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TRANSIENCE OF RANDOM WALKS 

ON NILPOTENT GROUPS 

by 

Y. Guivarc'h and M. Keane 

Let G be a locally compact topological group. 

For a given probability measure y on G 3 the random walk 

R W (y) generated by y is the Markov process with state space 

G and transition probabilities 

P (g,A) = y (g" XA) 

for g £ G and A C G measurable. Random walks on G fall into 

two classes : 

- R W (y) is recurrent if for any g £ G and any open set V 

in G, the probability of entering V infinitely often, starting 

at g, is one. 

- R W (y) is transient if for any g €. G and any relatively 

compact set W in G, the expected number of visits to W star­

ting from g id finite (and thus the probability of entering 

W infinitely often is zero). 

We call the group G transient if R W (y) is transient 

for each probability y whose support generates G topologically. 

Otherwise G is recurrent. 
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It is well known (see e,g.f SP j) that if G is abelian and 

compactly generated, then G is transient if and only if the 

dimension of G/K is greater than two, where K is the maximal 

compact subgroup of G. The following result is angeneralization 

of the abelian case. 

Theorem.-

Let G be a locally compact and compactly generated 

nilpotent group with maximal compact subgroup K. Then G is 

recurrent if and only if G/K is isomorphic to one of the six 

following abelian groupsJ : 

(R®(P , (R $ £ , E @ £ , R 3 £ 3 0 . 

Corollary (discrete case).-

Let G be finitely generated, torsion free and 

nilpotent. If G is recurrent, then G is isomorphic to 

Z © Z , £ or 0. 

The details of the proof of the theorem will be 

published later ( [G K] , [KGB] ) . Here we would like to give 

a proof for the simplest nilpotent non - abelian group and 

for a particular random walk on the group. This example con­

tains the basic ideas and will not entangle us in the technical 

details of the non - discrete case. 

Thus we let N denote the group of matrices of the 

form 

'1 a c 

0 1 b 

m 0 0 1 
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with a, b, c £ Z. Henceforth, we identify such a matrix with 

the point (a,b rc) 6 Z . Multiplication of matrices yields the 

following rule of composition, which we write additively beerub 

of the similarity with addition in E : 

(a,b,c) + (a ?,b f.c f) =-(a+a f, b+b T, c+c ?+ab f) 

Let y be the probability measure assigning mass ^ to each of 

the points 

(*) < + 1, 0, 0) , (0, + 1 , 0 ) , (0, 0, + 1) 

3 

In Z with the normal addition y would generate a transient 

random walk. By comparing the random walk gensrated by y on M 

with this abelian random walk, we shall arrive at the foll^-' 

result. 

Theorem.-

R W (y) is transient on N. 

Proof. -

Suppose that we start walking randomly on N at time 

0 at the point ( x
0 ? y 0 5 z

0 ) ' This means that with equal probabi­

lity we pick a point (a^B^y-^) from the collection (*•) and -

time 1 move to 

(x 1,y 1,z 1) = ( x
0 > y 0

j , z o ) * ( « 1 , e 1 , Y 1 ) -

Then we pick another point (a 2,B 2,Y 2) f r o m 

according to y , independent of ( x
0 j y 0 J z

0 ) a n (3 of the choice 

of ( a 1 , 3 1 , Y 1 ) 3 and at time 2 we move to the point 

(x 2,y 2,z 2) = (x 1,y 1,z 1) + ( a 2 , 8 2 , Y 2 ) -
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Continuing this procedure for n time units, we obtain an admis­

sible n - path 

( x o ^ o ' z o ) > (x 1,y 1,z 1) , ... , <x n,y n,z n) 

for the process R W ( w ) . N O W if at a certain time we find our­

selves at the point (x,y,z), then at the following time step, 

using (#) and the rule + , we shall arrive at one of the 

" neighbors ". 

(x + 1 , y , z) 

(x , y + 1 , z + x) 

(x , y , z + 1 ) 

of (x,y,z). Thus for our admissible n - path we have 

x i - = a i 

n " yi-i = b i 
z. - z. . = c. 
1 1-1 1 

with the following possibilities for ( a ^ b ^ c ^ ) : 

(+ i, o, o ) , ( o , + i, + x i ^ 1 ) , (0,0,+1), 

1 i _< n. Therefore, also 
(a i,b i,c i) = ( a i , B i 3 Y i + B i x i ) . . 

Now denote by P n the probability starting at (0,0,0) to return 

to (0,0,0) at time n. We have 

i of admissible n-paths with (x Q,y Q,z Q)=(x n,y n,z n)-(Q :Q,r 
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Our problem is to show that the expected number of visits to 

(0,0,0) , given by 
00 
I p 

n = 0 

is finite. Obviously, the conditions on our n-path for returning 

to (0,0,0) are 

n 
a. = 0 

I = 1 i 
n 

i = l 1 

n n n i-1 
1-1 Y- = " i-1 6 i xi-l = " 1 p i ( 1 a }-
I I i i-l i i l i = 1 i j = 1 j 

Now, let 7r n denote the probability corresponding to P R for the 
3 

abelian random walk on TL with the same measure y . An adim.ps i K 1 

n-path for this walk is again given by choosing independently 
^ al*^l 5 Yl^ 5 ^ a n ^ n ' Y n ^ from (x)> and the conditions for 
such a path to return to (0,0,0) at time n are 

n 

n 

To compare P R and irn, fix a set I c {l,...,n} and for i € I 

choose (a^,B^,y^) with y ^ = 0 and such that 
E a. = Z 6 . = 0 . 

i 6 I 1 i £ I 1 



- 13 -

Suppose for the moment that the number of indices left in 

J = (1,.,.,n) \ I is even, say |j| = 2 k . Then the number 

of ways to choose the remaining (a^,B-,Y-:) > jé J , with 

(otj56j,Yj) = (0,0,+ 1) , such that the abelian random walk will 

return to (0,0,0) is given by 

t ? ) , 
while the number of such choices yielding a return of the 

non - abelian waJk to (0,0,0) is either 

n i-1 
0 (if e = - E $• ( E a .) is odd) 

i=l 1 j=l 3 

or 
/2 k \ 
1 ] (if c is even)-

V | c j 
If |j| = 2 k + 1 is odd, then likewise the abelian walk 

returns to (0,0,1) for 

I 2 k + 1 \ 
\ * J 

choices, while the non - abelian walk returns to (0,0,0) in 

less than 

( V . V ) 
cases, c as above. Noting that the binomial coefficients for 

the abelian case are maximal, and varying the choice of I and 

(a^,6^,Y^) 5 I 6 I, we see that the number of admissible non -
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abelian n-paths from (0,J,0) to (0,0,0) is less than .or equal 

to the number of admissible abelian n-paths from (0,0,0) to 

(0,0,0) or (0,0,1). Thus if ir' denotes the probability of lan--
n 

dinp at (0,0,1) at time n, we have P < ir + TT T 

n — n n 
00 00 
1 P „ < Z ( i r + i r ' ) < » , 

n=0 n - n=0 n n 

since the abelian walk is known "to be transient. This conclude 

the proof of the theorem. 

Using only the above ideas and a bit of harmonic 

analysis on the circle group, it is easy to generalize the 

above result to any probability measure on N (note that it is 
3 

not necessary to use the same measure on % for comparison, as 
3 3 any probability measure on 2 generating Z will yield a 

transient walk). Since any finitely generated torsion free 

nilpotent group contains a copy of N, we have the same result 

for such groups by considering the induced walk on the copy 

of N } supposing recurrence. Thus we can prove the corollary 

announced earlier. This procedure is impossible in the conti­

nuous case and the methods become more complicated. 

Using similar techniques ( [JKGB] ) , we obtain also a 

renewal theorem for transient nilpotent groups G • if 

n>0 

is the potential kernel of R W (y) , then 

lim 11 ( g . V) = 0 

for any V relatively compact in G. 
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Consider now th> group S of all matrices of the forr 

" 1 0 "' 

(a,b) = , 
L a 2 b. 

with a £ (R and b £ Z. The multiplication is given by 

(a,b) + (a f,b ?) = (a+2 ba f,b+b ?) 

S is a solvable group, and we conjecture that S is 

recurrent. More precisely, let y be the measure giving mass ~-

to each of the points (+ 1, 0) , (0, + 1). It is not hard to 

see that recurrence is present in each component separetely. 

Is E W (y.) recurrent ? We note that Azencott has constructed 

transient random walks with symmetric probabilities y on the 

group 

S T = { (a 3b) ' a, b £ (R }. 
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