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ORTHOGONAL MEASURES: AK EXAMPLE 

Dorothy liaharam 

A family )Jl of measures, defined on a Borel field & 
of subsets of a space X , is said to be pair wise orthogonal 
if, given X , ii e XTL with X / \x • there exists fl^ € S 
such that XtH^) = 0 * H ^ ) . YYl will be called 
uniformly orthogonal provided there is, for each X e H2, a 
set e such that, for each p € YYL-(x^, 
X(Hp) = 0 - X(X - H^) • Clearly every uniformly orthogonal 
family is pairwise orthogonal, and every countable pairwise 
orthogonal family is uniformly orthogonal* One simple example 
of an uncountable pairwise orthogonal family )Tl that is not 
uniformly orthogonal is provided by taking X to be the 
unit interval I , 2> the Borel sets of X , and YTL to 
consist of Lebesgue measure, together with all 1-point 
measures. Here, however, the family does have an uncountable 
subfamily consisting of uniformly orthogonal measures; we 
have only to omit Lebesgue measure* The following example shows 
that in general we cannot obtain an uncountable uniformly 
orthogonal family from a pairwise orthogonal family by discarding 
measures — provided the continuum hypothesis is assumed* 

Theorem (CH) There exists an uncountable family YYL of 
pairwise orthogonal Borel probability measures on the unit 
square I 2, such that no uncountable subset of HI is uniformly 
orthogonal« 
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We need a well-known lemma (see for example [lf p. 76]). 
Lemma (CH) There exists a partition of the unit interval I 
into a. family H jf c pairwise disjoint nan-empty Borel 
null sets such that each null set in I is covered by a 
countable sub-family ef TL • 
Proof: Well-order the null 6^ sets as £G^ : ok < 
define = G^ - U £ G^ : ̂  < c*̂  , and omit empty f s . 

Construction Let M = ^^uS^be a partition as in the 
Lemma* and let ^ 5 r

c <
: o ^ < well-order I without repetition* For 

each OL < cox , let jtî  denote the (linear) Lebesgue measure 
on I X^y^^I 2* I?** each e< > O , take a sequence 

i^otf s ^ < (*3 o f P ° s i t i v e r e a l numbers such that ̂  ^ u
f i < ^ : ? < o C ] = s ^/ 2 # 

Take a Bar el measure m ^ o n ^xfy^ ( ̂  < °< < c^) such that 

m^M^j^P ~ uo^s # l f o W f f o r e a c h B o r e l s e t H c 1 & 8 1 1 1 ( 1 

< cOj » define 

if o( ^ 1 , and define m0(H) = n t(Hn(I xfy^)* Than 
put TTL = {m^ s KX. < <x)̂ , an uncountable family of Borel 
probability measures an I • It is easy to sea that they are 
pairwise orthogonal. On the other hand, fixing y< ca{ , suppose 

is a Borel subset of I 2 such that »y(H^) - 1 i then also 

p (H > 7*(I X^y^)) = 1 • That is, p(Ky) = 1 where p is 
Lebesgue measure and H y ~ (x c I : (x, y y) € H y ^ By 
construction of the sets J^, H r must contain all but a 
countable subfamily of the sets 1^ , and hence H y can be 
null with repect to only countably many measures m^ with ^ > V . 
It follows at once that every uniformly orthogonal subfamily 
of T|71 is countable, as required* 
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Remarks 1. By taking a little more trouble, we could ensure 
that the measures m ^ were all non-atomic (in addition to 
their other properties)• 

2# The continuum hypothesis is essential for the 
theorem. It is relatively consistent (with usual set theory) 
that the union of fewer than c null sets in I (with respect 
to any finite Borel measure) is always null. (See, for example, 
[2] for the case of Lebesgue measure; the same argument works 
for the more general measures considered here*) Prom this assumption 
it follows easily that, if < c , each family of 
pairwise orthogonal finite Borel measures on I (or, what 
comes to the same thing, on I 2) is uniformly orthogonal. 
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