@article{PSMIR_1989___4_103_0, author = {Heintz, Joos and Roy, Marie-Fran\c{c}oise and Solerno, Pablo}, title = {Sur la complexit\'e du principe de {Tarski-Seidenberg}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, pages = {103--120}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {4}, year = {1989}, language = {fr}, url = {http://www.numdam.org/item/PSMIR_1989___4_103_0/} }
TY - JOUR AU - Heintz, Joos AU - Roy, Marie-Françoise AU - Solerno, Pablo TI - Sur la complexité du principe de Tarski-Seidenberg JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1989 SP - 103 EP - 120 IS - 4 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://www.numdam.org/item/PSMIR_1989___4_103_0/ LA - fr ID - PSMIR_1989___4_103_0 ER -
%0 Journal Article %A Heintz, Joos %A Roy, Marie-Françoise %A Solerno, Pablo %T Sur la complexité du principe de Tarski-Seidenberg %J Publications de l'Institut de recherche mathématiques de Rennes %D 1989 %P 103-120 %N 4 %I Département de Mathématiques et Informatique, Université de Rennes %U http://www.numdam.org/item/PSMIR_1989___4_103_0/ %G fr %F PSMIR_1989___4_103_0
Heintz, Joos; Roy, Marie-Françoise; Solerno, Pablo. Sur la complexité du principe de Tarski-Seidenberg. Publications de l'Institut de recherche mathématiques de Rennes, no. 4 (1989), pp. 103-120. http://www.numdam.org/item/PSMIR_1989___4_103_0/
[1]The complexity of elementary algebra and geometry. J. of Computation and Systems Sciences 32 251-264 (1986). | MR | Zbl
, , :[2]On Computing the determinant in small parallel time using a small number of processors. Information Processing Letter 18 (1984), 147-150. | MR | Zbl
:[3]Géométrie algébrique réelle. Springer Verlag (1987). | MR | Zbl
, , :[4]Some algebraic and geometric computations in PSPACE. ACM Symposium on the theory of computation, 460-467 (1988).
:[5]The complexity of robot motion planning. MIT Press (1989). | MR
:[6]Quantifier elimination for real closed fields by cylindric algebraic decomposition. In Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Sciences, vol. 33, pp. 134-183, Springer-Verlag, Berlin (1975). | MR | Zbl
:[7]Some new effectivity bounds in computational geometry. Proc. AAECC-6 (Rome 1988) - Best Paper Award AAECC-6 - Springer Lecture Notes in Computer Science 357 131-151. | MR | Zbl
, , :[8]Thom's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets. J. of Symbolic Computation 5 121-129 (1988). | MR | Zbl
, :[9]Real quantifier elimination is doubly exponential. J. of Symbolic Computation 5 29-35 (1988). | MR | Zbl
, :[10]Algorithmes rapides en séquentiel et en parallle pour l'élimina- tion des quantificateurs en géométrie élémentaire. Séminaire Structures Ordonnées, U.E.R. de Math. Univ. Paris VII (1987). | Zbl
, , :[11]Precise sequential and parallel complexity bounds for the quantifier elimination of algebraically closed fields. A paraître dansJournal of Pure and Applied Algebra. | MR | Zbl
, , :[12]Parallel arithmetic computations: a survey. Proc 13th Conf. MFCS (1986). | MR | Zbl
:[13]Sturm-Habicht sequences. Proceedings ISSAC 1989.
, , , :[14]Sous-résultants et spécialisation de la suite de Sturm. A paraitre au RAIRO Informatique théorique. | Numdam | Zbl
, , , :[15]Complexity of deciding Tarski algebra. J. Symbolic Computation 5 (1988) 65-108. | MR | Zbl
:[16]Solving systems of polynomial inequalities in subexponential time. J. Symbolic Computation 5 (1988) 37-64. | MR | Zbl
, :[17]Definability and fast quantifier elimination in algebraically closed fields Theor. Comput. Sci. 24 (1983) 239-27. | MR | Zbl
[18]On the complexity of semialgebraic sets. Proc. IFIP (San Francisco 1989).
, , :[19]Complexité du principe de Tarski- Seidenberg. Compte-Rendus de l'Académie des Sciences Paris. 309 825-830 (1989). | MR | Zbl
, , :[20]On solving systems of algebraic equations. Soumis au Journal of Symbolic Computation.
, , :[21]
: Thèse. Université de Buenos Aires (en préparation).[22]Generalized poynomial reaminder sequences. Dans Computer Algebra, Symbolic and Algebraic Computation 115-138. Edit par Buchberger, Collins, Loos. Springer Verlag 1982. | Zbl
:[23]A faster PSPACE algorithm for deciding the existential theory of the reals. Technical Report 792, Cornell University Ithaca (1988).
:[24]On the computational complexity and geometry of the first order theory of the reals. Technical Report 856, Cornell University Ithaca (1989). | Zbl
:[25]Complexity of computations with real algebraic numbers. A paraitre au Journal of Symbolic Computation. | Zbl
, :[26]A new decision method for elementary algebra and geometry. Ann. Math. 60 365-374 (1954). | MR | Zbl
:[27]Algebraic geometry. Springer Verlag (1974) | MR
[28]Complejidad de conjuntos semialgebraicos. Thèse. Université de Buenos Aires 1989.
:[29]Mémoire sur la résolution des équations numériques. Ins. France Sc. Math. Phys. 6 (1835).
:[30]On a theory of syzygetic relations of two rational integral functions,comprising an application to the theory of Sturm's function. Trans. Roy. Soc. London (1853). Reprint in: Sylvester : Collected Math Papers. Chelsea Pub. Comp. NY 1983 vol 1 429-586.
:[31]A decision method for elementary algebra and geometry. Berkeley (1951). | MR | Zbl
:[32]Bounds of real roots of a system of algebraic equations. Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst. 13 7-19. | EuDML | MR
:[33]Algebraic curves. Princeton University Press (1950). | MR | Zbl
:[34]The complexity of lieanr problems in fields. J. Symbolic Computation 5 3-27 (1988). | MR | Zbl
: