## Dorothy Maharam

## Orthogonal Measures: an Example

Publications des séminaires de mathématiques et informatique de Rennes, 1977, fascicule 3
«Séminaire de probabilités II», , p. 1-3
[http://www.numdam.org/item?id=PSMIR_1977__3_A8_0](http://www.numdam.org/item?id=PSMIR_1977__3_A8_0)
© Département de mathématiques et informatique, université de Rennes, 1977, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

# ORTHOGONAL NEASURES: AN EXAGPLIE <br> by <br> <br> Dorothy Maharam 

 <br> <br> Dorothy Maharam}


#### Abstract

A family $M_{\text {of }}$ measures, defined on a Borel field $\mathcal{S}$ of subsets of a space $X$, is said to be pairwise orthogonal if, given $\lambda, \mu \in M$ with $\lambda \neq \mu$, there exists $H_{\lambda \mu} \in \mathbb{B}$ such that $\lambda\left(H_{\lambda \mu}\right)=0=\mu\left(X-H_{\lambda \mu}\right)$. $M$ will be called uniformly orthogonal provided there is, for each $\lambda \in M$, a set $H_{\lambda} \in \mathcal{S}$ such that, for each $\mu \in \mathbb{M}-\{\lambda\}$, $\lambda\left(H_{\mu}\right)=0=\lambda\left(X-H_{\lambda}\right)$ - Clearly every uniformly orthogonal family is pairwise orthogonal, and every countable pairwise orthogonal family is uniformly orthogonal. One simple example of an uncountable pairwise orthogonal family $M$ that is not uniformly orthogonal is provided by taking $X$ to be the unit interval $I$, $B$ the Borel sets of $X$, and $M$ to consist of Lebesgue measure, together with all l-point measures. Here, however, the family does have an uncountable subfamily consisting of uniformly orthogonal measures; we have only to mit Lebesgue measure. The following example shows that in general we cannot obtain an uncountable uniformly orthogonal family from a pairwise orthogonal family by discarding measures -- provided the continuum hypothesis is assumed.


Theorem (CH) There exiats an uncountable family $M$ of pairwise orthogonal Borel probability measures on the unit square $I^{2}$, such that ne uncountable subset of $M$ is uniformly orthogonal.
wive need a well-known lemma (see for example [I, p. 76]). Lemma (CH) There exists a partition of the unit interval I into a family $n$ of $c$ pairwise disjoint non-empty Bore null sets such that each null set in $I$ is covered by a countable subfamily of $\eta$.

Proof: Well-order the null $G_{\delta}$ sets as $\left\{G_{\alpha}: \alpha<\omega_{i}\right\}$, define $M_{\alpha}=G_{\alpha}-\bigcup\left\{G_{\beta}: \beta<\alpha\right\}$, and omit empty $M_{\alpha}{ }^{\prime} \mathrm{s}$. Construction Let $n=\left\{N_{\alpha}: \alpha<\omega_{1}\right\}$ be a partition as in the Lemma, and let $\left\{y_{\alpha}: \alpha<\omega_{1}\right\}$ well-order. I without repetition. For each $x<\omega_{1}$, let $\mu_{\alpha}$ denote the (linear) Lebesgue measure on $I \times\left\{y_{\alpha}\right\} \subset I^{2}$. For each $\alpha>0$, take a sequence
$\left\{u_{\alpha \beta}: \beta<\alpha\right\}$ of positive real numbers such that $\sum\left\{u_{\alpha \beta}: \beta<\alpha\right\}=1 / 2$. Take a Bore measure $m_{\alpha \beta}$ on $X_{\alpha} \times\left\{y_{\beta}\right\} \quad\left(\beta<\alpha<\omega_{i}\right)$ such that $m_{\alpha \beta}\left(\mathrm{M}_{\alpha \times\left\{y_{\beta}\right\}}\right)=u_{\alpha \beta}$. Now, for each Bored set $H \subset I^{2}$ and $x<\omega_{1}$, define
$m_{\alpha}(H)=\frac{I}{2} \mu_{\alpha}\left(H n\left(I \times\left\{y_{\alpha}\right\}\right)\right)+\sum\left\{m_{\alpha \beta}\left(H_{n}\left(H_{\alpha} \times\left\{y_{\beta}\right\}\right)\right): \beta<\alpha\right\}$
if $\alpha \geq 1$, and define $\mathrm{m}_{0}(\mathrm{H})=\mu_{0}\left(\mathrm{H}_{\cap}\left(\mathrm{I} \times\left\{\mathrm{y}_{0}\right\}\right)\right.$ ). Then put $M=\left\{m_{\alpha}: \alpha<\omega_{1}\right\}$, an uncountable family of Bored probability measures on $I^{2}$. It is easy to see that they are pairwise orthogonal. on the other hand, fixing $\gamma \ll u_{1}$, suppose $H_{\gamma}$ is a Bored subset of $I^{2}$ such that $m_{\gamma}\left(H_{\gamma}\right)=1$; then also $\mu_{\gamma}\left(H_{\gamma} \cap\left(I X\left\{y_{\gamma}\right\}\right)\right)=1$. That is, $\mu\left(H^{\gamma}\right)=1$ where $\mu$ ia Lebesgue measure and $H^{\gamma}=\left\{x \in I:\left(x, y_{\gamma}\right) \in H_{\gamma}\right\}$. By construction of the sets $\mathrm{m}_{\alpha}, \mathrm{E}^{\gamma}$ must contain all but a countable subfamily of the sets $H_{\alpha}$, and hence $H_{\gamma}$ can be null with repeat to only countably many measures $m_{\beta}$ with $\beta>\gamma^{\circ}$. It follows at once that every uniformly orthogonal subfamily of $M$ is countable, as required.

Remarks 1. By taking a little more trouble, we could ensure that the measures $m \alpha$ were all non-atomic (in addition to their other properties).
2. The continuum hypothesig is essential for the theorem. It is relatively consistent (with usual set theory) that the union of fewer than $c$ null sets in $I$ (with respect to any finite Borel measure) is always null. (See, for example, [2] for the case of Lebesgue measure; the same argument works for the more general measures considered here.) From this assumption it follows easily that, if $\mathcal{X}_{1}<c$, each family of $N_{1}$ pairwise orthogonal finite Borel measures on $I$ (or, what comes to the same thing, on $I^{2}$ ) is uniformly orthogonal.

RWFERENCES

1. J. C. Oxtoby, Measure and category, Yew York 1970.
2. J. R. Shoenfield, Martin's axiom, Amer. Math. Monthly 82 (1975) 610-617.

University of Rochester Rochester, M.Ye, U.S.A.

