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ERGODIC THEORY FOR 

INNER FUNCTIONS OF THE UPPER HALF PLANE 

Jon Aaronson 

Abstract : 

The real restriction of an inner function of the upper half 

plane leaves Lebesgue measure quasi-invariant. It may have a finite or 

infinite invariant measure. We give conditions for the rational ergodi 

city and exactness of such restrictions. 

Abstrait : 

La restriction à la droite réelle d'une fonction intérieure 

du demi-plan supérieur laisse la mesure de Lebesgue quasi-invariante, 

et peut avoir une mesure invariante finie ou infinie. Nous donnons les 

conditions pour l'ergodicité rationnelle et l'exactitude de telles 

transformations. 

Rennes , 

December 1977 
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ERGODIC THEORY FOR 

INNER FUNCTIONS OF THE UPPER HALF PLANE 

Jon Aaronson 

§0 - Introduction 

In this paper, we consider the ergodic properties of the 

real restrictions of inner functions on the open upper half plane : 

R 2 + = {x+y : x,y e R, y > 0} . 
2+ 2 + 

Let f:(R -> R be an analytic function. We say that f 
i s an inner function on IR2+ if for A-a.e. x e R the limit limf(x+iy) 

y4-0 
exists, and is real. (Here, and throughout the paper, \ denotes Lebesgue 
measure on IR) . Consider the limit lim f(x+iy) = Tx . This is defined 

y*0 
A-a.e. on R . We call this limit the (real) restriction of f , and will 
sometimes write this as T = T(f) . We will denote the class of inner 

2+ 2 + 
functions on (R by I (R ) = I , and their real restrictions by M(R) . 

2+ -1 
We note that f e I (R ) iff 0 f 0(z) is an inner function of the 

unit disc, according to the definition on p. 370 of [8j (where 
0(z) = i(-pf)) • 

The following characterisation of I(R 2 +) appears in [6] anil 

£ e I((R2 + ) iff 

(0-1) f(u) = aa> + 6 + J" du(t) where a > 0, 0 e R and y is 
— CO 

a bounded, positive Borel measure, singular w.r.t. A . Since we shall 

be refering to (0-1) rather a lot, we shall denote the class of bounded, 

positive, singular measures on |R by S(R) . 
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T(f) preserves the Cauchy distribution . It was shown tri Jj6j , 
that if f is 1 - 1 , then T(f) is conjugate to a rotation of the 
circle, and shown in {jS] that otherwise, T(f) is mixing. We show 
in §1 that if f is not 1 - 1 then T(f) is exact. 

In §2 we recall some well known facts about inner functions 
of IR 2 + . The Denjoy-Wolff theorem (see and £{«]) adapted 
to IR2+ shows that when studying the ergodic properties of Tff) , 
for f e I(IR2 + ) with no fixed points in 1R2 + , we may assume that 
a(f) > 1 . In case a(f) > 1, T(f) is dissipative, and when a (f) = 1, 
T(f) preserves Lebesgue measure. 

In §3, we consider the case a(f) - 1. Here, the conservati-
vity of a restriction T(f) is sufficient for its rational' ergodici-
ty ( C ^ D ) (ergodicity * was established in flff] ) . We also give suf
ficient conditions for exactness, and discuss the similarity classes 

([i^) °f restrictions. 
The ergodic theory of certain restrictions has been consi

dered in [2] , [5] , [7] , [1 0] j [11], D*l *"A> D* 3 

The author would like to thank B, Weiss for helpful conver
sations, and G. Letac, J. Neuwirth and F. Schweiger for making pre
prints of their works available. 

G. Letac ([6]) has shown that a measurable transformation T 
of R preserves the class of Cauchy distributions iff either T e M(R) 

or -T e M(R). In particular, if dP - b (x) = ~ 2 f o r a + i b G R 

77 (x-a) +b" 
and T = T(f) e M(R) , then : 

(0.2) P o T ~ 1 = Prr , for w e R 2 + 

This equation shows that M(R) is a class of non-singular 
transformations of the measure space (R,B,A), and is therefore an object 
of ergodic theory. 

2+ 2 + Let f e I(1R ) have a fixed point o> e IR .By (0.2), 
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§ 1 - Mixing restrictions preserving finite measures 

Theorem 1.1 

Let f e I(IR2 + ) and assume that £ is not 1 - 1 . If f 

has a fixed point u>0 z R 2 + , then (R,(|?P ,T(f)) is an exact mea-

sure preserving transformation. 

i.e. T^ 1 (g = {0,R} mod X. 
n>1 

Before proving theorem 1.1. , we shall need some auxiliary 

results. The first of these is Lin fs criterion for exactness of Markov 

operators (theorem 4.4. in [7]) as applied to our case. To state this, we 

shall need some extra notation : 

Let T z M(IR), then (R,B,X,T) is a non-singular transfor

mation, and so g e L°°(R,B,X) iff goT z L°°(R,B,X). We define the dual 

operator of T , T : L 1(R,B,X) -> L 1(R,B,X) by 

J R Th.gdX = / R h.goTdA for h z L and g z L 

2 + 
If we write, for & = a+ib z R 

d P u 1 
dX (x-a) +b 

then equation (0.2) translates to : 

(1.1) T* w = <j>f(aj) for T = T(f) c M(R) 

Clearly, T is a positive linear operator, J R ThdX = JRhdX 

for h e L^ . 

Lin's Criterion (for restrictions) Let T = T(f) e M(R) . 

T is exact iff 

(1.2) | | T ull-j 0 for every 

u z L 1 , / udx = 0 . (Here, and throughout, I j u f ^ = / R |u|dX) . 
R 
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Kc will need the following elementary lemma: 

2 2 + 
L e m m a 1 . J If ^ n e ÏR and ш -> аз e R then : 

I U W - Ф ш | | 1 - о 
n 

Proof of the theorem 1.1 

We first show that f n O ) -> O)Q VOJ e jR2 + , where 

f 1 ( w ) = f(u)) and f n + 1 ( a > ) = f(f n(o))). 

Let 0 : U = {lz.|<l3 •> R 2 + be a conformai map. Then 
g = 0~1f0 : U + U is analytic, and g ( 0(o> o)) = 0 O Q ) . By the Schwai 
lemma (ВД) : | g ' (0 ( Q̂) ) | < 1 as g is not 1 - 1 . It is now not 
hard to see that g n(Z) -> 0O Q) Vz e U, and hence that 
f n(o>) + o) Q Vo> e iR2+ . 

Hence, by lemma 1.2 

I |Т П ф - ф I I = I |ф n - Ф ш I I ^ 0 for аз e R 2 + 

ш ^0 1 . \ r s 0 1 
We will now establish that 
-n 1 

I IT u I ! 1 -> 0 for u e L with | R udA = 0 

which, by Lin's criterion, will ensure the exactness of T . 

Let u e L 1 with | R udA = 0 and let e > 0 . By 
Wiener's Tauberian theorem (see [12] p. 357), there exist c ^ . - . u ^ , 

a 1...a^ e Q such that 
N 

llu - ^ ttj Ф а < e/2 

N 
Clearly, this implies that | I a - | < E/2 and so : 

j = 1 3 
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< ||T n Cu-_Z a j * a . + i ) | | 1 + M T n ( j «.(. f l + II, < 
3 = 1 J J = 1 J 0 J = 1 o 

< e + 6(1 ) as k « Q 

Since e > 0 was arbitrary : ||T u | | 1 •> 0 - | | 
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Proposition 2 . 1 (07} p• 15I-1) 
Let f e I(R2 + ) 

r r- K^ a(f) = a e [0,«0 as b -* °° (a as in 0.1) 
Then - { 

ib y(f) e f a , J as b * 0 

Moreover a = y iff f(w) = rnu 

Proof. From the representation 0.1 , we immediatly calculate that : 

IUb! . o + _ 3 + l-b2_ r tdPitl_ + _4_1_4 d M ( t ) (2.r, 
ib ib ib -<*> t + b -co t + b 

It follows from elementary integration theory that 

— v - -> a = a(fj as b -»• «> . 

ib 

To check the limit as b -* 0 , we "flip" f to pet : 

f O ) = - 1/fC-f/a,) 

Since f e I(R^ +), we have that 
Lilkl -> a(f) E [0,-) as b - » 
ib 

but this decodes to : 

H i M - Y(f) = — 1 - e (0/»] as b + 0 . 
ib <x(f) 

Now, if y(f) < 00 then, by 2.1 : 
2 

Y(f) = a + J" i i § - dy(t) 

Hence y(f) > a(f) with equality iff n s 0 . | | 

Proposition 2.2 

Let f e I(R 2 +) and T = T(f) 

§2 - Basic Classification 
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If a(f) > 1 then T is dissipative . 

Proof. Write f n(>) = + ivn(oO • 
From the representation (0.1), we have : 

, 0 0 1 +12 

V (a)) = aV (a)) + v (u) / i—i~ - >oĉ  
n + 1 n n - 0 0 rt-u ) 2+v 2 " n 

v n' n 
Hence v (i) > a11 for n > 1 , and n - 7 

T n
+ i ( t ) = < -V 

'((t-u n) 2
+v^ ™ 

Clearly I T%.(t) < — - — Vt e R 
n=1 1 " (a-1) 
CO 

and so I 1 0 T n < 00 a.e. V A e IB ; A (A) < * Q 
n=1 A 

Proposition 2.5 (Letac [6]) 

Let f e I(R 2 +) , T = T(f) . 

If a(f) = 1 then X o T~ 1 = X . 

Proof. Let f(ib) = u(b) + iV(b) 
we have : u(k) -> 0 and v ^ 1 a s b -> «> 

b b 

Hence, for A e B : 

7 r b P i b (A) - A (A) 

and ^bPffib)^) ~* X ^ a s b * 00 ' 

Since P i b(T~ 1A) = Pf(ib)( A) > w e h a v e t h a t 

X(T" 1A) = A(A) for A e JB • 
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The next result is the Denioy-Wolff theorem stated on |R?J+, 
2 + 2 + which shows shows that if f e I ((R ) has no fixed point in jR , 

then 3 f'e I(R ) with o(f) = 1 , and such that (|R,8iA, T(f)) 
and (R,B,A,Tff)) are conjugate, (and therefore have the same ergodic 

properties). 

Theorem 2.4 
2 + 2 + Let f e I (R ) have no fixed points in |R , and assume 

that aff) < 1 ; then 

3 ! t e R such that a ( 0 t f 0 ~ 1 ) > 1 where 

9tM = ^^rS • ( N o t e t h a t a ( 0 o ' f 0 O ) = 1 / ^ £ ) ) -

Proof. 

Let 0(z) = i ( | r f ) • Then g = 0 ' 1 £0 : U -> U is analytic, 

and has no fixed points in U . The Denjoy-Wolff theorem on U(see 

["/3] or [/4]) shows that 3 ! P e T s u c h t h a t 

Now let t = 0(p) , * = i f 2 ^ ) and f = *g • e 1 2 J R 2 +J-
- 1 - 1 P -1 It follows that 0i|> = 0 and hence that f = 0 t f 0 t 

Also, (*) means that Im ipg(Z) > Im \(;(Z) for Z e U, and hence 
2 + r Im f(co) •> Imu) for a) e IR , which implies a(f) > 1 . |_] 

If ° ^ ( 0 t f 0 ^ ) > 1 f° r some t , then by proposition 2.2, 

T(f) is dissipative. If a ( 0 t f = ^' then, by proposition 2.3, 

T ( 0 t f 0 t

1 ) = 0 t T(f) 0 ~ 1 preserves Lebesgue measure. Hence T(f) 

preserves the measure v t , where dv t(x) = dx/(x-t) 
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The r e s t of this section is devo

ted to odd restrictions. 

(We say that a restriciton T is odd if T(-x) = -T(x)). 

Lemma 2.5 

Let f e I(R 2 +) and let T = T(£). The following are equi

valent : 

(i) T is odd (ii) Re £(ib) = 0 for b > 0 

2 + 
(iii) f(-a>) = - f O ) for a) c R 

(iv) f(a>) = aw + /°° 1 * t a ) du(t) where y & S(R) is symétrie. 
- c o t" W " 

Proof. The implications (iv) => (iii) => (i) and (iii) => (ii) are 

elementary. That (ii) => (iii) is because of the Schartz reflection 

principle (see [9]). The fact that for t > 0 : 

eitf(uO m r eitT(x) ^ ( t ) d t 

— oo 

gives the implication (i) => (iii) • 

We show that (iii) => (iv). Assume (iii). It is evident that 



6 = 0 in the representation 0.1 , so we have 
10) 

t ̂  1 t 03 

f(u>) = aw + J dy(t) where a > 0 and y e S(R) 
- oo t - 0) 

We must show that y is symetric. To see this, we first 
rewrite the equation v(-a+ib) = v(a+ib) (implied by (iii)) as : 

(2.2) f • b(t-a)(1+t 2) dy(t) = /°° *"b(t + a)(1+t2) dy(t) 
OO 00 

Next, we take g(t) a continuous function of compact support 
and let g b(t) = * g . for b > 0 . It follows from (2.2) that 

/" g b(-t)(1+t 2) dy(t) = r g b(t)d+t 2) dy(t) . 

that 
The symetry of y is established by the (elementary) facts 

g b(t) + g(t) as b + 0 

sup ( i n 2 ) |gh(t) I < 0 0 „ 
teR ° • 
b>0 

We denote the collection of those inner functions on 
satisfying the conditions of the above lemma by I Q ( R 2 + ) , and remark 
that f e I Q ( R 2 + ) iff 0 ~ 1 f 0 is an essentially real inner function 
of U . (Here 0(z) = i(|^|)) . 

Theorem 2.6 

Let f e I Q ( R 2 + ) and T = T(f) . 

If a(f) < 1 < y(f) then T preserves a Cauchy distribution. 
Moreover, if u)f(a)) is not constant, then T is exact. 

Proof. If f e I Q ( R 2 + ) then it follows from the lemma 

Y(f) = a(f) + r li* dy(t) . 
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Now since <*(f) < 1 < Y(f), we have that 

/~ - ^ Ц - dp(t) > 1 - a > 0 . 

-oo 1 + t ̂  
But / — ~ dp(t) I 0 as b -> « so there is a b n > 0 

- t Z+b Z 0 

. 00 1 +1 
such that / — j du(t) = 1 - a, i.e. f(ibg) = ib Q , hence 

00 г + b 0 
P.. о T~ 1 = P., 

l b 0 l b 0 

The result now follows from theorem 1.1 

To illustrate the results of this section, we consider 

T^ = ax + Btan x where a,B > 0 . 

If either a > 1 , or a + 6 < 1 , T is dissipative. 

If a < 1 < a+6 , then T preserves a Cauchy distribution 

and is exact. (This was established in £ 5 ^ for a = 0 , g > 1) . 

The remaining cases (a = 1 and a+B = 1) are contained in 

the discussion of : 

§3 - Restrictions Preserving Infinite Measures 

In this section, we consider those restrictions preserving 

infinite measures with a = 1 , and y = 1 • 

We will see that for these transformations, conservativity is 

sufficient for ergodicity and rational ergodicity ([1]) - a stronger 

property (example 1-2 in [l] ) . We then give sufficient conditions 

for exactness. 
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Firstly, we recall the definition of rational ergodicity. Let 
\̂,?B,m,T) be a conservative, ergodic, measure ^reserving transformation 

of a non-atomic, a-finite measure space. We say that T is rationally 
ergodic if there is a set A , of positive finite measure and K < » 
such that 

n-1 , j n-1 , ? 

(Bl 1 ( 1 1 A o T K ) z d m < K ( I m ( A O T A ) ) Z for n > 1 
A k= 0 " k=0 

For a rationally ergodic transformation T , we let B(T) denote the col
lection of sets with the property (B) . It was shown in [l] that there 
is a sequence {an(x)} such that 

\—Y I m(AflT A) + m(A)* for every A e B(x) 
a n U J k = 0 

The sequence ^ a
n t T ) ^ n ^ s known as a return sequence for T 

and the collection of all sequences asymptotically proportional to a
n ( T ) 

a 
(i.e. —-p-y •> c c (0.,«)) is known as the asymptotic type of T and 

n 
denoted by QKT) • l 1 : w a s shown in [1J (theorem 2.4) that if and 
are rationally ergodic transformations which are both factors of the same 
measure preserving transformation, then 

a (T ) 
0 . ( 0 = QI(T ) (i.e. 3 lim-^Ke (0,«>)) . 

n^-oo n 2 

We commence with the case a(f) = 1 . 

Lemma 3.1 
Let f e I(R2 + ) be non-linear and let T = T(f) , 

2 + fn((jú) = u O ) + iv O ) for n > 1 0) e R n n 
If a = 1 then T is conservative 

°° V ((A)) ? + 

iff J — - 2 j = » V o» e R Z 

n-1 |fn(u»)|2 
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oo 

(3.1) I q (t) = » a.e. Vz e U . 
n=1 M n(z) 

We next show that M n(z) •> 1 as n •> » Vz e U . This will 

follow from the fact that f n(u)) 00 as n -> °° V w e R which we now 

demonstrate. From 0.1 : 

V I W - V N ( . ) • V n o r ( 1
F ; T

I
2

L \ F ; ^ ) j V N ( . ) . 
- (f-u n) + v n 

Hence v + v . It is not hard to see that if v„ < we must 
n 00 

have |U I •* « . Hence M n(z) 1 . 
ie 

Now choose z e U and let M (z) = r e • We have r n •+ 1 
and e -> 0 . Also : n 

1-r 1-r 
q (t) = 2 7 * — as n •+•>- . For t ^ 0 . 
M n(z) 1-2r ncos(9 n-t)+r^ 1-cost 

Thus : 

00 

(3.2) T is conservative iff £ 1-|M n(z)| = • Vz e U . 
n=1 

Since M n(z) + 1, the second condition is the same as 

* w h e r e . ) 

Proof. It will be more comfortable to work on the unit disc U . Accor
ai 3e 

dingly, we let M(z) = 0 f0(z) . Then M is an inner function on U . 
i 9 Let M(re 1 9) + x e 1 0 as r -> 1 a.e. . Denoting Im(e. * z) by q (e) and is, z «1 e +z 

q z(6) de by d7Tz(e), we see that uz o 0"" = tt^ P 0 ( z j and this combined 
_ i 

with the fact that 0 T 0 = T gives us that : 
-1 

0 T " *M(z) 

So T is a non-singular transformation of (t,A), and is con

servative iff T is conservative. 

Let T be the operator dual to T, acting on L ! . Then 
T q z(t) = Q ^ ^ C O a n d T is conservative iff 
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00 2 
1 1 - |M n( z) I '•' » » V z e U . 

n=1 

Now if ш = a + ib e R 2 + , then 

1 _ o^i 2
 = 4b 

ш М a 2
+ ( b + 1 ) 2 

From the definition of M , we have 

r. i ? 4v (ü>) 4v (со) 1 - | M n ( ^ | ) | 2 ÎL-! , n^-J a s n _ 
U n M + ( v n + 1 ) 2 | f n U ) | 2 • 

Theorem 3.2 
Let f z I(R 2 +) be non-linear, T = T(f) and a(f) = 1 . 

If T is conservative then T is rationally ergodic^ 

and Q f T ) =í y — j ~ j] for every w e R 
k = 1 | f (a)) | 

Proof. We first prove ergodicity, and here again, it is more comfor
table to work on U . We prove the ergodicity of T . If T is conserva-

oo 

tive then by (3.2) I 1-|M n(z)| = - Vz e U . Since M n(z) 1 , we must 
n=1 

have that the points {Mn(z)} are distinct. Now, let h e N(U) (defi
ne 1 

ned on p. 303 of [9]) . If h(M(z)) = h(z) for some z e U then by 
theorem 15-23 of [9] .hmust be constant. The ergodicity of T is deduced 
from this as follows : 

Let A c T be an T-invariant measurable set. 
The function u(z) = / q (8) 1 (0) d0 is a bounded harmonic function on 
U , and u(g(z)) = u(z) on U . By theorem 17-26 of [8], u is the imagi
nary part of an analytic function F(z) e Hp(u) for 1 < p < « (líe N) . 

Clearly F(g(z)) = F(z) + c where c e R . 

Let F*(e l 6) = lim F(re i 0) , then F*(re l 9) = F * ( e i 0 ) + C .The 
r-M 
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(3.3) 7rbn(o)) T
n<frw(t) -* 1 uniformly on compact subsets of R . 

n 1 

Let a (a)) = 7 « * n . From (3.3) we have that 
k=i * B K ( U ) 

i n-1 ~, 
(3.4) - — 7 — v V T é -»• 1 uniformly on compact subset of R 

a n U ) k ^ Q 

Now, since T is a conservative : ER^ODIC transforma-

tion , it follows that T is a conservative ergodic Markov operator, and 

we have from (3.4), by the Chacon-Ornstein theorem (see [3]) that : 

1 n ~ 1 ~v 
(3.5) — I T f + J fdA a.e. Vf e L 1 . 

a n ( a ) ) k=0 R 

a (a)) 2 + 
Hence ^ a -> °° s.t. — -> 1 for every u> e R -J n a • n 

We will prove rational ergodicity of T by showing that bounded 

intervals are in B(T) 

Let A = [a,b] where -« < a < b < » 

Then 1. < c<f>. 
A - Y i 

Hence, by (3.4), there is a < 0 0 s.t. 

(3.6) — T k 1 A(x) < C for n > 1 , x e A . 
a n k=0 A " 1 

conservativity of T yields that c = 0 (since the set [|F | < M] has 

positive measure for some M , and so every point of this set returns infi

nitely often to it under iterations of T — an impossibility if c f 0). 

Thus, by step 3, F is constant and hence u is constant 5 h£s\C^ ^f\C
G). 

We now turn to rational ergodicity. 

^ V • 

Since fn(oi) « , it is clear that : 
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This, combined with (3.5), gives (by dominated convergence) 

(3.7) -± V A (A P|T" kA) - A (A) 2  

an k=0 

To complete the proof that T is rationally ergodic, we show 

that : 

(3.8) / ( V 1, o T k ) 2 dp < 2 C. a 2 for n > 1 . 

A k=0 A - i n 

/a ( V 1 A o T k ) 2 du < 2 V X(AH T"k(A ftT^A)) 
A k=0 A k=0 i=0 

n-1 n-1 - v 

= 2 J / „ y T K 1 A dX 
1=0 JAfir* A k=0 A 

< 2 C a 2 • 
1 n 

Remark : If, in addtion, we assume that f e I Q ( R 2 + ) , we have that 

t>n(i) = v (i), and that (3.6) holds for every x z R . In this situa

tion, we have that 

1
 n ~ 1 ^~k 

— 1 P(T -¿3 A (A) for p a A-absolutely continuous pro-
a n k=0 <V 

bability measure, and A a bounded measurable set. (see [4] §4). 

We now turn to exactness. The following elementary lemma plays 

a similar role to that of lemma 1.2. 

Lemma 3.3 
a 

If b -*-°°,B % b and T ~ ~ -»• 0 as n -> °° then 
n n n b n 

a n + l b n l B n 1 

Theorem 3.4 

Let f e I ( R 2 + ) , T = T(f) and assume 
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f M = u + ; K d^Ui 
-K t-a» 

then : T is exact rationally ergodic and QJ^T) = {/n} 

2 1 Proof. jLdb L = max{v(R),v(R) } and assume that K > ~ .We write 

fn(co) = ^^((jl)) + iv (a>) . The assumption of the theorem means that 

< 3 ' 9 > V 1 " U n + T T ^ T ? — 2 dv(t) -K (t-u ) +v ^ n n 

v = v + v /k d v m 
n + 1 n n -K (t-u n) 2

+ V2 

The first part of the proof of this result consists of dedu
cing the asymptotic behaviour of u n and v^ . For this, we assume that 
a) = a + iL where a e R . The recurrence relations (3.9) show us that 

v (u>) > L for every n > 1 . 

and this enables us to deduce the boundless of |u (co) I as 

follows : 

Not-ing that : 

rK t ~ u n , i f 1. < vIEi < 1 

we see that : 

If u n > K then -K < K - -1 < u n + 1 < u n 

If u < -K then u < u < -K + \ < K n - n - n+1 - I -

If u n < K then 
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r K dv (K-un) 

If u n > -K then u n + 1 > -K 

Hence |u n(a+iL)| < |a|vK for n > 1 
The recurrence relations (3.9) now imply that v^ -> » as 

n -> 00 and hence 

v 2
 + 1 - v 2 - 2 v 2 / K — ^ C t ) + V 2 ( / K __ivl|l 2 

~> 2v((R) as n -> 00 

Hence vn(a+iL) ^ /2vn as n -> 00 . 

Lemma 3.3 now shows us that for every a <£ R : 

(3.10) I |T n <(, a + i L - • j ^ l I - 0 as n ^ » . 

We now obtain exactness by Lin's criterion by an argument simi

lar to that of t\fUor^ml"i, (The rational ergodicity of T has already been 

established, and its asymptotic type characterised^by,theorem 3.2). 

Let u e L 1 , / R udA = 0 , and e > 0 : 

By Wiener's Tauberian theorem, there are ... , 
â  ... a^ z R such that 

N 
l | u " k=i a k S + i L M l * e / 2 

Whence : 

I u|L < || T n(u- I « • + . L ) I I + I |T n I ak<j> + i L - I ak<}»i | | 
1 k=1 k ak l L 1 k=1 K ak 1 L k=1 K 1/2Tn 1 

+ I I 1. « k * t I I 
k=1 K i/2^n 1 
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- n N N N 

| |T n u| | 1 < I lu- J ouch | | + T a k | |T n 6 - *. | L + | J | 

1 k=1 k a k + l L 1 k=1 k M ak l L l v ' 2 v n 1
 k=1 k 

< e + 0f1) • 

l\e note that the "generalised Boole transformation" (proven 
ergodic in [7_| ) falls within the scope of this last theorem. 

If we added g f 0 to f in theorem 3.4, we would obtain 
that for Imw large enough |u n0,0j > Cjn and v n U ) < c 2 logn (where 

fnf^) = i (w) + iv (>))• The methods of lemma 3.1 would yield that T(f) ' n n 
is dissipative. 

The following corollary follows immediately from lemma 3.1 
and theorem 3.2 . 

Corollary 3.5." 
Let f z I 0 ( R 2 + ) and let T = T(f), f n(i) = ivn(i) . If 

a(f) = 1 then : 
°° 1 1 

T is conservative iff \ ^ , = 00 

n=1 n^ ] 

and in this case, T is rationally ergodic with 

a < T > = { I ^ t t ' • 

Moreover, in case f e I Q and a(f) = 1 : we have that 

v 00 and so : n 

n n 

+ 2 /" (1 + t 2) du(t) < -
— 00 

Hence : 
v (i) t * 
-2 - /2r(1 + t z) d p(t) < -
/n -°° 
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which means : 

(a) T X T X T is dissipative 
a (T) 

(b) — с e [О 9°0 a s n ^ 00 • ( i n c a s e T is r.e.) 
/n 

These last two properties are held in common with the restric
tions of theorem 3.4, and with the Markov shifts of random walks on Z . 

The following example does not fall within the scope of theo
rem 3.4, (though theorem 3.2 does apply). 

Example 3.6 Tx = x + atan x is exact, rationally ergodic with 
a (T) <x, for a > 0 . 

n K J a 

Proof. Let ffo)) = a) + atan w and f n f w l = u fu>) + iv (a))  v ^ J n n v y 

Then : 0 

2asm 2u ne 11 

Un+1 U n + ~4v 2ÂT~" 
e n-2cos2u e N " + A n J-

e n 

and v , 1 = v + QL—A — — — n+1 n 4v v 
e n-2cos 2u e ^ 4-1 n 

Whence : v J_i - v > atanh v > atanh v n > 0 n+1 n - n - U 

so ^ an as n 00. 

On the other hand : 
2v 0 2ae n -2v 

'un+l " Un' — 2 v < 4 a e n < 4 a e f o r n l a r S e • 
~ (e n - 1 ) 2 " 

Hence u
n ^ U o o 9 a n <3 the argument that T is exact now pro

ceeds identically to the last argument of theorem 3.4. 

• 
2 + 

The following lemma will give examples of f e I n(R ) with 

a(f) = 1 and T = T(fV, and also uncountably many dissimilar (see 

^restrictions T(f) with f z IQ(R ) > <*(f) = 1 . 
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Let y e S(R) be symetric with 
c(x) = u(|t| > x) ^ — where 0 < a < 2 

Let £ (a)) = a) + r - I J ^ - dy(t) and f n(i) = iv 
a v J t - a ) n 

— oo 

1 / a 

Then : ^ cn where c depends only on a . 

Proof. We have 

v , = v (1+F(v )) n+1 nK v nJ J 

1+1-2 

where F(b) = J°° ^ 2 dy(t) . 
- o o t +b 

It is not difficult to see that 

F( b) = iffil + 2(b 2-1) T - - £ i & d x 
b 2 0 ( x

Z+b^) X 

We first show that F(b) ^ — 1 as a ->- °° 
b a 

Let e > 0, and M be such that 

— < c(x) < — ' 
X X 

Writing 
1-a Lw(b) = C r £,2,2 d X M (x +b ) 

we have that : 

(1-e) L M(b) = XC

2

{Xld2 < d + Lw(b) . 
M M (xz+b ) M 

Now L (b) = f * I 2 dx = I" ^-2-^2 * ~2^T a S b * ~ 
M m (x z+b^r b z M/b (xz+ir b Z a 

1 - a 

where c = /°° ^—*— 
0 (x^ + ir 
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Since e > 0 was arbitrary and a < 2, we have that 

F(b) ^ — as b -> 00 

b a 

Clearly, v n + » , hence : 

^ av a Ffv ) as n •> » n v n^ 

-> ac as n + °° 

Thus v n % (^cn) 1^ as n -> 00 • 

We now let T = T(f ) . 

By corollary 3.5 : 

If 0 < a < 1 " then T is dissipative . 
a 

If 1 < a < 2 then T^ is rationally ergodic and 

f{logn) if a = 1 

Vin } if 1 < a < 2 

If follows from theorem 2.4. of [ 1 ] that if 1 < < a 2 < 2 
then T and T are not factors of the same measure preserving trans-

a 1 a 2 
formation. 
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Theorem 3.&. 

Let £ E I(R 2 +) and T = T(f) 

Suppose X|j E R and £ is analytic in a neighbourhood around X Q . 
If Tx Q = x Q , T'(x05 = 1 and T M(x 0) = 0 then T preserves 

dx 
the measure v where dv (x) = =• , and is exact rationally 

X 0 X0 (x-x Qr } 

ergodic with asymptotic type {/n} 

Remarks : The conditions Tx Q = x Q and T'fxg) = 1 correspond to : 

« ( 0 . . f 0 ) = 1 . If, in this situation, T"(xJ + 0 : then T is 
0 0 0 

dissipative. By possij)ly considering g(w) = £(u+x 0)-x 0 , we may (and 
do) assume x^ = 0 . 

oo 

Proof. Let f(u>) = a) + y a

n

a ) I 1 f o r l w l small . 
n=3 

00 

Then - — = -—1 = ) a to 
f(o>) a) £(o>) f(<5) n=3 

-> 0 as co -> 0 
oo 

Hence -—— = - + T b a ) n f or | u> | small . 
f(w) n=1 

Let f(u) = -1/f(~) • 

Then : 
oo 

(3.11) f(a)) = u> + y b o T n for | o ) | large, say | u | > K and, 
n=1 n 

since f e I(R2 + ) , a(£) = 1 : 
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(3.12.) f( u) = a) + e + j°° J — ^ dy(t) where v e S(R) , 6 e R 

In order to prove the theorem by applying theorem 3.4, we 
will show that 

(3.13.) f ( u ) = a) + / where v e S (R) . 
~* K 

Firstly, let g(u) = £(oj) - w . By (3.11.) : 

- ibg(ib) -> as b -» » 

But by (3.12.) : 

- ibg(ib) = -ib( 6 - b 2'/T tdaitl) + i b tdylO 
-co t^+b -» t +b 

- c o t +b 

Hence, we obtain, from the convergence of the real part, that 

/°°(1+t2) 'dvi(t) < -
— oo 

and from the convergnece of the imaginary part that : 

b 2 p tdpltl B a s b ^ . . 
- o o t +b 

which convergence, when combined with the previous one, gives 

/°°tdy(t) = 3 • 
— oo 

Now, let dv(t) = (1+t 2) dp(t) , then v e S(R) and it 

follows easily that 

(3.14.) f(«o) - u + /" ^ 1 
-°° t-CO 

Now, let h, (a) = Im g(a+ib) = b/°° • B Y (3.11.) 
D — (t+a) z+b z 

g is uniformly continuous on compact subsets of [|u>| > K] , and so 

h^(a) -> 0 as b + 0 uniformly on compact subsets of [|a| > K] . 
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The transformations T x = ax + (1-a) tan x for 0 < a < 1 
a 

fall within the scope of theorem 3.9. (It was shown in |]l] that T Q 

is ergodic). It follows from asymptotic type considerations that the 
above transformations are dissimilar to Tx = x + atan x . 
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