), as shown by the Beals-

Fefferman reduction : after a non-homogeneous microlocalisation and canonical transformation , 

their procedure leads to an evolution operator 

jt + Q(t), with Q(t) - Q(t,x,D x) and Q(t,x£) = ^ a(t,x,£), 

where a is a non-negative symbol of order 0 (in a non-homogeneous class). Then, a Nirenberg-

Treves commutator argument gives way to an estimate, after multiplication by the sign of £ 1 . 

Quite noticeable too, the fact that 2-dimensional pseudo-differential operators satisfying condition 

(\|0 do not drift, since the sign function is monotone matrix on operators whose symbols are 

defined on a lagrangean manifold ; the last remark led the author to a proof of local solvability in 

two dimensions [6] and for oblique-derivative type operators [7]. Our example (1.13) below 

shows that subelliptic operators can drift, but in a bounded way. Wel l see that condition (y) 

prevents the drift to become infinite, but allows unbounded drifting. Throughout the paper, our 

definition of the Fourier transform will be, 

V 

(1.12) u © = J e " 2 l 7 t x ^ u(x) dx so that u = u with u(x) = u(-x) . 

Let's first study the very simple case 

Ax? „. Ax? 

( U 3 ) Q i = D M - 5 S c ^ r * Q2 = D x i + A x ? . e D x i e 
where A is a large positive parameter. Consider u)i a unit vector in E* , i . e . 

(1.14) © i ( x ) = J K ! ( $ ) e 2 i 7 t X ^ , 1 = 1 1 ^ 1 ^ 2 , s u p p i q c R 4 " , 

and CO2 a unit vector in , i . e . 

Ax 3 

~ 3 ~ r ? 

(1.15) co 2(x)e = j K 2 (-$) e ' d f c , 1 = II K 2 II f 2 , s u p p K 2 c R + . 
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A convenient way of estimating the drift of the pair (Qi, Q2) is to get an upper bound smaller than 

1 for I < 0) i , ©2 > T 2 I : this quantity is 0 if the pair is not drifting, is 1 if the drift is infinite. 

We have 

r r r 2mx(^4-r|) _ 2ik ™-
< coi, o>2 > ==J j J Ki(^) e K 2 ( T I ) e 5 dx dtj d£ , 

and thus, 

(1.16) < 0 ) ! , 0)2 > = J J K ! ( A 1 / 3 ^ ) A 1 / 6 i c 2 (A i / 3 r | )A 1 / 6 A(fc+n) dr| d$, 

where 

x 3 

r 2iK 2iftx£; 
(1.17) A ( ^ ) = J e 5 e d^ is the Airy function. 

Consequently, 

(1.18) sup I < COi ,0)2 > L 2 I > 0 , 
0 ) i € E [ > C 0 2 € E 2 , | | 0 ) 1 | | = i | C 0 2 l ! = l 

since for K i ( ^ ) = K 2 ( ^ ) = K ( ^ A " 1 / 3 ) A " 1 / 6 w i t h a non-negative K, supported in the interval [1,2], 

1 = 1 | K | | l 2 , (1.16) gives 

(1.19) < C 0 ! , 0 ) 2 > = J j K ^ ) K ( T i ) A ( ^ t i ) d T i d ^ j A © ( x * K ) ( O d t , 

the last term is a positive constant, independent of A (the Airy function given by (1.15) is positive 

on E + ) . A picture will be useful for the understanding of these inequalities : 
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i - 2 A 1 / 3 < £ + A x 2 < - A 1 / 3 I A 1 / 3 < $ < 2 A 1 / 3 

0)2 T 0>i T 
- figure 2 -

this picture in the (xi,£i) symplectic plane shows that even though 0)i and 0)2 are "living" in two 
far away strips, one of which is a curved one, their dot product could be large. If we add one 
dimension to get an homogeneous version, A would be I £ 1 1 + I £ 2 ' » so that the above 
localisations in the phase space appear as two different second microlocalisations with respect to 
the hypersurfaces {£ji = 0 } on the one hand, { ^1 +1 £ I xx = 0 } on the other hand (see [ 2], 
[3]). These second microlocalisations are somehow incompatible so that the long range interaction 
between two far away boxes corresponding to two different calculus could be large, as shown by 
the equality (1.19). 

However, the pair given by (1.12) has a bounded drift, i.e. the quantity (1.18) is bounded 

above by a number strictly smaller than 1. This implies the solvability of 
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(1.20) | + a a x , D x ) [ H(- t )D x i + H(t) ( D x i + x ? ^ D ^ + D ^ ] , 

where a(t,x,E;) is a non-negative symbol of order zero, flat at t = 0 . Since we are not going to 

use this result, we leave its proof to the reader with an hint: compute the real parts of 

< D tu + iQ(t)u , i H(t-T)Eju > , < D tu+iQ(t)u, -i H(T-t)H(t)E2U >, for non-negative T, 

< D t u + iQ(t)u , - i H(T~t)Eju > , < D tu+iQ(t)u , i H(t-T)H(-t)E|u >, for non-positive T , 

use the bounded drift, meaning E^ + E \ invertible, and the Nirenberg-Treves commutator 

argument (see e.g. lemma 26.8.2 in [5]). 

We now start over our discussion on pseudo-differential operators and study the following 

case, which turns out to be the generic one, using the microlocalisation procedure of [1] and the 

Egorov principle of [4 ] : 

-2i7t<t>(xi) 2i7C<{>(xi) 

(1.21) Q , - D M = £ £ <; Q , = D X I + V(x , ) . . D X I e 

with a non-negative V = <t>' . Following the lines of the computations starting at (1.12), the 

question at hand is to estimate from above 

f f r 2ircx(£+T]) _ 2i7C<>(x) 
(1.22) < c o 1 , c o 2 > = J J J Ki(^) e K 2 (T]) e d x d r | d ^ , 

with 

(1.23) 1 = H Ki | | L 2 = || K 2 | | L 2 , supp K i c R + , supp K 2 C K + . 

9 2i7t<j> 

This means estimating from above the X (I /)norm of the product IT = H(-D x ) e H(D X ) , 
where H(DX) is the Fourier multiplier by the Heaviside function H. If <j> i s | H(x), then 

(1.24) i II = iH(-Dx) [ -H(x) + H(-x) ] H(D X) = F Q F , 

where F is the Fourier transform, and Q the Hardy operator,whose kernel is H(^)H(r|)/7i(^-fT|) 

(the norm of Q is obviously < 1 from (1.24)). It is not difficult to see that the norm of the Hardy 
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operator is exactly 1, as shown in section 4. As a consequehce>Weg6t an unbounded drift for the 
pair ( D X l ; D X l + ~8(xi) ), at least in a formal way ; we will approximate the Dirac mass by 

a sequence of smooth functions ~ v W(v x \ ) f where W is non-negative with integral 1, and in 

order to get a symbol , we'll perform this approximation at the frequencies equivalent to 2 V . 

Moreover, we shall choose carefully the size and the regularization of the "hole" 9 depending on 

this frequency. The paper is organised as follows : 

1. Introduction 

2.Statement of the results 

3. A non-homogeneous operator in the S* 0 class 

4. Drift of operators 
* The Hardy operator with kernel H(x)H(y)/rc(x+y) has L 2 norm 1 in lemma 4.1. 

* Driftof the pair (D i ;Di - f~W(xi ) ) with W ^ O and J w = l in lemma 4.2. 

* Drift of the pair (D i ; Di +~ XW(kxi) in lemma 4.3. 

* Choice of parameters at the frequency 2 V in lemma 4.4. 

* An approximate null solution at the frequency 2 V in lemma 4,5. 

5. Construction of a null solution for an operator in the s\ 0 class 

* Definition of the operator by a sum on Littlewood -Paley rings. 

* Estimates for the null solution in lemma 5.L 

* Cut-off in the t-variable : the drift involves large values of the spectra. 

* Cut-off in the X2 variable : a simple version of the uncertainty principle. 

* Cut-off in the xi variable : reductio ad absurdum since our operator is semi-globaily 

solvable on xi * 0 , in lemma 5.2. 

6. Construction of a null solution for an homogeneous operator 
* Definition of the operator 

* End of the proof 
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2. Statement of the results 

It is convenient for our exposition to give first a result for a non-homogeneous S^Q symbol: 

Theo rem 2.1 
1 2 2 

There exists a real valued symbol q = q(tpc,%) in the SI0 class on M(x Ex x JR ^ , i.e. a smooth 

function q satisfying (12), for which condition (1.1) is fulfilled, such that there is no 

neighborhood Q of the origin in E(XlR^,so that the equation 

(2.1) Q +q(tjcj>x)v=f 

has anLfc(Q) solution v for any fin 3(Q). There is a sequence uv of functions in C^flR3), with 

L2 norm 1 and support uv - » {0} such that 

(22) ¡1 + i q(tpc,Dx)uv Il2(]r3)->
 0 w h e n 

We state now our main result: 

Theo rem 2,2 

There exists a principal-type classical pseudo-differential operator P of order 1, in three 

dimensions, with an homogeneous principal symbol p satisfying condition (y/) such that the 

equation Pu -fhas no L2 local solutions for fin l). 

3 . A non- homogeneous operator Q(t) in the S^o class 

We set , for x € K 2 , \ e 1R2
 , t € IR , 

(3.1) Q (t, x, § ) = X V | / V 2 v ( \\ )) \l) CCv(t) q v ( t , x 1 4 i ) 
v = 2 

so that 

(3.2) y e C ~ QR ) , s u p p \ | / c [ 2^,2 ] , y = 1 on [ 2~m, 2 m ], 0 < \ | / < 1 , 

(3.3) %e C Q d R ) , s u p p x c [ - l , + l ] , x = l on [-1/2,1/2] , 0 < x < 1 , 
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(3.4) a v ( t ) = H ( - t )P ( t / e v )^ 1

v + H ( t - e v ) a ( t / 0 V ) ? I ^ , with 

-1 ^3 v 
(3.5) 9 V = A, 3 v , e ' <; X 2 v , ( v , A. 2 v are positive parameters), 

p € С°°(К), supp (3 - ( -oo , 0 ] , (3 > 0 on ( -co , 0),J3 = 1 on ( - oo, -2), 

(3.6) a e C°°(IR), supp a = [ 1 , +<*>), a > 0 on (1,+ « , ) , a = 1 on (2 , + o o ) , 

a and ¡3 bounded as well as all their derivatives. 

Moreover, we set-up 

(3.7) qv(t,xi4i) = H(-t + H( t - 9 v ) [ Si + \ X 1 < v W ( X l i v X l ) ] , where 

X 
(3.8) 2 1 , v < \ 0 v = 2 V and 

(3.9) w < = C ~ ( - ± , + i ) , W > 0 , j W ( x ) d x = 1 . 

Lemma 3.1 

The function Q defined by (3.1) e s/0 and satisfies (1.1). 

We'll begin proving Q is a smooth function. Let's remark that the open rings 

(3.10) A v = { ( и , Ш К 2 . 2 ' 1 < 2" 2 v ( Й + Й ) < 2 } 

are disjoint when v runs through the integers, and that 

(3.11) 2 V _ 1 < i ^ 2 1 < 2 V + I / 2 on A v n supp Q . 

It is thus enough to check 

M O qv(t,xi ДО = Ov(t) { H(-t + H( t - 9V) [ Si + £ X U v W(X 1 > y x 0 ] } 

which is a smooth function since a v is C°° and zero on [ 0 , 6 V ] . To get (1.2), we must verify 
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(3.12) ^ J D ^ - D g O X * , * * , * ) I * 2 ^ W « > C , ^ ^ ^ ^ , 

for (£1, §2) e A v , where the constants C do not depend on v. We may assume pi e {0,1} and 

P2 = 0 = a2 . Since 

D { b « j Q = d { d « j { p ( t / e v ) x £ $ 1 + <x( t /e v )x£[ ^ + \\vw<xlvXl)]}, 

we get for Pi = 0 , 

( 3 . 1 3 ) tofbJJ Q I < 2 V + 1 / 2 1 | P ( k ) | | L» ̂  X'2L 

+ | | a ( k ) | L o o l k
 X ; 1 [ 2 V + 1 / 2

 + i X , 1 + a i | | W ^ L - ] . 
11 1 1 L 3,v 2,v L 2 l,v " 1 1 L J 

Moreover, we have for Pi = 1, 

(3.14) I D ^ D ^ Q I < (HP ( k ) | | Loo + | | a ( k ) | | L o o ) X * y , 

so that (3.5), (3 .8) , (3.13) and (3.14) give (3.12). We need to prove(l . l) : assume Q(t,x£) > 0 

and s > t . Since £ belongs at most to one A v , we know Q(t,x,£)(resp. Q(s,x,^)) must be the 

product of a positive quantity by a v ( t ) q v ( t ,x i£ i ) (resp.a v(s) q v(s,X!,{;i)). In fact, the function 

ocv given by (3.4) is non-negative, and t -* q v(t, x i , ^ ) is non-decreasing(from W > 0 in (3.9)). 

This concludes the proof of lemma 3 . 1 . 
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4. Drift of operators 
Following the heuristic discussion in section 1 about the drift ,we consider first the Hardy 

operator. 

Lemma 4.1 

If X is the Hilbert transform, i.e. the convolution with pv(llinÇ), E+ (resp E~ ) the projector 

defined by (E+K)(Ç) = H(Ç)K(Ç) (resp(E-K)(Ç) = H(-Ç)K(Ç)), where H is the characteristic 

function of JF?+, the Hardy operator Q is i E+X E. C, where (CK)(Ç) - K(-Ç).The £(Û)norm of 

Q is 1 and its kernel is H(^)H(r\)ln(^J]). Set-up, for e > 0, 

(41 ) K^Ç) = F(e)112 e l J t E ^ H(C), , where r stands for the gamma function. We have 

(42) 1 > (QKe,Ke)L2 > 7 - 6 . 

Proof It i s pure routine to check that the kernel of Q = i E+X E.G is H(Ç)H(rç)/7t(Ç+Ti) and 

this factorisation implies readily that the £ (L 2)norm of Q is smaller than Lit is thus enough to 

prove (4.2): from the change of variables t = (£+r|)/2, t sin8 = (Ç-TJ)/2 , we get 

71/2 

(4.3) ( Q K c / K C " ) T 2 = - - J cos e 0 d9 , 

0 

which satisfies (4.2) for e > 0 . 

We consider now 
X 

(4.4) <(>(x)=~ J W ( t ) d t , with Was in (3 .9 ) . 

We set, with K E given by (4.1), J = [ 'S , 1 ] , 1 the characteristic function of J , 

, f f 2i7Cx(&+Ti) 2iic<j)(x) 

(4.5) Q w ( e , 8 ) = J J J e e Kt(%)lfi)i Kt(i\) l ^ d x dr\ d£ . 

L e m m a 4.2 

There exists a constant C0, such that for all positive numbers e, 5 satisfying 0<e<l/2, 

0<8^e!2eI and any function Was in (3.9), Be 0^8,8) >(1-C0e) 

linty 2i7C<t> 
Proof Noting first that e = - sign + ( sign + e ) 1 , we get, using (1.12) and 

lemma 4,1, 
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(4.6) Q w (e ,8) = ( CI Ij KE , 1 ; K E ) L 2 + 

f f f/2 2wc<|>(x), 2i7i;x(S+T|) 
J J K£(S) 1 (S) i K £ ( T I ) l.(Ti) J (sign x + e ) e dx d^dri . 

-1/2 

To evaluate the first term in the right-hand side of (4.6), we remark 

(4.7) ( Q l j Kg , X Kg )^2 = ( Q K £ , K e ) l 2 + R(e, 8) with 

( 4 . 8 ) R(e,8) = - ± - J J ( ^ n ) " 1 e « ^ ^ d f t d q .where 
KT(e) A 

(4.9) A = Ai u A2 u A3 u A4 with 

A 1 = { 0 < S < 8 , 0 < r i } A 2 = { 1 < S , 0 < n } 
(4.10) 

A 3 = { 5 < ^ < 1 4 T I < S } A 4 = {8 < ^ < 1 , 1 < rj } 

We estimate 

1 r r r -1 -(S+T])/2 t(e-D/2 (e-l)/2 _,, J 

(4.11) Ri(e, 8) = — L _ J J £+n) e

v s £ W d$dn • 

We set Ri(e, 8) = Rii + Ri2 with ( x = S+ ,n , y = (S-"n)/2), 
8 x/2 

(4.12) R n = — [ x ' V ^ f [ * - - y 2 ] ( e " 1 ) / 2 d y d x < 8*/(T( l+e) 2 e ) , 
*T<e) </ 0 4 

+00 8- x /2 

(4.13) R 1 2 = - ± - J x V * f [\- y 2 r V 2 d y d x . 

The inequality (4.12) is obtained as (4.3) setting y = (x/2)sin0. We have moreover 
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(4.14) r 1 2 * _ I _ f f1 e"' [Arcsin(y/t)] y " ' _ ( t 2 - (t - 8 ) 2 ) 6 / 2 dt 

8 

+ — f t 6 " 1 [ Arcs in(y/ t ) ] y = t

 fi dt 
nT(e) y = 1 - 8 

8/2 

To prove (4.14), we first change the variables x = 2t , y = -y' in (4.13), drop the ' later on, and 
estimate from above ( t 2 - y 2 ) E ^ : this quantity can be estimated from above by ( t 2 - (t - 8) 2 ) E f 2 

whenever t > y > t - 8 > 0 and by t e if y e (t - 8 , t ) and t € ( 8 / 2 , 8 ) . Eventually, one gets from 
(4.14) 

(4.15) R 1 2 < - J — {f* T(£/2) 2 e / 2 + e ' V } f < c / 2 , 

where C\ is an absolute constant. Consequently, we have from (4.15), (4.12)(see (4.11)), 

e/2 

(4.16) Ri(e, 8 ) < C 2 8 , where C 2 is an absolute constant. 

We set , with A 2 defined in (4.10), 

( 4.17) R 2 ( e , 5 ) = J L . J J ftV e « ^ ' V ^ d ^ . 
Jtr(e) J J A 2 

We have on A 2 , (q+ri) < % , e £ e , so we get 

(4.18) R2(e, 5) < C3 —£— , where C3 is an absolute constant. 
1 - e 

Consequently, the inequalities (4.16), (4.18) and their analogues for the integrals in (4.8) over A3 
(smaller than over AO and A4 (smaller than over A2) give from (4.8) the existence of an absolute 

constant C4, such that, for any e e (0,1/2], 5 e ( 0 , e ] , 

(4.19) I R(e, 5) I £ C 4 e . 

We need now to check the second term in the right - hand side of (4.6), namely 
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, r f 2i7t(J)(x) x 2i7tx(^+ri) 
(4.20) S(e,8) = J j K e £ ) l ($)i K £ ( T I ) 1 (rj) J ( s i g n x + e ) e dxd^drv 

-1/2 

We obtain, from (4.1), 

1 2 £+2 
(4.21) I S(e, 5) I < T(e)" T( (e + l ) /2 ) 2 < C5 e , where C 5 is an absolute constant. 

Finally, we obtain the result of the lemma 4.2, collecting the inequalities (4.21), (4.19),(4.2), and 

the equalities (4.6),(4.7),(4.20). 

We consider now, with the notations of lemmas 4.1 and 4.2, for positive \i and X, 

(4.22) (X l) = J e 2 i 7 t X l ^ Kt(W) l /^AOH* 1 ' 2 ^ » 

(4.23) co2 (xi) = - i e " 2 l 7 C < | ) ( X x i ) J E

2 M M Ke(-r\/\I) l ^ - T i / ^ - ^ d i l , so that 

(4.24) ( © ! , ® 2 ) 2 = 

J J J e 2 b t x > W ) l J ( ^ K " 2 i e 2 i ' t ' l > a X l > e 2 i , t X " 1 Ke(H/H) l ^ A O n " ' ^ dx, 

= J J J e 2 t a > ( ^ ) e 2 i ' l * № l x i )

K e © l J © iKedDyiDdWn d x , 

= f 2 w ^ ^(£ ,5) , as given by (4.5), with w ^ i ( x ) = M"" 1 W^pT^x) and W given by 

(3.9). 

We obtain the following 

Lemma 4.3 
There exists a constant C0, such that for all positive numbers £, 8 satisfying 0 < £< 1/2, 

0 < 8 <£^ , all functions W and $ as in (4 A), all positive numbers X, fx so that X pT^ >l,all 

functions (Oj and co2 given by (4.22) and (423), 

(426) IRe (coJ0, co20) 2 >1 -C0e 
LJ 

where (0^= (0}t HcoJI^ J =1,2 . 
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Proof. The equality (4.24), > 1 , lemma 4.2 and ||<?jllL2 ^ 1 give the result. 

Let 

1/8 
X 0 , v = 2 v , Xi, v = v , X2,v=Logv, X 3 j V =(Log(Logv)) 

(4.27) 
. .-1/2 „ i , .-1/8 

e v =(Log(Logv)) , 6 = (Logv) , 8 V = (Log(Logv)) . 

be a choice of parameters satisfying (3.5), (3.8), and the conditions in lemma 4.2 .We consider 

the operator 

(4.28) Q v(t) = p(t/e v)(Logv)" 1 H G D D ^ a d / e v X L o g v ) ' 1 H(t-8 V )[ D t + | v W ( v X l ) ] 

where a and ¡3 satisfy (3.6), Dj = ^ , the function W satisfies (3.9). We have 

(4.29) Qv(t) = cc^t) ( H ( - t ) Q ! + H ( t - e v ) Q ( 2 ) ) , with 

(4.30) cc^t) = P(t /9 V ) (Logv)-1 H(-1) + <x(t /By) (Logv) 4 H(t -6v) , 

(4.31) Q ^ D , , Q ^ D j + i v W t v x ! ) . 

We define 

(4.32) © ^ ( x , ) = J e 2 i K X 1 ^ K e ( ^ ) lfi/m~m^ II K e 1 } | ¡2 , with 

(4.33) H = v , J = [ 8 , l ] 

(4.34) « ,W ( X i ) = - i e "
2 i 7 C < ! > ( V X l ) J c 2i*x,Ti Kg(—TJ/^.) y-n/jDn'^dt] 1 * 1 , II '¿2 . 

with <|) defined in (4.4).We can state now 

Lemma 4.4 

There exist a constant C0 and an integer V0 such that, if V is larger than V0,andfi,E,J ,5, 

co(v/, co^are given by (4.32-34), (4.27), we have 

(4.35) JRe( off, (0(v

2

} )Ji Z 1 - evC0 , and Q)(v/, off are unit vectors inL2. 
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Moreover, these functions have the following spectral properties : 

spec o/v/ c[v(Logv)'1, v ], with respect to Qj 

spec <o(v

2

)<z[-v , -v(Logv)"1 ],with respect to 

Finally, 
-2 112 

(4.37) ev6v = ev 

Proof. The inequality (4.35) is a reformulation of lemma 4.3, the spectral properties (4.36) are 

obvious on formulas (4.32) and (4.34) and (4.37)follows from (4.27). 

We define 

(4.38) Q ( f ( x 1 , x 2 ) = co ( l [ ) (x 1 )p v (x 2 ) , n ( J ) ( x 1 , x 2 ) = (0 ( ?(x 1 )pv (x 2 ) , 

where pv is a function with norm 1 in L2(IR) such that 

, A <ic\\ _ A ~V-l /8 -V+1/8 , 
(4.39) support p v c [ 2 . 2 ] . 

We set-up , with cx v , Q i , , , Q ^ . G v a s a b o v e i n ( 4 - 3 °)« ( 4 - 3 1 >> ( 4 - 3 8 X ( 4 - 2 7 ) » 

X v = X ( 2 " v + 2 DO , X given in (3.3), 

(4.39)' a is a function in C°°(1R,[ 0 , 1 ] ) , a = 0 on (-<», 1/3), a = 1 on (2/3 ,+«), II a ' l l 2

2 < 4, 
Ju 

r 1 

E X P J A v ( s ) d s Q i , O N T < 0 , 
L o J 

(4.40) u v ( t ) J a V + o^HJCQY-flf?) . o n 0 < . < 8 V , 

f t 

X v exp f a v ( s ) d s Q ( 2 } fi^ , on 9 v < t . 
e v 

v L 

Lemma 4.5 

The function ujt) defined in (4.40) belongs to L?(1F? 2 ) 

(4.41) spectrum^)) <z &v={($lt& eE2 , 2 2 v ' m < $]+ $ <22v+m and 2/4I/</^2/} 
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(the spectrum is the support of the Fourier transform in JR^ Moreover, with I I standing for 

the L2( E?xjjc2 ^ norm> w € have> w ^ a> P given in (3.6), 

0 

(4.42) l u v ( t ) l 2 < exp{- J2p(s)ds 8 v v ( L o g v ) " 2 } , if t < 0 , 
t / 6 v 

(4.43) 1 - 2e v C 0 < I u v ( t ) I 2 < 1, if 0 < t < 8 V , where Co is given in lemma 4,4, 

r t 1 2 ^ 
(4.44) lexp J a v ( s ) d s Q ( 2 } I < e x p { - | 2 a ( s ) d s 9 v v (Logv)"*2}, i f t > 8 v . 

e v i 

Moreover, if av~ av( ^belongs uniformly to S(1J dt;/22~2v ) (using Hormander's notation 
(18.4.6) in [5]), the commutator [ Op(av), ] is L2 bounded(Op(a) stands for the operator 
with symbol a) and, for v > Vo, 

(4.45) l[Op(av),Q^] // 2 * 2 _ w 2 . 

Proof. From (4.38), (4.39) and (4.36) we get that the Fourier transform of Q.^ is supported in 

the rectangle 

v O L o g v r ^ M v • 2 V - 1 / 8 ^ 2 * 2 V + 1 / 8 . 

Consequently, on t < 0 , from (4.31), (4.30), (4.36) and (4.40), we obtain that the square of the 

modulus of the Fourier transform of u v(t) is smaller than 

o 
e x p { - |2p(s/e v)(Logvr 1ds v (Logv)" 1 } I Sr(Q<v ))( Si> \i)' . 

t 

where stands for the Fourier transform.On the support of the unit vector ^ ( Q ^ ) , for v > v Q , 

we have 

2 2 v - l / 2 ^ 2 2v - l /4 < £ ^ 2 < y 2 + ^ 1 / 4 ^ 1 / 2 ^ ^ , < ^ 

This proves (4.42) and (4.41) for t < 0. Analogously, the inequality (4.44) is a consequence of the 

spectral location of co^ with respect to Q ( ^ in (4.36) and of (4.30) . Moreover, on 9 V < t , the 

Fourier transform of u v(t) is supported in the rectangle 

i ^ l < 2 v - 2 . 2 v - 1 / 8 ^ 2 < 2 V + 1 / 8 
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which is included in 

2 2 v - 1 / 2 <; S?+ S2 ^ 2 * M + 2 2 v + 1 / 4 £ 2 2 v + 1 / 2 and 21^ I < 2 V " ' S & I , 

proving (4.41) on 0 V < t . Similarly , collecting the information on the support of the Fourier 

transform of Off and X v Q(<f ,we get (4.41) on 0 < t < 9 V . Moreover , for t € (0,8 V), we have, 

from (4.40), 

I u v ( t ) I 2 > I Ci™ I 2 + 2o( — )Re < d]\ X v Q 0 ? - Q(J> >. 
8 V 

Since £1^ is a unit vector, and 

(4.46) < % V Q ( V ) > = < X y Q M Q (v) > = < flM Q<W > ? 

from the fact that the Fourier multiplier X v is 1 on the support of the Fourier transform of co^ , 

we ge t , for t € (0,9v), from (438) and (435), 

I u v ( t ) I 2 > 1 + 2c( —) ( 1 ~ £ V C 0 -1) > 1 - 2 6 V C 0 . 
6 V 

The other inequality in (4.43) is just the convexity of the unit ball (% v Qty ^ a s a n o r m s m a l l e r 

than 1 since * s a m i i vector and X v is a Fourier multiplier valued in [ 0, l]).We inspect now 
the commutator 

[ O p ( a v ( ^ ) ) , Q ^ ] = [Op(a v £)) . ^ W ^ ) ] • 

We have obviously 

av(£) € S ( l , I dx l V +1 d£ l V * ) and \y W(v x,) e S(v , i dx l V +1 d£ l 2 2 - 2 v ) , 

with semi-norms independent of v (here we use Hormander's notation (18.4.6) in [5]) , and thus, 

we get , using theorems 18.5.4 and 18.63 in [5], that the commutator 

[ Op(a v ( | ) ) ,Q (2} ] G Op(S( v 2 - v v , I dx i V + i l V * ) ) . 

The estimate (4.45) is then a consequence of theorem 18.63 in [5]. Note that a reader not 

conversant with these sources will easily prove (4.45) directly. The proof of lemma 4.5 is 

complete. 
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5. Construction of a null solution for an S } 0 operator 

We shall follow the lines of the computations (1.8 - 11) and use a modification of the 

operator Q(t, x, D x ) defined in (3.1): we set 

(5.1) Q(t) = ] ^ ¥ v Q v ( t ) T v , with Q v ( t ) given in (4.28), 
v > v 0 

(5.2) *FV = Op(Vv) = O p ( v ( 2 ' 2 v ( $ 2 + $)) %{%xl &)) , 

where \|/ and % are given by (3.2), (3.3), and Op(a) stands for the operator with symbol a. The 

operator Q(t) has a symbol in the S} > 0 class since if Q is given by (3.1), Q(t) - Op( Q(t,x,£)) 

has a symbol in the S ° 0 class. As a matter of fact, we have 

(5.3) x F v Q v ( t ) x F v = Ov(t) D^l + (Logv) - 1 a ( t /8 v ) x F v ^ ( v x ^ . 

From (4.30), (3.6),(3.5), (4.27), we see that a y ( t ) and (Logv) ' 1 a(t /9 v ) are smooth functions 

bounded as well as all their derivatives independently of v. Moreover, since the symbols y v 

defined in (5.2) satisfy 

(5.4) \|/ v e S( 1,1 dx l 2+1 d^ i V 2 " ) and 

(5.5) v W ( v x , ) € S ( v , I dxi l V +1 d î l V 2 v ) , uniformly in v , 

we obtain , using theorem 18.5.4 in [5] that the composition 

(5.6) ¥ v v W(v x , ) ¥ v = O p ( ¥

2 ( 2 " 2 v ( & £)) x 2(^i/ ) v W(v x 4) ) + Op(r v), 

where r v e S( v 2 2" v, I dx | 2 v 2 + I d^i 22 2 v ) uniformly in v . In fact, using theorem 18.6.3 in 

[5], we get that 

(5.6)' || O p ( r v ) | | j g ( L 2 ) < 2 v / 2 , 

which is a better estimate than the one subsequent to 

(5.5)' v W ( v x j ) e S ( 2 V , I d x l V l d ^ l Y 2 * ) , uniformly in v . 

We set 

(5.7) L = ^ - Q ( t ) , with Q given by (5.1), 
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and we calculate Lu v , with u v given by (4 .40) .The inclusion ( 4 . 4 1 ) in lemma 4 .5 , the fact that 

( 5 . 8 ) Kwс { щ = 1 } с support y v c Д у , 

where Av are the disjoint sets defined in (ЗЛО), imply .with Qv( t ) given in ( 4 . 2 8 ) , 

( 5 . 9 ) L u v = ^ - ^ v Q v l t " V = ^ - ¥ v Qv( T ) u v = 

= ^ - Q v ( O u v - [ x r /

v , Q v ( t ) ] u v = 

= ^ - Q v ( t ) u v - H(t-8 V ) a v ( t ) [ Op(Vv), \ v W(v u v , 

and thus, from ( 5 . 9 ) , ( 4 . 4 5 ) , we get 

( 5 . 1 0 ) L u v = ^ - Qv( t ) u v + R v(t) u v(t) , with И R v (t) I ^ < 2 " v / 2 . 

We set 

( 5 . 1 1 ) U = j t - Qv( t ) , where Qv( t ) is given in ( 4 . 2 8 ) . 

L e m m a 5.1 

Let Lv be the operator defined in (5.11) and uvgiven by (4.40). With 

|| || standing for the L2(lRt,H=L2(lR2

X]iX2)) = L 2 ( E { ) norm, 

I I for the norm in H 

we have, using the notations of (4,27) and of lemma 4 A, 

(5.13) \\LV и у | | 2 < 9 C0ev &l

v and || и v | | 2 > ^ 0 V . 

Moreover, for 
(5.14) Av= (LogLogv)I/I6 and - AV9V <\t\<AV$V, we have 

(5.15) \Uy(t)\2£Avev. 

Proof .We note that, from (4.40) and (5.11), we have 
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(5.16) L v u v = 0 on t < 0 , 

(5.17) L v u v = f a ' ( - L ) (Xvn(V- tiP?) , on 0 < t < 9 V , 

t 
(5.18) Lv u v = - cxv(t) [ \ v W(v Xj), X v ] exp J a v ( s ) d s d$ on 9 v < t . 

e v 

Consequently, applying (4.44), (4.45) we get , on t > 9 V , 
t/9v 

(5.19) l ( L v U v ) ( t ) l 2 < 2"v exp{ - J2cc(s)ds9 v v (Logv)" 2 }, 
l 

and using (3.6), we obtain 

(5.20) J l (L v u v ) ( t ) l 2 d t < 2"V9V ( 1 + r ) < eve; 1 , 
9v 2 9 v v ( L o g v ) " 2 

where the last inequality comes from (4.27) for v > v Q . Moreover, we have from 
(4.40),(4.46),(4.38) and (4.35) 

e v 

(5.21) J l (L v u v ) ( t ) I 2 dt < 9 V 9"v

2 1 X v Q ^ - I2 II a ' l l 2

2 = 
o L 

9'J (IXV ft? I 2 + I I 2 - 2 Re< d]\ flM > ) II a l l 2

2 

< 9"v (2 - 2(1 - e v C 0 ) ) II a ' l £ 2 = e v 9v 2Q, II a ' l £ 2 < e v 9v 8C 0 . 

We obtain the first inequality in (5.13) from (5.21), (5.20) and (5.16). To get the last one,we 

remark that (4.43) implies 

9 V 

(5.22) Ilu v | | 2 > | l u v ( t ) l 2 d t > 9 V ( 1 - 2 e v C 0 ) > j 9 v , i f v > v 0 . 
o 

To check (5.15), we use lemma 4.5 : if f A V 9 V , <, It I < A V 9 V , (4.42) and (4.44) give 
o (i/2)Av 

(5.23)1 u v ( t ) I 2 < M A X [ e x p { - J2p(s)ds9 vv (Logv)" 2 } , exp{- J2a(s)ds9 v v (Logv)" 2 }] 
-d/2)A v

 0 
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0 1 

<MAX[exp{~ j2P (s )ds9 v v (Logv)" 2 } , e x p { - j 2 a ( s ) d s 9 v v (Logv)" 2 } ] 

-Vl/2 
< e < A v e v . 

The proof of lemma 5.1 is complete. 

We consider now , with X defined in (3.3), u v in (4.40), the t-compactly supported 

function 

(5.24) v v ( t ) = X ( t / A v e v ) u v ( t ) . 

We calculate Lv v , where L is given by (5.7): we obtain, using the notations of (5.10), (5.11), 

(5.25) Lv v = %(t / A V 0 V )Lu v + ( A v O ^ 1 %'(t / A V 6 V )u v = 

= X(t / A V 6 V ) U u v + %(t / A V 9 V ) R v u v + (AyOv)"1 X'(t / A V 6 V ) u v . 

Consequently, from (5.25), (5.13) and X valued in [0,1], (5.10) and luv(t)l < 1( from lemma 

4.5), X'(s) = 0 outside 1/2 < I s I < 1 and (5.15), we get 

(5.26) H L v v i l 2 < 33C08VG; 1 - h 3 2 ' v A V 6 V l l x i l ^ + 3(Av6v)*MlxilL2(]R) A v e v 

< e v e;1 C i , 

where Q is an absolute constant. Moreover, from (5.24), (3.3) and (5.13), we get 

(5.27) | | v v | | 2 > J l v v ( t ) l 2 d t = J l u v ( t ) l 2 d t > ^ 9 V , 
0 0 

so that the ratio of (5.26) and (5.27) satisfies the following estimate, using (4.37), 

(5.28) | | L v v | | 2 i i v v l l " 2 < £ ve" v

2 2 Q = 4 / 2 2 d . 

Thanks to (5.6) and (5.6)', the estimate (5.28) is valid also with L replaced by D t + i Q(t ,x, D x ) , 

where Q is given by (3.1). 

176 



27 

Finally we must discuss cut-off functions in the xi, X2 space ; to perform a localisation in 

the X2 variable is an easy task : if we inspect the requirement on the function p v expressed in 

(4.39) , we can take 

(5.29) p v (x 2 ) = g ( 2 v x 2 ) 2 v / 2 , 

where g is a "fixed" function in C ~ (2" 1 / 8 , 2 l / 8 ) with L 2 norm 1. 

Consequently, we have, with % given by (3.3), *FV by (5.2), XY > 0 to be chosen later, 

1/4 

(5.30) II LX(XvX2 )v v ii = II LX(XvX2 ) Y y v v II < *v J2C~i Hvvll + II [ L,X(X vx 2) ¥ v ] vvll. 

The commutation relations between 

(5.31) Q(t) e Op (S(<^>/ LogLog<£> , I dx KI d$ 2 <$> 2 ) ) and 
(5.32) e " X v X(KV*2) % e Op ( S ( 1, ! dx | 2 +1 d $ l 2 < $ > 2 ) ) , 

where <fy> = (e e + l^l 2 ) 1 / 2 , coming up if we examine the commutator for each fixed t , show that 

the bracket in (5.30) is estimated by 

(5.33) II v v H (Logy-) e * ^ II v vll , if 

(5.34) e ^ v < Logv : we choose Xv = j LogLogv . 

As a matter of fact, the confinement estimates of [3] (theorem 2.2.1) are convenient to show that 

the bracket [ L,X(XV*2 ] enjoys some confinement properties in the rings A v , and thus 

behaves essentially as if it were supported in that ring, at least as far as L 2 estimates are at stake. 

We thus obtain, from (5.30), (5.33) and for Xv satisfying (5.34), 

(5.35) II L X a . v x 2 )vvll < C 2 6 v / 4 II vvll, 

where C2is an absolute constant. Moreover, we have 

(536) II v v II 2 = II X(X vx 2 )v vll 2 + li 7 v v II2 , 

where y is a function of x 2 supported in I X v x 2 I > 1/2 . Now, we compute, using (5.29) 
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L2(3R, H ) , L 2 (K , K ) inequality with a large constant proportional to the reciprocal of the t -

diameter of u : if u(t) = 0 on 111 > TJ2 > 0, we have 

(5.38)' 2 [ J I d ^ ( t ) - Q ( t ) u ( t ) ! * d t ] 1 / 2 T 0

1 / 2 + p ( W ) C ( d ) [ J l u ( t ) l 2 d t ] 1 / 2 T 0

1 / 2 ^ 

2 f i dn7(t) - Q(t) u(t) Ijh dt + p(W)C(d) f I u(t) l H dt ^ sup I u(t) l H ^ 

[ f l u ^ d O ' V 2 . 

It is possible to modify Beals-Fefferman's arguments of [1] to prove an estimate of the form 

(5.38) for general operators satisfying the (P) condition. Let's now prove the lemma: we compute 

for T real parameter, 

(5.39) A(T) = 2 Re < D,u + i Q(t)u , i H(Di)H(t - T)u > 2 f w t „ x . so that 

(5.40) A(T)= £ A V ( T ) , 
v > v 0 

where the general term of this (later shown) absolutely converging series is 

(5.41) 
A v (T)=2Re<D t u+i v F v (a v ( t )D 1 +a v ( t )H( t -9v^vW(vx i ) )^ v u , i H(Di)H(t - T ) u > L 2 } , 

where *F V is defined in (5.2), a v in (4.30), W in (3.9). We know from the assumption on the 

support of u in the lemma 5.3 and (3.9) that 

(5.42) vW(vx 1 ) v F v u = [ v W ( v x 1 ) , x F v ] u , if v > ^ . 

We show below that the operator 

(5.44) R = £ [ v W ( v x O , 4%] + X v W ( v x i ) 4 / v 

7 2 
is L ( K X l X 2 ) bounded and 

(5.45) | R | S Ci ((A )3« + l)q(W) , 

where Ci is an absolute constant, q(W) a semi-norm of the function W in P. As a matter of fact, 

each term of the first sum in (5.44) is easily handled by (4.45) but theorem 4.2.2(b) in [3] is 
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convenient to estimate the sum : nonetheless [vWfyxO.^FJ is uniformly L 2 bounded as shown 

by (4.45), but its symbol , though not supported in { Ivxil < 1/2} x A v (see (3.9)) , is 

"confined" in this set in the sense of definition 2.1.1 in [3] . The second sum in (5.44) is 
1 3/2 

estimated by r " | | W | l T oo since 

^ I v W C v X i ^ C O l L 2 S ^ I W | L - £ | V F v W >L 2 - ( 2 ^ 11 W | I L ~ ) ( S ) 1 / 2 ' 8 9 ! L 2 • 

^ V > V o ^ ^ > v 0 

Thus we obtain , from (5.39), a v non-negative and (5.44) 

(5.46) 

2 J 1 d ^ ( t ) - Q(t) u(t) Ijh dt + p (W)Ci (d ) j l u ( t ) i H d t suplH(Di)u(t) l H > 

I H(Di)u(T) Ij , , 

where p is a semi-norm of W in y , and Ci(d) a function of d. 

Analogously, we get 

(5.47) 

( 7 1 \ 
2 f I ~ ( t ) - Q(t) u(t) Ijh dt + p (W)Ci (d ) f lu(t) l H dt suplH(-Di)u(t) l H > 

J 0 1 - c o t < T 
v - J 

I HC-DOuCD & . 

The inequalities (5.46) and (5.47) yield lemma 5.2. 

Let's now conclude and prove theorem 2.1. If L given by (5.7) were L 2 solvable near the 

origin in 1R3, we would have, using the above notations, and for F 0 (xi) compactly supported and 

identically 1 near 0, F 2, + F 2 = 1 , the following inequalities : 

(5.48) II X(X vx 2 )v vll 2 = II F 0 (xi) X(kyx2 )v v(t,x)lt 2 + II F 1 (x 1 )X(X v x 2 )v v(t,x)ll 2 <, 
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C I! LF 0 (xi) X(X vx 2)v v(t,x) II2 + CII LFi(xi)X(XvX2)vv(t,x) II2 < 

2CII [ L , F 0 (xi) ] X(^ v x 2 ) x F v Vv( t ,x) II2 + 2C II [ L , Fi(xi) ] X(X vx 2 ) 4 /

v v v ( t , x ) l l 2 

+ (1/2)11 X(XvX 2 )v v !l 2 . 

The first inequality follows , for the term with F 0 from the assumed solvability and for the term 

with F\ from lemma 5.3. The second one is a consequence of (5.28) for X(X v x 2 ) v v , proved 

above. Moreover, the commutators 

[ Q ( t ) , F o ( x i ) ] X a v x 2 ) ¥ v 

are L 2 bounded operators with norm < C e ^ 4 , for each t (see 5.34) . We would obtain, using 

(5.37), 

(5.49) X(X v x 2 )v v = 0 , 

and from (5.36) and (5.37)' 

(5.50) v v = 0 , which contradicts (5.27). 

The proof of theorem 2.1 is complete. 

6. Proof of theorem 2.2 : the homogeneous case . 

We define with t e K , x = ( xi, x 2 ) e JR2, X e BR, % - ( £ 2 ) € R 2 , a function on K 6 

(6.1) p ( t , x , T , $ ) = pi + ip2 , 

(6.2) pi =x , p 2 = X 

(6.3) p [

2

] =(Logv)- 1x((x 2 - y v ) \ Log(Logv)) [p(t /0V) \ X + a( t /0V)[ v W(v xi) 2 " v & ] ] 

where X is a subset of N so that 
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( 6 . 4 ) S ( U * v > - » < + ~ . ( ^ - ^ = ( 2 K 3 ! K E N | K A K O 

X is given in (3.3), y v is a sequence converging to zero when v goes to infinity so that if 

(Logv ) 1 6 i» „ 3 3 4 k 

(6 .5) v k + , £ e v * * ; , y V k = ( L o g ( L o g v k ) r / 2 , e.g.we can take v f e = , 

P and a are defined in (3.6), 0 V = (Log(Logv))" 1 / 8, W is given by (3.9). 

Lemma 6.1 

The function p defined by (6.1-4) is homogeneous with respect to (x, £ j ) , is C°° over E6 

andp is of principal type. Moreover, the complex conjugate p satisfies condition (y/) on the cone 

{$2*0}. 

Proof, The I I I t h derivative of the smooth function brings out a product of L°° norms of the 

fixed functions x > a » P a n ( * their derivatives up to the order m, 1 1 1 t h -power of Log(Logv) 

multiplied by (Logv)"1, m t h -power of v multiplied by 2~v:it is bounded from above by (Logv)" 1 / 2 

and the condition (6.4) implies the smoothness for p2 . The symbol p is obviously homogeneous 

of degree one and of principal type from dpi. We need to check condition (\j/) on p , i.e. (1.1) on 

p 2 : Let's assume p2(t,x,^) > 0 . If ^ 1 is non-negative, then P2(s,x,^) > 0 as a sum of non-

negative terms ; we remark also that the supports of x((x2 - y v ) \ Log(Logv)) are disjoint, i.e. 

the sets 

{*2 > Y v ' 4/Log(Logv) < X2 < y v + 4/Log(Logv) } do not intersect for different v in X\ as a 

matter of fact, we obtain from (6.5), 
4 4 

(6.6) y v + - < y v 

Log(Logv k + 1 ) v * Log(Logv k) 

since 

< 6 J > V , +
 7 ~ ~ : * 2(Log(Logv ) ) " 1 / 2 < 2 4 (Log(Logv ) ) ' 1 / 2 < y -

vk+i Log(Logv f c + 1) k + I k k Log(Logv k) 

where the first and the third inequality are due to y v = (Log(Logv ) )" 1 / 2 , whereas the second one 
k 

is a consequence of Logv > (Logv ) 1 6 . If we go back to our assumptions P2(t,x,^) > 0 and 
fv] 

£1 < 0, we see from the above discussion that all p l

2 but one are zero, and for this one t must be 

larger than 0 V . Consequently, if s > t, the non-negativity of ^ 2 W implies that (1.1) is satisfied. 

The proof of lemma (6.1) is complete. 
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We shall now consider , with u v defined in (4.40), % in (3.3), A v i n (5.14), 9 v i n (4.27), 

y v in (6.5), the function 

(6.8) V v ( t , XH x 2 ) = %(t / A V 6 V ) %((x 2 - y v ) | Log(Logv)) u v ( t , x i , x 2 - y v ) , 

and the operator 

(6.9) P = D t + i X Op(p [ 2 ] ) , 

where p 2 is defined in (6.3) and Op stands for the "adjoint "quantization : 

(6.10) 6p(a)u(x)= J e 2i rc<x-x \£> a ( x - $ ^ ) u ( x ' ) d x < d £ . 

Lemma 6,2 

The function Vvdefined in (6.8) satisfies 

(6.U) * E * 1 4 > //PVv//2

l2(]r3) <Ceve'^ , 

for P defined in (6.9) and an absolute constant C. 

Proof The first inequality in (6.11) follows from (5.27) and (5.37)'. The second one is a 

consequence of (5.26) and (5.37)' since 

(6.11) iPV v = ^ - X c W f t V v = ^ - O p ( p ^ ] ) V v , 

where the last equality follows from (6.6)( i.e. the supports of the cut-off functions are disjoint 

and the function X((x 2 - y v ) ~ Log(Logv)) is 1 on the support of V v ) and the "adjoint" 

quantization (6.10), Moreover, with g defined in (5.29), we have 

(6.12) $ 2 2 - v g ( £ 2 2 - v ) 2 - v y 2 = £ 2 2 - v - l ) g ( 4 2 2 - v ) 2 - v / 2 + g £ 2 2 ^ ) 2 ' ^ . 

We c a n c h o o s e 

(6.13) g ( T » = h ( ( T i - l ) v 2 ) v , 
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where h is a function with L 2 norm 1 and support in (-1,+1). The equality (6.12) gives 

(6.14) ^ 2 - v g f e 2 - v ) 2 - v / 2 = v - ^ 2 2 - v - l ) v 2 h ( ( ^ 2 2 - v - l ) v 2 ) v 2 - v / 2 + g ( ^ 2 2 - v ) 2 - v / 2 . 

Since the estimate (5.37) is preserved up to the harmless multiplication of 2 V by v~ 2, we get that 

the contribution of the first term in the right-hand side of(6.14) is 0(2~ v ) . The proof of lemma 6.2 

is complete. 

We remark then that the operator P satisfies condition (P) on the open set { X\ * 0 } and 

is elliptic on the cone [X * 0 } and is thus microlocally solvable there. Since V v i s the product of 

cut-off functions with a function whose Fourier transform is supported in f 2 < ^2 h we get 

the result of theorem 2.2 by reductio ad absurdum as in (5.48-50). 
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