On the General Stochastic Epidemic
Publications des séminaires de mathématiques et informatique de Rennes (1966-1967), Exposé no. 5, 12 p.
@article{PSMIR_1966-1967____A5_0,
     author = {Gani, J.},
     title = {On the {General} {Stochastic} {Epidemic}},
     journal = {Publications des s\'eminaires de math\'ematiques et informatique de Rennes},
     note = {talk:5},
     pages = {1--12},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     year = {1966-1967},
     language = {en},
     url = {http://www.numdam.org/item/PSMIR_1966-1967____A5_0/}
}
TY  - JOUR
AU  - Gani, J.
TI  - On the General Stochastic Epidemic
JO  - Publications des séminaires de mathématiques et informatique de Rennes
N1  - talk:5
PY  - 1966-1967
SP  - 1
EP  - 12
PB  - Département de Mathématiques et Informatique, Université de Rennes
UR  - http://www.numdam.org/item/PSMIR_1966-1967____A5_0/
LA  - en
ID  - PSMIR_1966-1967____A5_0
ER  - 
%0 Journal Article
%A Gani, J.
%T On the General Stochastic Epidemic
%J Publications des séminaires de mathématiques et informatique de Rennes
%Z talk:5
%D 1966-1967
%P 1-12
%I Département de Mathématiques et Informatique, Université de Rennes
%U http://www.numdam.org/item/PSMIR_1966-1967____A5_0/
%G en
%F PSMIR_1966-1967____A5_0
Gani, J. On the General Stochastic Epidemic. Publications des séminaires de mathématiques et informatique de Rennes (1966-1967), Exposé no. 5, 12 p. http://www.numdam.org/item/PSMIR_1966-1967____A5_0/

Bailey, N.T.J. (1953) The total size of a general stochastic epidemic. Biometrika 40, 177-185. | MR | Zbl

Bailey, N.T.J. (1957) The mathematical theory of epidemics. Griffin, London. | MR

Bartlett, M.S. (1949) Some evoluticnary stochastic processes. J.R. Statist. Soc. B II, 211 - 229. | MR | Zbl

Foster, F.G. (1955) A note on Bailey's and Whittle's treatment of a general stochastic epidemic. Biometrika 42, 123 - 125. | MR | Zbl

Gani, J. (1965a) On a partial differential equation of epidemic theory. I. Biometrika 52. | MR | Zbl

Gani, J. (1965b) On a partial differential equation of epidemic theory II. The model with immigration. Office of Naval Research Technical Report RM-124 at Michigan State University.

Kendall, D. G. (1956) Deterministic and stochastic epidemics in closed populations. Proc. 3rd Berkeley Symp. on Math. Statist, and Prob. 4 149 - 165. U. of California, Berkeley. | MR | Zbl

Siskind, V. (1965) A solution of the general stochastic epidemic. Biometrika 52. | MR | Zbl

Whittle, P. (1955) The outcome of a stochastic epidemic - A note on Bailey's paper. Biometrika 42, 116 - 122. | MR | Zbl