@article{PSMIR_1975___S4_A26_0, author = {Walters, Peter}, title = {A {Generalised} {Ruelle} {Perron-Frobenius} {Theorem} and {Some} {Applications}}, journal = {Publications des s\'eminaires de math\'ematiques et informatique de Rennes}, eid = {26}, pages = {1--12}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {S4}, year = {1975}, language = {en}, url = {http://www.numdam.org/item/PSMIR_1975___S4_A26_0/} }
TY - JOUR AU - Walters, Peter TI - A Generalised Ruelle Perron-Frobenius Theorem and Some Applications JO - Publications des séminaires de mathématiques et informatique de Rennes PY - 1975 SP - 1 EP - 12 IS - S4 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://www.numdam.org/item/PSMIR_1975___S4_A26_0/ LA - en ID - PSMIR_1975___S4_A26_0 ER -
%0 Journal Article %A Walters, Peter %T A Generalised Ruelle Perron-Frobenius Theorem and Some Applications %J Publications des séminaires de mathématiques et informatique de Rennes %D 1975 %P 1-12 %N S4 %I Département de Mathématiques et Informatique, Université de Rennes %U http://www.numdam.org/item/PSMIR_1975___S4_A26_0/ %G en %F PSMIR_1975___S4_A26_0
Walters, Peter. A Generalised Ruelle Perron-Frobenius Theorem and Some Applications. Publications des séminaires de mathématiques et informatique de Rennes, no. S4 (1975), article no. 26, 12 p. http://www.numdam.org/item/PSMIR_1975___S4_A26_0/
[1] F-expansions revisited. Recent Advances in Topological Dynamics. Springer lecture notes. Vol. 318. | MR | Zbl
[2] Equilibrium states and the Ergodic Theory of Anosov Diffeomorphisms. Springer lecture notes Vol. 470. | MR | Zbl
[3] Strongly mixing g-measures Invent. Math. 16 (1972) 309-324 | EuDML | MR | Zbl
[4] On Expanding mappings Bull de l'acadamie Polonaise des sciences Vol. XIX No. 1 1971. | MR | Zbl
[5] Principe variationnel et systemes dynamiques symboliques. Commen. Maths. Phys. 33 (1973) PP 119-128. | MR | Zbl
[6] Mechanique statistique de l'equilibre pour un revetement. Preprint.
[7] Anosov flows with Gibbs measures are also Bernoullian. Israel J. Math. To appear. | MR | Zbl
[8] Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9 (1968) 267-278 | MR | Zbl
[9] Endomorphisms of compact differentiable manifolds. A.J.M. XC1 Jan. 1969. | MR | Zbl
[10] A variational principle for the pressure of a continuous transformation. To appear in A.J.M. | Zbl
[11] Ruelle's operator theorem and g-measures. To appear in Trans. A. M . S. | Zbl