Introduction to Stochastic Field Theory
Publications des séminaires de mathématiques et informatique de Rennes, no. S4 (1975), article no. 11, 5 p.
@article{PSMIR_1975___S4_A11_0,
     author = {Guerra, Francesco},
     title = {Introduction to {Stochastic} {Field} {Theory}},
     journal = {Publications des s\'eminaires de math\'ematiques et informatique de Rennes},
     eid = {11},
     pages = {1--5},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     number = {S4},
     year = {1975},
     language = {en},
     url = {http://www.numdam.org/item/PSMIR_1975___S4_A11_0/}
}
TY  - JOUR
AU  - Guerra, Francesco
TI  - Introduction to Stochastic Field Theory
JO  - Publications des séminaires de mathématiques et informatique de Rennes
PY  - 1975
SP  - 1
EP  - 5
IS  - S4
PB  - Département de Mathématiques et Informatique, Université de Rennes
UR  - http://www.numdam.org/item/PSMIR_1975___S4_A11_0/
LA  - en
ID  - PSMIR_1975___S4_A11_0
ER  - 
%0 Journal Article
%A Guerra, Francesco
%T Introduction to Stochastic Field Theory
%J Publications des séminaires de mathématiques et informatique de Rennes
%D 1975
%P 1-5
%N S4
%I Département de Mathématiques et Informatique, Université de Rennes
%U http://www.numdam.org/item/PSMIR_1975___S4_A11_0/
%G en
%F PSMIR_1975___S4_A11_0
Guerra, Francesco. Introduction to Stochastic Field Theory. Publications des séminaires de mathématiques et informatique de Rennes, no. S4 (1975), article  no. 11, 5 p. http://www.numdam.org/item/PSMIR_1975___S4_A11_0/

[1] J. Fröhlich, Verification of Axioms for Euclidean and Relativistic Fields and Haag’s Theorem in a Class of P(ϕ) 2 -Models, Ann. Inst. Henry Poincaré XXI, 271 (1974). | MR

[2] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin (1972). | MR | Zbl

[3] J. Glimm and A. Jaffe, Quantum Field Theory Models, in Statistical Mechanics and Quantum Field Theory, C. DeWitt, R. Stora, Eds., Gordon and Breach, New York (1971).

[4] F. Guerra, On Stochastic Field Theory, Suppl. J. de Physique 34, Cl-95 (1973).

[5] F. Guerra, report at the Conference on Quantum Dynamics: Models and Mathematics, Bielefeld, DBR, September 8-12, 1975.

[6] F. Guerra, L. Rosen and B. Simon, The P(Ø)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Annals of Mathematics 101, 111 (1975). | MR

[7] F. Guerra and P. Ruggiero, New Interpretation of the Euclidean- Markov Field in the Framework of Physical Minkowski Space-Time, Phys. Rev. Lett. 31, 1022 (1973), and paper in preparation.

[8] T. Nakano, Quantum Field Theory in Terms of Euclidean Parameters, Prog. Theor. Phys. 21, 241 (1959). | MR | Zbl

[9] E. Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 1079 (1966).

[10] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967. | MR | Zbl

[11] E. Nelson, Construction of Quantum Fields from Markoff Fields, Journal of Functional Analysis 12, 94 (1973), | MR | Zbl

E. Nelson The Free Markoff Field, Journal of Functional Analysis 12, 211 (1973). | MR | Zbl

[12] E. Nelson, Probability Theory and Euclidean Field Theory, contribution to [18]. | Zbl

[13] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's Functions, Comm. Math. Phys. 31, 83 (1973), 42, 281 (1975). | Zbl

[14] J. Schwinger, On the Euclidean Structure of Relativistic Field Theory, Proc, Nat. Acad. Sc. U.S. 44, 956 (1958). | MR | Zbl

[15] B. Simon, The P(Ø)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, 1974. | MR | Zbl

[16] R. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, New York, 1964. | MR | Zbl

[17] K. Symanzik, Euclidean Quantum Field Theory, in Local Quantum Theory, R. Jost, Ed. , Academic Press, New York, 1969.

[18] G.- Velo and A. S. Wightman, Eds. , Constructive Quantum Field Theory, Springer Verlag, Berlin, 1973. | MR