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The paper is concerned with two types of estimators of an unknown 

parameter 6 of the drift of an observed semimartingale X. A martingale part M of 

the semimartingale X is not a local square integrable martingale in general. As a 

rule we suppose only that M has a r-th moment, r e [1,2]. 

The first part of the paper is devoted to an investigation of strong 

consistency of the least-square estimators (LS-estimators). Our approach is based 

on a multidimensional large numbers law for local martingales (see [1] , where 

the results were announced particularly, see also [2] - [3]). 

In the second part of the paper another type estimators of 9 are studied. 

They are so-called sequential estimators (SQ-estimators), and were systematically 

investigated in [4] for regression models with local square integrable martingales 

and quasi-left-continuous local martingales as errors. It was proved there that 

these estimators have a very important property-a guaranted accuracy. Here we 

get rid of from these assumptions proved a generalisation of Novikov's [2] 

inequality and Metivier-Pellaumail's one [5] for general local martingales and 

using the approach of the paper [4]. 

Let (Q , S5" , > Q , P) be a standard stochastic basis on which we consider 

all stochastic processes whose paths are regular. 

Let us denote (see, for references [2]) Ji¡oc (Rd) the set of local martingales, 

which values in Rd d>l: 

j$ + l o c (Rd) the set of predicatble processes, whose values are positive definite 

operators (matrix) from Rd into Rd such that At-A§ > o , t > s. 

Let Xi (A), A2 (A) and tr (A) be the minimal, maximal egenvalues and the 

trace of the operator (matrix) A. Let us denote A* a transpose matrix of A. 

For a random process X with values in yd > 1, let {w : X ¿ —>} be the set 

of (o e such that Urn Xt (co) =XJ6<o) exists for the norm ||.|| of the space Rd . 
t —>oo 
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If A , B e ? and P (A n {Q\ £ } } = o , then we write A < B (a.s.). 

Let M s ^ loc^RdS) B n d 

/ f 

Mt = Aft+ xdfa-v), (1) 

be the canonical decompostion of M , where R d = jfgd \ {o} , M c be a continuous part 

of M (and < M 0 > be its (matrix) quadratic characteristic), \i be a random measure 
of jumps of M and v be its compensator (see [2]). 

Theorem 1 : Assume the following conditions : (a.s.) 

1) Urn X± (At) = co; 
• t —> CO 

Xx (At) 
2) Urn sup < co ; 

t -> oo A 2 

r 0 0 r + o c r 
3) A~ 2 (A) d < M°>s + X~{ (A) \\xfd v< + co 

J J \ 
0 4 

for some r e [1 , 2]. 

Then AJ1 M t ^ o (a.s.) as t t CO . 

Particularly, if V is predictable increasing process such that (a.s.) 

Cl C 

d<M>t d 

-dv^+d-vt] 11*11 d ^ S < o o 

° X 
and (a.s.) 

- 0 0 

3') A 7 (As)dVs<oo, 
J 

O 

file:////xfd
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then 1) , 2) ,3") => A ^ 1 M t —> o (a.s.) as í I oo . 

Proof : Denote ¿T a compensator of an increasing process B. Then as in 

one-dimensional case (see [2]) it is proved that (a.s.). 

{a>: t r < M0^* L 1 + | [ A M J < oo}<{co:Mt^}. 

Particularly, for some r e [1 ,2] (a.s.) 

: í r < M c > 0 0 + E \\AMsf < 00} < { a ) : M ¿ - > } (2) 
S 

The last statement follows from 
2 

J ^ L < | | x f for all x e Rd , r e [1 , 2]. 

Now define as in [2] - [3] the process 

Yt = A7 1 d M,. 
» / 

O 

Using the same arguments we have that (a.s.) 

f A 2 ( A p 1 

I í ->oo A i J _ 

To complete the proof note that the condition 3) 3') implies (a.s.) 

i r < Y C > E O + S | | A y s | | r < c c 

S 

(in the case of 3')) 

and in view of (2) we get the statement of the theorem 1. 

This theorem gives us a possibility to prove the strong consistency of the 

LS-estimators in regression models with non-square integrable martingale 

errors. 

Consider the following regression model 

Xt = fsdVs9 + mt, (3) 
o 
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where mis a pure discontinuous (for simplicity) local martingale from ^ / o c (R^), 

a predictable process V e -&foc (R^), / is a predictable (dxk) - matrix , 6 e R ^ , 

k> 1 , is an unknown parameter. 

Le tF ,= f*sfsdVs,Ft>o,t>t0. 
J 

O 

In this case we can define the estimator of 6 : 
j t 

0t = F? f*sdXs=e+F? f*admB. 
J J 

o o 

Theorem 2 : Suppose for the model (3) the following conditions hold (a.s.) 

1) Urn Xx (F t) = cc; 

t —> oo 

A 9 (F t) 
2) Urn sup — T = - < co ; 

t oo h t> 

f 0 0 f 

3) A i r ( F p | | / / | | x | | r d v < c x 3 

° X 

where r e [1 , 2] , v is a compensator of a measure ¡1 of jumps of M. 

Then 9 t -> e (a.s.) as * t 00 . 
It is possible to unify the conditions of the theorem 2 , if we suppose that (a.s.) 

r ' r 
\\x\\ dv< q<co, 

0 Rd

0 

and (a.s.) 

f°° 

30 A 7 ( F s ) l / J r d V , < o o . 

j 

Then 1) - 2) - 3 ' ) => e t - » 0 (a.s.) as f t co . 

o 
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Proof: It is sufficient to note that 

e t - e =Aj1Mt, 

where At = Ft, Mt = f* xd(¡i- v). 

° X 

Using the theorem 1 we get immediatly the statement of the theorem 2. 

Remark : Note that the consistency of LS-estimators for the model (3) with 

non-random regressors was proved by Novikov [6]. The strong consistency of the 

LS-estimators for this model with non-random regressors was studied also in 

[7]-[8]. 

Now consider another type of estimators of 6 in the one-dimensional model 

(3). These are SQ-estimators, which systematically were studied in [4]. But the 

case of non-square integrable errors was handed there for the quasi-left 

continuous martingale errors m only. Here we prove an estimate for 

pure-discontinuous martingales and apply it to give an upper estimate for the 

r-th moment of the difference between the SQ-estimator and 8 . This result gives 

us (in some sense) a guaranted accuracy of these estimators. 

Denote £3 GR)- Borel cr-algebra of the space R. Let _ -

f f 
M t = xd(ii-v) 

be a purely discontinuous local martingale of the classe A ¿oc (R -*-) (see 

decomposition (1) ). 

Let U be a £3 (R\) ® ? ® £8 (R ̂ -measurable function such that for some 

r e [1 , 2] 

\ü\r d ve j&l, (R1) 

101 



6 

and 

U{t ,x ,(o)v({t} ,dx) = o (4) 

f f 
Denote Yt (U) = Ud (41 - v) and Y* (17) = sup \YS(U) | . 

s < t 
o R0 

Theorem 3 : Suppose the function U satisfies to the condition (4) and T is a 
predictable stopping time (s.t.). Then 

f T _ f 
E \Y*T_(U)\r<ArE \u\rd v, (5) 

o \ 

where Ar < 3 ) , r e (1 , 2] , A x = Z and Y,_is left limit of Yt . 

Proof. We shall use Novikov's method [5]. Let us involve the s.t. (a > o) 

C f 

r a = infix < T : \u\rd v>a), 
o # 0 

i n / ( 0 ) = T . 

Of course, xa is a predictable s.f. 

Therefore there is a sequence of s.t.'s (T^) n>\ such that 

Ta ^ Ta ( a - s -) as AI t 00 , 

It follows from here that 
n 

Ca
 r 

j £/ j r d v < a . 

Let us show that E Y* n (LO < oo, we have (as usually, Ic is an indicator of c) 
T 

a 
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EY*n(U)<E sup | U.I lui^d^-v) | + 

+ E sup | ¡¡7 . J < x d {¡1 - v) | < 

r - i 1 / 2 

f r fTa r 
<const.E | £/| . / > x d v+const .E \u\2 . I\u\<i d v < 

"a c Ca c 
< const. E \u\r . I \u\>1d v+const .E \u\r d v < 

< eonsf (a + a 1 , / 2 ) < co. 

Using this fact and the elementary inequality 

| \x+y\r- \x\r I < Cr ( I j c ^ - 1 | v | + \y\r) 

we get that 

f ° r 

£ V | > i I | y . _ + 1 7 r - | Y , : | r | d v < o o , 

n 1 

r T « f 

5 7 m < I I \Y

S-
+U\r- \Ys- r 1 < C Q (6) 

- ° \ 
This first inequality of (6) follows from 

n 

Ca
 r 

E I\u\>i I | y . - + ^ r - \Y„ \r \dv < 

o X 
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<const(r)E{l + \Y n | r _ 1 ) \u\rdv< 

° *o 

< a . const (r) .E(l+ | r* | r _ 1 ) < oo. 

The second one follows from 

f T ° /• 1 

5 V n i I l y . - + ^ r - | y . - l r | d v < 

f ° r 

<consi(r) £ J | t f | s i ( | r , - r _ 1 | ^ T ) 2 d v < 

• L o i?G 

f ° r 

< c o ^ ( r ) J E ; ( l + ( ^ ) 2 ( ' - 1 ) ) 1 / 2 7 | r / | ^ l ^ ^ d v 
a J 1 

and 

S O ^ ( U ) r 1 S C E i ; < i « ' / | t r | > 1 ) ) - 1

 + ( E r i l H ; . 7 M i l ) ) r - 1 

Now using the Ito's formula (see [2] ; p. 150-151) 
we get 

n 

\Yn\r= (\Y._+U\r- \Ya_\r)dQi-v) + 
xa 

o \ 

(7) 
n 

Ca
 r 

+ { \Y,_+U\r- \Y,_\r-r \Ys_\r~2 Ys_U)dv 

o X 
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It follows from (6) that 

E (martingale part of (7)) = 0 

Applying the elementary inequality 

\x+y | r - | x | r - r x ^ | x | r " " ^ < S r \y\r , 

where B r < 3 , r e [1,2] and B1 = 2 , 

to the second part of (7), we have 
n 

fa
 f 

E \Y n \ r <BrE \u\rd v. (8) 
o R0 

Using the Doob's inequality [2] , we get 
n 

E(Y*J< E \u\r dv. 
o R0 

To tend n t oo and a t o o we complete the proof.. 

We note that the inequality (8) for r = 1 is true with = 2 and therefore = 2. 

Now consider the one-dimensional regression model (3) and suppose that 

f f 
I x l ' d v s y , . (9) 

o R0 

where r e [1,2] , 7 is a predictable process such that 

Kt= r]~r IfXdV^^iR1). 
J 

O 

we define the following SQ-estimator 
T 

o 
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where H> o , T H = inf(t :K t >H), 
/3H - ?x -measurable random variable such that 

H ~ 

PHe[o, 1], 

C H 

7's1 \fs\rdVs+PH y~x\ | / T H | r A V^=H. (10) 
o 

Theorem 4 : Let the conditions (9) - (10) are fulfield. 
C°° 

Then 7 1

s " r \fa \rd Vs= co(a.s) =* £ 0 H = 0 andE \6H - 6 \r< const (r). HF(H+A), 
O 

where A~Esup AKt , r e [1,2]. 
* 

Proof : The first statement is the direct consequence of (10). Now we have, using 
the theorem 3, that 

E \eH-e\r =E \H~l r"/ f8xd(ti-v) + 

o \ 

" H r 
+ puH~1 y~l f AM \r<A 2 r _ 1 EH~r Y~r \f9\r\x\rdv + 

^ H T H H H R * s K s I I I 

^ JT-, 

o i? 0 

+ 2r~1H'rEl5H y~r | / T | r . | x | r v ( { T H } , d A : ) < 
H H 

R

T H -

< F - r 2 r - 1 A r E \fs\r dVs+EpH y\-r | / x | r A V T < 
H H H 

L o J 

<2r~1H~r [A r i f + A] < const (r) ,H~~ r (H + A) 

The theorem is proved. 

106 
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