@article{PSMIR_1976___S5_A8_0, author = {Johnson, C.}, title = {A {Mixed} {Finite} {Element} {Method} for {Plasticity} {Problems} with {Hardening}}, journal = {Publications des s\'eminaires de math\'ematiques et informatique de Rennes}, eid = {8}, pages = {1--16}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {S5}, year = {1976}, language = {en}, url = {http://www.numdam.org/item/PSMIR_1976___S5_A8_0/} }
TY - JOUR AU - Johnson, C. TI - A Mixed Finite Element Method for Plasticity Problems with Hardening JO - Publications des séminaires de mathématiques et informatique de Rennes PY - 1976 SP - 1 EP - 16 IS - S5 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://www.numdam.org/item/PSMIR_1976___S5_A8_0/ LA - en ID - PSMIR_1976___S5_A8_0 ER -
%0 Journal Article %A Johnson, C. %T A Mixed Finite Element Method for Plasticity Problems with Hardening %J Publications des séminaires de mathématiques et informatique de Rennes %D 1976 %P 1-16 %N S5 %I Département de Mathématiques et Informatique, Université de Rennes %U http://www.numdam.org/item/PSMIR_1976___S5_A8_0/ %G en %F PSMIR_1976___S5_A8_0
Johnson, C. A Mixed Finite Element Method for Plasticity Problems with Hardening. Publications des séminaires de mathématiques et informatique de Rennes, no. S5 (1976), article no. 8, 16 p. http://www.numdam.org/item/PSMIR_1976___S5_A8_0/
[1] Finite element limit analysis using linear programming, Int. J. of Solids and Structures 8 (1972), 1413-1431. | Zbl
and ,[2] Analyse Convexe et Problèmes variationnels, Dunod, Paris, 1974. | Zbl
. and ,[3] Existence theorems for plasticity problems, to appear inJ. Math, pure et appl. | MR | Zbl
,[4] On finite element methods for plasticity problems, to appear in Numerische Mathematik. | MR | Zbl
,[5] On plasticity with hardening, to appear. | MR | Zbl
,[6] Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening. Int. J. num. Math. Engng, 5 (1972), 113-135. | Zbl
and ,[7] Elastic-plastic analysis of Saint-Venant torsion problem by a hybrid stress model. Int. J. num. Math. Engng, 5 (1972), 193-207. | Zbl
, et. al.,[8] Error estimates for elasto-plastic problems, to appear. | Numdam | MR | Zbl
and ,