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ABSTRACT

We define generalizations of classical invariants of wild ramification for coverings on a variety of arbitrary dimen-
sion over a local field. For an £-adic sheaf, we define its Swan class as a O-cycle class supported on the wild ramification
locus. We prove a formula of Riemann-Roch type for the Swan conductor of cohomology together with its relative version,

assuming that the local field is of mixed characteristic.

We also prove the integrality of the Swan class for curves over a local field as a generalization of the Hasse-Arf
theorem. We derive a proof of a conjecture of Serre on the Artin character for a group action with an isolated fixed point

on a regular local ring, assuming the dimension is 2.
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Introduction

0.1. The goal of this paper. — Let K be a complete discrete valuation field and Ok
be the valuation ring. We assume that the residue field F is perfect of characteristic p > 0.
In this article, we generalize the classical ramification theory of extensions of K briefly
recalled in 0.2 to the ramification theory for varieties over K as is described in 0.3-0.5
below. We also prove a conductor formula of Riemann-Roch type stated in 0.6.

We fix a prime number £ different from p. Let U be a separated smooth scheme
of finite type over K and F be a smooth £-adic sheaf on U. The alternating sum
SwgH?(Ug, F) of the Swan conductor is defined as an invariant measuring the wild
ramification of the £-adic representation H*(Ug, F) of the absolute Galois group Gk of
K. We define an element SwyF (see 0.3-0.5 in the introduction and Definition 7.2.4 in
the text) called the Swan class as a certain O-cycle class supported on the closed fiber of a
compactification of U over Ok and prove a conductor formula

0.1) SwxH*(Ug, F) = rank F - SwgH*(Ug, Q) + deg SwuF,

assuming that K is of characteristic 0 in Corollary 7.5.3. We also prove a relative version
(see (0.6) below) of the conductor formula in Theorem 7.5.1.

The formula (0.1) is an arithmetic analogue of the higher dimensional generaliza-
tion of the Grothendieck-Ogg-Shafarevich established in [27]. The term SwxH? (Ug, Q,)
has been computed in the case where U is further assumed proper over K by the con-
ductor formula of Bloch, proved under some mild assumption in [26]. In this paper,
we will focus on a mixed characteristic case. Another approach in a geometric equal
characteristic case is studied in [42].

0.2. Invariants in classical ramification theory. — We first recall the classical ramifica-
tion theory. For a finite separable extension L of K, we have the following invariants of
ramification in (1)—(ii1) below, which are integers > 0. In (i1) and (ii1), we assume that L/K
1s a Galois extension with Galois group G.

(i) The different Dy /x and the logarithmic different lefK =Dk —eayx + 1,
where ¢k is the ramification index of the extension L/K.
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(if) The Lefschetz number (o) and the logarithmic Lefschetz number j(o) for
o € G\ {1} defined as

i(0) =min{ordy,(0(a) — a) | a€ O},
j(0) =min{ord; (0 (a)/a—1) | a€ L*}.

(i) The Artin conductor Art(p) and the Swan conductor Sw(p) for a finite di-

mensional representation p of G over a field of characteristic 0. They are
defined by

1
Art(p)=— Y i(o)(dim(p) — Tr(p(0))).

LK oo

1
Swip)=— " j(o)(dim(p) — Tr(p(0))).

LK G-y

The Hasse-Arf theorem asserts the highly non-trivial fact that these conductors are in
fact integers.

These invariants are linked by several important formulas (see [39] for example).
For example, in the case L/K is Galois with Galois group G, we have

Dyx= »_ i), D= Y j.

oeG\ ({1} aeG\{1}

log

The invariants Dy i, j(0) and Sw(p) are the parts of Dy k, (o) and Art(p), re-
spectively, which handles the wild ramification. We will focus on the wild ramification
and introduce generalizations of DII??K, 7(0), and Sw(p).

0.3. Generalization. — In our generalization of ramification theory in [27] (resp. in
this paper), in place of L/K in 0.2, we consider a finite étale morphism

[:V—>U

of non-singular algebraic varieties over a perfect field £ of characteristic p (resp. over K)
and study the ramification of / along the boundary of compactifications of V and U over
k (resp. Ok). We call the case over k the geometric case (geo) and the case over K the
arithmetic case (ar1). For simplicity, in this introduction, we assume char K = 0 in the
case (ar1). Although the main theme of this paper is the arithmetic case, we describe also
the geometric case in 0.3 and 0.4 to compare.

In the case (geo) (resp. (ari)), for a proper scheme Y over £ (resp. Ok) which contains
V as a dense open subscheme, we define in Definition 2.4.1 the wild ramification locus
YyuY of f: V— UonY asa closed subset of Y . The wild ramification locus satisfies
the following properties:
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1. Vﬂ ZV/UY - @

2. If Y’ is a proper scheme over & (resp. Ok) containing V as a dense open sub-
scheme and if Y’ — Y is a morphism inducing the identity on V, then Zy,uY
coincides with the image of Xy, vY'.

3. In the case (ari) (recall that we assume char K = 0), Xy,uY is contained in the
special fiber Y @, F of Y.

For a proper scheme X over £ (resp. Ok) which contains U as a dense open sub-
scheme, we define the wild ramification locus Zy,uX of / on X, which is a closed subset of
X, to be the image /(Zy,0Y) for a morphism f: Y — X of compactifications extending
J/: V= U. This also satisfies analogous properties corresponding to the above 1, 2, 3.

For a commutative ring R, let

FoG(y,uV)r == (r_n(FOG(EV/UY) Bz R)
Y

FoG(0yuUr := I(H_H(FOG(EV/UX) ®z R)
X

where Y runs through proper integral schemes over £ (resp. Ok) containing V as a dense
open subscheme and X runs through proper integral schemes over £ (resp. Ox) contain-
ing U as a dense open subscheme. Here G(—) denotes the Grothendieck group of coher-
ent sheaves, and FyG(—) denotes the part generated by the classes of coherent sheaves
with finite supports.

Let Z(V/U) denote the free abelian group on the set of connected components of
the complement V xy V' \ Ay of the diagonal Ay C V xy V. Note that since f : V— U
is étale, Ay is open and closed in V Xy V. The definition of generalizations of invariants
of wild ramification 1s based on a homomorphism

<0-2> Z(V/U) — FoG(aV'/UV)Q,

whose definition will be sketched in 0.4 below. The homomorphism (0.2) is called the
localized intersection product with logarithmic diagonal and denoted by (—, Ay)™°8 (resp.
((—, Av))"*®) in the case (geo) (reps. (ari)). Though V x; V'\ Ay does not intersect with
the diagonal, the localized intersection with the log diagonal appears on the boundary of
V in a compactification Y.

(1) We define
DYy € FyG(v Vg
by
log log .
Dyfy = ([V xu V\ Ayl Ay) in the case (geo),

Dl\(;fU = ((IVxu V\ Ayl Av))log in the case (ari).
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(i) In the case V — U is a Galois covering with Galois group G, then for
o € G\ {1}, we define

J(0) € FoG(dv,uV)q

by
j@) = (IT,1, Ay)"™ i the case (geo),
j©@)=((IT+1, Av))®  in the casc (ari),

where I'; is the graph of 0.
(i11) For a finite dimensional representation p of G over a field of characteristic 0,
we define the Swan class

1
Sw(p) = o D A@)(dim(p) = Tr(p())) € FiGyvUage)
oeG—{1}

where f, is the push forward FoG(dv,uV)g — FoG(dy,uU)q and Q(¢yx) =
U, Q&) with £, a primitive p"-th root of unity.

In (ii), we have Dl\?% =Y scc\p/ (@) simply because V xy V\ Ay = [ [, cc\ 1y To-
We expect that we can remove ) Q and &) Q(¢) in the definitions of the above invari-
ants in (1)—(1il).

To formulate a conductor formula given below, we define Sw(p) also for a finite
dimensional representation p of G over a field of characteristic £ by

1
Sw(p)=—— Y £(j(0))(dim(p) — Tr*(p(0)))
ﬁ(G) oeG—{1}

€ FoG(dv/uU) )

using the Brauer trace. The definition makes sense because we have j(o) = 0 unless the
order of o is not a power of p.

The relation with classical ramification theory is as follows.

In the case (ari), assume U = SpecK, V = SpecL, Y = Spec Oy.. Then if L/K is
wildly ramified (resp. at most tamely ramified), Xv,uY consists of the closed point of Y
(resp. the empty set). If L/K is wildly ramified, we have FyG(Xy,0Y) = Z, and Dl\?fU
and j(o) defined above recover the classical DILOfK and (o), respectively. In the case (geo),
assume that Y, V, U are smooth curves over £, and let K, (resp. L) be the function field of
U (resp. V). Then Xy,uY consists of the places of Ly where the extension L/K is wildly
ramified and FoG(2y,uvY) is the direct sum of Z indexed by these places. For v € Xy ,uY,
if u denotes the place of Ky lying under v and if K (resp. L) denotes the completion of K,
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(resp. L) at u (resp. v), the v-components of DIV(% and j(o) defined above coincide with

DILO}QK and j(o) in the classical ramification theory for /K, respectively.
The revolutionary idea that the invariant of ramification should be defined as a
0-cycle class on the ramification locus is due to S. Bloch [3].

0.4. The definition of the localized intersection product with logarithmic diagonal. — Let
V — U be a finite étale morphism of smooth integral schemes over £ (resp. over K) in the
case (geo) (resp. (ar1)). We put n = dim U (reps. n = dim Uk + 1) in the case (geo) (resp.
(ar1)). The embedding theorem of Nagata and the theory of alteration of de Jong give us
a Cartesian diagram of integral schemes over £ (resp. Ok) in the case (geo) (resp. (ari))

V<< w

(0.3) ml lm

Y «— Z

where Y and Z are proper over £ (resp. Ok) and satisfy the following properties: The
vertical arrows are open immersions with dense images, the arrow g: Z — Y is surjective
and generically finite and Z is regular and contains W as the complement of a divisor
with simple normal crossings.

In the case (geo) (resp. (ar1)), we define the logarithmic self-product (Z x ;7)™ (resp.
(Z x oy 2)™) as a modification of the usual product Z x; Z (resp. Z X o, Z). Let P denote
(Z % Z)~ (resp. (Z X Z)7). The diagonal map Z — Z X, Z (vesp. Z — 7. X o Z) is
canonically lifted to a closed immersion Z — P called the log diagonal map. The scheme
P contains W x; W (resp. W xp, W) as an open subscheme. Let A be the closure of
W xy W\ W xy Win Pand X be the intersection of A with the logarithmic diagonal Z
in P.

We define the intersection product with the logarithmic diagonal Z in P as a ho-
momorphism

(0.4) GA) = G(2)

as follows. See Proposition 5.3.3 for detail. Regard O; as an Op-module via the log
diagonal. In the case (geo), the map (0.4) is defined as the usual intersection product with
the class [O] for a smooth scheme P. Namely, it maps the class of a coherent Op-module
F supported on A to the alternating sum:

dim P

[F1 Y (=D [T (F.09)]

=0

In the case (ar1), it is defined as

[F]+— [Torg"(}", Oz)] — [Torgf] (F, Oz)]
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for sufficiently large integer . In the case (ari), it is proved in [26] that the class
[T()@OP (F, Oz)] € G(X) depends only on the parity of j for sufficiently large ;.

The maps (0.4) for various diagrams (0.3) induce (0.2) as follows. Let I, denote
the topological filtration on the Grothendieck group G(—). We regard the free abelian
group Z(V/U) as the graded quotient Gr'G(V xy V \ Ay) by the canonical surjec-
tion defined by taking the length at the generic point of each connected component of
V xy V\ Ay. We prove in Proposition 4.3.5 that the homomorphisms Gr.G(A) —
Grl_ G(X) induced by (0.4) factor through the canonical surjection GriG(A) —
GrfG(W xuy WA\ W xy W) defined by the restriction if the following condition is sat-
isfied:

(X) There exists a Cartesian diagram

U L5 w

| In

over k (resp. over Ok) where X is a proper scheme over £ (resp. over Ok)
containing U as the complement of a Cartier divisor.

Consequently, we obtain
Z(V/U) =GrlG(V xy V\ Ay) = Gr'GW xp W\ W xy W)
— FG(X)

where the first arrow is the pull-back by g x g and the second arrow is induced by (0.4).
If further the condition

Y) g(2) C ZypuY

is satisfied, the composition

Z(V/U) = F,G(Z) & FoG(XvuY) ®z2 Q

with the push-forward map g, divided by the generic degree [Z : Y] of Z over Y is defined.
We prove in Theorem 5.3.7 that such Z satistying the conditions (X) and (Y) does exist
and that the composition Z(V/U) — FyG(Zv,uY) ®z Q is independent of Z and forms
an inverse system to define the required map (0.2).

0.5. The Swan class of a constructible sheaf. — In order to formulate a conductor for-
mula of Riemann-Roch type in 0.6 below, we extend the definition of the Swan class
to constructible sheaves. In the rest of introduction, we consider the arithmetic case (we
assume char K =0).
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For a separated scheme U of finite type over K and for a commutative ring R, let

FyG@rU)g := lim(FG(X ®0, F) ®2 R)
X

where X runs through proper schemes over Ok which contain U as a dense open sub-
scheme.

Let f: V — U be a finite étale morphism and let Z(V/U) denote the free abelian
group on the set of connected components of V xy V. It is the direct sum of Z(V/U)
with the free abelian group of rank 1 generated by the class of Ay. The composition
((—, Ay)e: Z(V/U) — FyG(0v,uV)g — FoG(9rV)gq is naturally extended to

(0.5) (= AV)5: Z(V/U) = FyG(3:V)g.

To define the map (0.5), we proceed similarly as in 0.4. Namely, we consider a diagram
(0.3) and, letting A" C P denote the closure of W xy W, we define a homomorphism

G(A') = FoG(Zp);
[Fl [Tors " (F, 0] = [Tors" (F,0)] (> 0)
similarly as (0.4). Then this induces (0.5) in the same way as (0.4) induces (0.2). In partic-
ular, j(0) € FyG(9rV)q 1s defined even for o =1 as ((Avy, Avy))"s.

We extend the definition of the Swan class of smooth sheaves sketched in 0.2 and
0.3 to constructible sheaves.

Proposition 1 (Proposition 7.4.2, Corollary 7.4.5). — Assume char K = 0. Then, there
is a unmique way to define

SwuF, SwuF € FyG(3rU) g )

Jfor any separated scheme U of finite type over K and for any constructible Fy-sheaf F on U, satisfying
the following conditions (1)—(3).

(1) Assume U s a non-singular variety and F 1s locally constant. Let f: V — U be a finite
étale Galois covering of U with Galows group G on which the pull-back [*F is a con-
stant sheaf. Then SwyF is the image of Sw(p) in 0.3 for the Fy-representation p of G
corresponding to F. We also have

SwuF = SwuF —rank F - ((Ay, Ap))'8

1
= i )T (@),

oeG

() For an exact sequence 0 — F' — F — F" — 0 of constructible Fy-sheaves on U, we
have

SWUF - SWUf/ + SWUfW, %Uf == WU.?/ + %Uf”.
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(3) If1: U — U s an tmmersion of schemes over K, we have
%U(lvf) == ig%v?

Jor a constructible F y-sheaf F on U'. Here iy on the right hand side is the canonical homo-
morphism FOG(aFU/)Q(§poo) — FOG(SFU)Q(QOQ).

Here in (1), ((Ay, Ayp)) € FyG(9¢U)gq is defined by (0.5) for U = V. The key
ingredient of the proof of Proposition 1 is an excision formula Theorem 6.2.2.

For U as in Proposition 1 and for a constructible Q,-sheaf F on U, we define
SwyF, SwyF € FOG(BFU)Q@/}OO) as those of the F,-sheaf which is obtained from F by
taking modulo £. In the case U is regular and F is smooth and trivialized by a finite étale
Galois covering V — U with Galois group G, SwyF is the image of Sw(p) in 0.3 where
p is the representation of G over Q, corresponding to F.

0.6. The conductor formula. — We prove the following conductor formula of
Riemann-Roch type.

Theorem 2 (Theorem 7.5.1). — Assume char K = 0. Let f: U — V be a morphism of
separated schemes of finite type over K and let F be a constructible ¥ y-sheaf (resp. Qy-sheaf) on U.
Then we have

(0.6) SwyRAF = fiSwyF
where f; on the right hand side is the canonical homomorphism FoG(9pU) Qo) ™ FOG(BFV)Q@POO).

In the case where F is smooth and V = Spec K, the equality (0.6) specializes to the
conductor formula (0.1) for the alternating sum of the Swan conductor (Corollary 7.5.3).
It also gives

(0-7> SWKHj(UKa Qz) = deg((AU, AU))log,

which is a generalization of the conductor formula of Bloch [3] proved under some mild
assumption in [26]. A special case of dimUg =1 and V = SpecK has been studied
in [1]. A crucial ingredient in the proof of the equality (0.6) is a logarithmic variant
Theorem 1.4.7 of the Lefschetz trace formula for open varieties.

0.7. Integrality. — As a generalization of the classical theorem of Hasse-Arf, we
expect that the Swan class SwyF should have no denominator, Conjecture 7.2.8. By a
standard argument using Brauer induction, it is reduced to the rank one case. Theo-
rem 8.3.7 comparing the Swan class SwyF for a smooth sheaf F of rank 1 with a cycle
class ¢z, defined earlier by one of the authors, implies the following integrality.
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Theorem 3 (Corollary 8.3.8.1). — Assume char K = 0. Let U be a scheme of finite type
over K of dimension <1 and let F be a constructible ¥ ,-sheaf (resp. Qy-sheaf) on U. Then SwyF
belongs to the vmage of

FoG(9rU)z — FOG(aFU)Q(c,,oo) :

From this integrality, we derive the two dimensional case of a conjecture of Serre
[41], as 1s announced in [23]. In [41], Serre conjectures (see Conjecture 7.2.9) that the
theory of Artin characters in the ramification theory of a discrete valuation ring can be
generalized to any regular local ring A with a finite group of automorphisms under a
condition of isolated fixed point. An equal characteristic case has been proved earlier in
[28] and some special case has been proved in [2].

Theorem 4 (Corollary 8.3.8.2). — The conjecture of Serre [41] s true in the case
dim(A) = 2.

0.8. Organization of this paper. — We sketch the content of each section. The first
three sections are preliminaries. In Section 1, after preparing general terminologies on
semi-stable schemes, log products, etc., we prove a logarithmic Lefschetz trace formula,
which is a crucial step in the proof of the formula (0.6). The trace formula is a sort of
mixture of those proved in [26] and in [27]. In Section 2, we study the tame ramification
of an étale morphism along the boundary, using log products. The purpose of studying
tame ramification first is to define the wild ramification locus and to focus on it. We give
criterions for tameness in terms of valuation rings, using the quasi-compactness of the
limit of proper modifications. In Section 3, first we compute certain tor-sheaves, which
is a crucial step in the proof of the excision formula. We also give some complement
on the localized Chern classes and the excess intersection formula studied in [26] as a
preliminary for the computation of the logarithmic different.

In Sections 4, 5 and 6, we define the invariants of wild ramification and estab-
lish their properties. First, in Section 4, we study the local structures of log products of
schemes over S = Spec Ok. In Section 5, we define the invariants and study its basic
properties. Section 6 is technically the heart of the article. We prove the excision formula
for the invariants. We also give a formula in some semi-stable case, which is a crucial step
in the proof of the formula (0.6).

In Section 7, we define the Swan class and prove the formula (0.6). In Section 8,
we compute the Swan class in the case of rank 1 and deduce the integrality of the Swan
class and complete the proof of the conjecture of Serre in the case of dimension 2.

The logical structure of the proof of the formula (0.6) is summarized as follows.
We deduce a formula Proposition 6.3.2 in some semi-stable case from the log Lefschetz
trace formula Theorem 1.4.7. We prove a formula Propositions 7.3.4, 7.3.5 for stable
curves using Proposition 6.3.2 and a compatibility with cospecialization map Proposition
1.6.2. We complete the proof of the formula (0.6) in Theorem 7.5.1 by deducing it from
a special case Corollary 7.3.6, by devissage.
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1. Log Lefschetz trace formula

We prove a logarithmic Lefschetz trace formula Theorem 1.4.7 for schemes over a
discrete valuation ring and give a complement in Section 1.6. They play a crucial role in
the proof of the conductor formula in Section 7.3. As preliminaries, we fix terminologies
on semi-stable schemes, log blow-ups, log products and on log stalks in Sections 1.1, 1.2,
1.3, 1.5 respectively.

1.1. Semi-stable schemes and stable curves. — We fix some terminology on semi-stable
schemes.

Defimtion 1.1.1. — Let [ : X — S be a morphism of schemes and r > 0 be an integer.
1. We say that X s weakly strictly semi-stable of relative dimension r over S if the following
condition s satisfied:

(1.1.1.1) For every point x € X, there exist an open newghborhood x € U C X, an affine
open neighborhood s = f (x) € Spec R C S, an integer 1 < g <r+ 1, an element
a € R and an étale morphism

U — SpecR[Ty,..., T, 1/(T---T,—a)

over S.

If'S = SpecR jfor a discrete valuation ring R, we say a weakly strictly semi-stable scheme over S s
strictly semi-stable if'a € R in (1.1.1.1) &5 a uniformizer

2. We say that X 1s weakly semi-stable of relative dimension r over S i, étale locally on X and
on S, it s weakly strictly semi-stable of relative dimension r over S. Namely, if the following condition s

satisfied:

(1.1.1.2) For every geometric point x — X, there exust étale neighborhoods x — U — X and
s=[f(x) = V= S and a morphism U — V compatible with X — S and with
x — 5 such that U s weakly strictly semi-stable of relative dvmension r over V.

If'S = Spec R for a discrete valuation ring R, a scheme X over S 1s said to be semi-stable if, étale
locally on X, 1t 1s strictly semi-stable over S.

If X 1s weakly semi-stable over S, the scheme X is flat over S and is smooth over S
on a dense open subscheme of each fiber.

We show that, locally on X, the subscheme of S defined by «a is well-defined and
the subschemes of X defined by T, ..., T, are well-defined up to permutation.

Lemma 1.1.2. — Let S = SpecR be an affine scheme and f: X — S be a scheme over S.
Assume that X s étale over R[T, ..., T, 1/(Ty---'T, — a) for an element a € R and ¢ > 1. Let
x be a point of X where the morphism [+ X — S is not smooth and s = f (x).
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1. The annitalator of the Os ;-module Q;r/lgx us generated by a.

2. Assume that there exist q irreducible components of the fiber X, containing x. Then, the inter-
section Spec Ox , N (X x5 Spec R/ (a))™™ with the smooth locus has q connected components. Their
schematic closures in Spec Ox  are defined by Ty, ..., T,.

Proof- — 1. An explicit computation in the case where X = SpecR[ T, ..., T,1 1]/
(T ---T, — a) shows that the Os ;-module Q'{/ng is generated by one element and the
annihilator is generated by T ---T,_ Ty, --- T, for:=1,...,¢. The assertion follows
from this easily.

2. The irreducible components of the fiber X| containing x are defined by
Ty, ..., T,. The connected components of the intersection Spec Ox , N (X xg SpecR/
(a))™ are also defined by T, ..., T,. Thus the assertion follows. ]

In Definition 1.1.1.2, we may take V = S in the condition (1.1.1.2) by
Lemma 1.1.2.1.

Corollary 1.1.3. — Let X be a weakly semi-stable scheme over a scheme S. Then, X is weakly
strictly semi-stable over S if and only if; for every point s of S, each wrreducible component of the fiber
X, =X Xg s is smooth over s.

Progf: — If X 1s weakly strictly semi-stable, each irreducible component of the fiber
X, = X Xg s 1s clearly smooth over s for every point s of S. Let x € X be a point above
seS. If X' — S is smooth at x, it is weakly strictly semi-stable at x. Assume f: X — S is
not smooth at x. Let x be a geometric point above x. Then the irreducible components of
the strict henselization Spec O ; of the fiber are defined by T}, ..., T, in the notation of
Lemma 1.1.2.1. The pull-back of an irreducible component of the fiber X is the union
of some of them. Hence, each irreducible component of the fiber X; =X Xxg s is smooth
at x if and only if the ideals (T)), ..., (T,) are defined in Ox_,. O

We may modify a weakly semi-stable curve to a weakly strictly semi-stable curve,

under an assumption. This construction will be used in the proof of Lemma 5.3.2 in the
case (5.3.2.1a).

Lemma 1.1.4. — Let X be a weakly semi-stable curve over a normal scheme S and let E C X
denote the closed subset consisting of the points where X is not smooth over S. Assume that X is smooth
on a dense open subscheme of S and that the following condition is satisfied:

(1.1.4.1) For every point x € E and s = [ (x), the element a € Os; in Lemma 1.1.2 is a
square up to a unit.

Then, there exists a quasi-coherent ideal T C Ox such that T = Ox outside E. and that the blow-up
X' of X at I s weakly strictly semi-stable over S.
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Proof. — Let x be a point of E. Then, étale locally on a neighborhood of x, X is étale
over the scheme defined by 1|1y — ¢ and the ideal (@) is well-defined by Lemma 1.1.2.1.
We put a = b*. By the assumption that S is normal, the ideal (b) is also well-defined. Since
the ideal (T, T5) is the annihilator of Q;i Js at x, the ideal Z C Ox étale locally defined
by (T4, Ty, b) is well-defined on X. Then, the blow-up X' — X by the ideal Z satisfies
the condition by Corollary 1.1.3. 0

Defination 1.1.5. — Let f: X — S be a weakly semi-stable scheme over S.
1. Lt D =Dy + --- + D, be the sum of Cartier divisors of X. Then, we say that D has
simple normal crossings relatively to S if the following condition is satisfied:

(1.1.5.1) For every point x € X, there exist an open neighborhood x € U C X, a weakly semi-
stable scheme Y over S and a smooth morphism U — AY to the affine space with
coordinate 1y, ..., T, such that, for each 1 =1, ..., n, the restriction D; xx U s
either empty or defined by 'L, for some 1 < j; < m. Further, for 1 < i <1 < n such
that D; xx U and Dy xx U are non-empty, we have j; 7 ji .

2. Let D be a Cartier divisor of X. Then, we say that D has normal crossings relatively to
S if; étale locally on X, it has simple normal crossings relatively to S.

If a Cartier divisor of X has normal crossings relatively to S, it is flat over S. If
D =D, +---+ D, is a divisor with simple normal crossings relatively to S, for a subset
I C{1,...,n}, the intersection Dy = (., D; is weakly strictly semi-stable over S. If X is
smooth over S, the terminology on simple normal crossing divisors is the same as the
usual one defined in [37, 2.1].

We recall the following fact on the tameness of the direct image for a proper semi-
stable scheme.

Lemma 1.1.6. — Let S be a regular noetherian scheme and D C'S be a divisor with normal
crossings. Let [ : X — S be a proper weakly semi-stable scheme such that the base change X xs W —
W = S\ D is smooth and E C X be a divisor with normal crossings relatively to S. We put U = X\ E
and fi;: U — S be the restriction of f .

Then, for an integer n > 1 wnvertible on S, the higher direct image R1finZ/nZ s locally constant
on W =S\ D and s tamely ramafied along D for every ¢ > 0.

Progf: — By the assumption that S is regular and D has normal crossings, it is
reduced to the case where S = Spec O for a discrete valuation ring and D consists of
the closed point s, by Abhyankhar’s lemma [37, Proposition 5.2]. Let j: U — X denote
the open immersion. Then, it suffices to show that the action of the inertia group I =
Gal(K*P/K") on the sheaf R/ Z/nZ of nearby cycles is tamely ramified. If E =0, it is
proved in [33].

We show the general case. Since the assertion 1is étale local on X, we may assume
X is weakly strictly semi-stable over S. Let j: U — X denote the open immersion and for
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a finite set I of indices of irreducible components E; of E, let : E; — X be the closed
immersion of the intersections. Then, E; are semi-stable over S and we have an exact
sequence 0 — JZ/nZ — Z/nZ — D, _, inZ/nZL — D._, 1.7 Z/nZ — --- —. Using
this, the assertion is reduced to the case E = . 0

We recall the definition of a stable curve [8]. Let /: X — S be a proper weakly
semi-stable scheme of relative dimension 1 over a scheme S and (s;);=;..., be a finite
family of sections s;: S — X. Let wx/s = R™!'/'Ox be the relative dualizing sheaf. Then,
we say a pair (f: X — S, (5,)i=1....4) 1s a d pointed stable curve if the following condition
1s satisfied.

.....

e The divisor D = Zle 5;(S) has simple normal crossings relatively to S, the
canonical map Os — f,Ox is an isomorphism and the invertible Ox-module
wx/s(D) is relatively ample.

If (X, (s;)) 1s a pointed stable curve over S, the sections s;(S) do not meet each other and
are contained in the locus where f is smooth. Further the Os-module fiwx s is locally
free. The rank of f.wx/s is called the genus of X. If (X, (s5;)) is a  pointed stable curve of
genus g, we have 26 — 2 +d > 0.

We recall some facts on the moduli of pointed stable curves, used in the proof
of the conductor formula for a relative curve in Proposition 7.3.4 and Corollary 7.3.6.
Let S = ./\;lg,d be the moduli stack of ¢ pointed stable curves of genus g. It is a proper
smooth Deligne-Mumford stack over Z [29] and the coarse moduli scheme Mg,d Is a
projective scheme [30]. Let f: X — S be the universal family and s, ..., s,: S — X be
the universal sections. Let S = M, ; C S be the open substack where X is smooth. It is
the complement of a divisor with normal crossings [29].

Let n = 1 be an integer. The n-torsion part Jacy1)q1[n] = R'fs[%]*,un of the Ja-
cobian is a locally constant sheaf of Z/nZ-modules of rank 2¢g on S[%]. Let M, 4, over
./\/lg,d[%] = S[%] be the moduli of an isomorphism (Z/nZ)%* — les[%]*,un. If n > 3, then
M, ., is represented by a scheme S, =M, ,, smooth over Z[%]. Further, the normaliza-
tion S, = ./\;lg,d,,Z of ./\;lg,d[%] in S, =M, ,, is a projective scheme over Z[%] [7]. See also
(6, 2.24].

1.2. Semi-stable schemes and log blow-up. — We briefly recall the log blow-up and
apply it to give some constructions related to semi-stable schemes. For terminologies on
log blow-up, we refer to [26, Section 4.2]. Let P be a finitely generated commutative in-
tegral saturated torsion free monoid, called a torsion free fs-monoid for short. In other
words, the associated group P# is a finitely generated free abelian group and there ex-
ists a finitely many elements f, ..., f, of the dual group P** = Hom(P*, Z) such that
P is identified with the submonoid {x € PP | fi(x) > 0 for : = 1,...,m} C P*, see [34,
Proposition 1.1]. We identify the dual monoid P* = Hom,,on0ia (P, N) with the submonoid
{f € P?* | f(x) >0 for x € P}. If P* = {x € P | x~! € P} is trivial, the abelian group P#*
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is generated by the submonoid P*. Further in this case, P* is the intersection of PsP* in
P* @z Q with {a\fi + - + a,fn | @ € Q, a; > 0} (loc. cit.).

Let X be a log scheme and f/: P — I'(X, Ox) be a chart. It defines a strict mor-
phism /*: X — Spec Z[P] of log schemes. Recall that a morphism X — Y is strict if the
log structure of X is the pull-back of that of Y. Let V, C P* ®z Q be a Q-linear sub-
space. Then the intersection N, = P* NV, is a finitely generated saturated submonoid.
Let P, D P be the finitely generated saturated monoid defined by {x € P¥ | f(x) > O for
/ € No}. Then, we define a scheme X, by X, = X Xgpcczp) SpecZ[P,]. Let g: P —
['(X, Ox) be another chart such that there exists a morphism u: P — I'(X, Og) sat-
isfying g = f - u. Then, the schemes X, over X defined by / and by g are canonically
isomorphic to each other.

Let 2 be a subdivision of the dual monoid P*. Recall that a subdivision X consists
of finite family of submonoids N, = P* NV, of the dual monoid P* indexed by o € X.
Recall also that ¥ is regular means that the monoid N, C P* for every o € X is isomor-
phic to N” for some 7 > 0 and hence P, is isomorphic to N” x Z"™" where 7 1s the rank of
P#P. By patching the schemes X, over X, we obtain a scheme Xy over X. Recall that if
X is a proper subdivision, the scheme Xy, is proper over X. In this case, we call Xy a log
blow-up of X.

Let S be a regular noetherian scheme and D C S be a divisor with normal cross-
ings. Let jy: W =S\ D — S denote the open immersion and we regard S as a log
scheme defined by the log structure Mg = Os N}, Oy,. We consider a weakly semi-
stable scheme f: X — S and a divisor E C X with normal crossings relatively to S such
that the base change X x5 W — W is smooth. Let jy: U=X\ (/"' (D) UE) - X de-
note the open immersion and we regard X as a log scheme defined by the log structure
Mx = Ox NjuOF. Then the map f: X — S is log smooth.

We construct proper modifications of weakly semi-stable schemes using log blow-
ups. This will be used at the end of the proof of Theorem 1.4.7.

Lemma 1.2.1. — Let Ok be a discrete valuation ring and X be a weakly semi-stable scheme
over S = Spec Ok with smooth generic fiber Xx. Then, there exists a proper modification X' — X
such that Xy, — Xk s an isomorphism and that X' is semi-stable over S.

Progf. — Let m be a prime element of Ok. First, we consider the case where
there exists an étale morphism X — Spec O[T}, ..., T, 1/(T,--- T, — ‘) for an in-
teger ¢ > 1. Let P, , be the monoid N7 + ((%, el %)) C Q’. The uniformizer 7 and the
pull-backs of T, ..., T, define a morphism X — SpecZ[P,,] = SpecZ[T,, ..., T, S]/
(Ty---T,—=S.

We identify the dual monoid N, , = P;,e with {(a;,...,a) eN'|a; +---+a,=
0 mod ¢}. Let B,, C N, , be the finite set {(a|, ..., a,) € N’ | a; + - -- + a, = ¢} and define
Y,.bylo CB,, |(a,...,a),(by,...,b) € o implies |a) — by| + -+ + |a;, — b,| < 2}.
For o € X, let N, denote the submonoid of N, , generated by o. Then, X, defines a
regular proper subdivision of N, , and we obtain a log blow-up X5, , — X.

g.e
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We show that the scheme XEW is semi-stable over Ok. Let /: N — P,, be the
map sending 1 to (%, e %). Then, the dual map f/*: N,, — N sends a € N, to (a; +
-+++a,)/e and hence an arbitrary element of B, to 1. A numbering on o € X, defines
an isomorphism N* — N, C N,,. Hence, the composition N° — N of the restriction
S¥In, : Ny = N with an isomorphism N° — N, sends every member of the canonical
basis of N’ to 1. From this, it follows immediately that X, is semi-stable over Ok for
every o € X,

By Lemma 1.1.2, the exponent ¢ and the divisors defined by T, ..., T, are well-
defined étale locally up to permutation. Since the regular proper subdivision X, , is invari-
ant under permutations of ¢ letters, the étale locally constructed log blow-ups X5, , — X
patch each other and define a semi-stable modification X' — X globally. 0J

Next, we reformulate [6, Proposition 3.6] in our terminology. This together with
Lemma 1.1.4 will be used in the proof of Lemma 5.3.2 in the case (5.3.2.1a).

Lemma 1.2.2. — Let S be a regular noetherian scheme and D C S be a divisor with simple
normal crossings. Let f : X — S be a weakly strictly semi-stable curve such that the base change Xy =
X xgW — W =S\ D is smooth.

Then, there exists a proper modification X' — X such that X§, — Xyy is an isomorphism, that
X' s regular and weakly strictly semi-stable over S and that X' x s D s a diisor with simple normal
¢rossings.

Proof. — First, we consider the case where the following data are given:

Let SpecR C S be an affine open subscheme, s1, ..., s, € R be elements defining
irreducible components Dy, ..., D, of DNSpecR, d|, ..., d, > 0 be integers and let X —
SpecR[T, To]/(T, Ty — 5‘111 ---sff") be an étale morphism over S. Let ¢: {1,...,n} —
{1, 2} be a function.

We define maps N — N?, N — N” of monoids by (1, 1) and (4, ...,d,) and
consider the amalgamate sum P = N? +x N”. The dual N = P* is identified with
{(a,0) e N> x N" | ay + ay = dyby + -+~ + d,b,}. Let ey, ..., e, € N* be the standard
basis. For : =1,...,n, we put B; = {(a,b) € N | b = ¢;}. We identify (1,2),(2,7) €
A={1,2} x {1,...,n} with ((d,0),¢), ((0,d),e¢) € B; and regard A as a subset of
B =1][;B; CN. For each j € {1,...n}, let ; be the finite set consisting of 0 C B; U A
satisfying the following conditions:

o If (a,7) €0 NAfori <, we have a = ¢(2).
o If ((a1,a),¢), ((d), a), ¢) € 0 NB;, we have |a; —a}| < 1.
o We have {a€{1,2}|(a,i)eaﬂA,i>j};{l,2}.

We put ¥ = Uj"zl ;. For each o € X, the submonoid N, C N generated by o is iso-
morphic to N* for s = Card o > 0. For (a, b) € N, if there exists an integer 1 <j <z not
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satisfying the inequalities

ay > Z bid; and ay > Z bid;,

1<y, c()=1 1<y, o()=2

then, for the smallest such j, there exists o € X; such that (a, b) € N,. If otherwise,
we have (a, b) € N¢ for C={(c(2),7) |1 € {l,...,n}} € X,. Hence, ¥ defines a regular
proper subdivision of N.

The étale morphism X — Spec R[ T, Ts]/(T Ty — s’fl e sf") induces a morphism
X — SpecZ[T,, Ty, Sy, ..., S,1/(T )Ty — Sf‘ ---ij”) = Spec Z[P]. Hence the log blow-
up Xy is defined by the regular proper subdivision X.

We show that the scheme Xy satisfies the condition. We consider the dual
7*: N — N" of the canonical map 7 : N* — P=N?+yN". Let ey, ..., ¢, and €.,
be standard bases of N* and of N". Then, 7* maps the elements of B, to ¢, € N". Let
o € ¥; and take an isomorphism N° — N, to the submonoid generated by o. We
consider the composition ¢: N* — N" with the restriction N, — N". Then, there ex-
ists a map g: {I,...,s} = {l,...,n} such that ¢(¢) = ¢,; for j=1,...,s. Further, for
¢ =1,...,n, we have Card(g~'()) < 1 for i # ¢ and Card(g~'(:)) < 2. Thus, we have
either an étale map X, — Spec R[T, Ts]/(T, Ty —s;) or an étale map X, — Spec R[T].
Hence, the log blow-up Xy is weakly strictly semi-stable over S and regular. Further
D xs Xy is a divisor with simple normal crossings.

We prove the general case. To patch the local construction above, we fix a num-
bering of irreducible components of E =X x g D. Let SpecR C S be an affine open and
V — SpecR[ Ty, To] /(T Ty — 5§ - -s) be an étale map defined on an open subscheme
V of X. We assume that each V xg D, has two irreducible components E, ; and Ey;
defined by (T, s;) and (T, s;) respectively. We define a function ¢: {1,...,n} — {1, 2}
by requiring that the index of the irreducible component E,;) ; is the smaller among E, ;
and E,; with respect to the fixed numbering of the irreducible components of E. By
changing the numbering of Dy, ..., D,, we may assume that the indices of the sequence
E.).1, - - - » B0 1s increasing. With this numbering and the definition of ¢, it is easily seen
that the log blow-ups Vg patch globally and define a modification X" — X. UJ

The following lemma will be used in the proof of Corollary 5.3.2 the case (5.3.2.1b)
but ot in the proof of the conductor formula.

Lemma 1.2.3. — Let S be a regular noetherian scheme and D C S be a divisor with simple
normal crossings. Let f: X — S be a weakly strictly semi-stable scheme such that the base change
Xw =X xg W — W =_S8\D is smooth.

For an wrreducible component D; of D, let 1; be the set of irreducible components of X x s D; and,
Jorx € Xand s =f(x) €S, let 1, be the set of wrreducible components of the fiber X, containing x. We
assume that the following condition is satisfied:
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(1.2.3.1) There exist a_famuly of functions @;: 1; = N and a total order on the finite set
L, for every x € X satisfying the following condition: If s = f(x) € D; and if the
map 1, — 1; induced by the inclusion X; — Xp, is injective, then the composition
I, = N with @; is igective and increasing.

Then, there exists a proper modification X' — X such that X§, — Xyy is an isomorphism, that
X' s regular and weakly strictly semi-stable over S and that X' xs D is a divisor with simple normal

CroSSINgs.

Progf. — First, we consider the case where the irreducible components Dy, ..., D,
of D are defined by 4, ..., {,, there exists a smooth map X — S[T,...,T,]/(T,---T, —
AR t;”q) for integers my, ..., m, > 0 and the total order on I, is induced by the natural
order on {1, ..., 7}. We define morphisms N— N"and ¢: N— N?by | — (1,...,1)
and by 1 + (my,...,m,) respectively. Let P be the amalgamate sum N" +y N? with

respect to the morphisms above. We consider the map P — I'(X, Ox) of monoids defined
by Ty,...,T,and #,...,1,.

We define the dual morphisms | |: N* — N and m*: N = N by |(a},...,a)| =
aj +---+a, and m*(by, ..., b)) =mby + --- + myb,. Then, the dual monoid N = P* is
identified with {(a, b)) € N" x N?| |a| = m*(b)}. We define a regular proper subdivision X
of N. Let V be the finite set {(a,7) € N" x {1, ..., ¢} | |a]| = m;}. We regard V as a subset
of N by identifying (a,)) € V with f,; = (a, ;) € N where f, ..., f, denote the canonical
basis of NY. For a vector a € N', we put Supp(a) ={r € {1,...,r} | @ > 0}. For elements
(a,)), (d,)) € V, we write (a,)) < (d,j") if maxSupp(a) < minSupp(a’) andj <j'. The
relation < satisfies the anti-symmetry law and the transitivity law but not the reflexive
law. By abuse of terminology, we say a subset o C V is totally ordered if (a,), (¢,)) € 0
mmplies either (a,7) < (.}, (d,)) < (a,j) or (a,)) =(d,j). Weput X ={oc CV |0 1s
totally ordered }. For o € ¥, we consider the submonoid N, C N generated by f, ; for
(a,7) € 0. For each (a, b) € N, one can easily find the minimum totally ordered subset
o € ¥ satisfying (a, b) € N,. Thus, ¥ defines a regular proper subdivision. Hence the log
blow-up X' = Xy 1s regular and X' xg D is a divisor with simple normal crossings.

By the assumption on the existence of the functions and the total orders, the log
blow-ups constructed above patch globally to give the required X'. UJ

1.3. Log products and log blow-ups. — We fix some terminology and notation on log
products, which will be constantly used throughout this paper. For the generality on log
schemes, we refer to [22], [19], [26, Section 4]. In this paper, unless otherwise explicitly
stated, a log structure means an fs-log structure defined Zariski locally. In particular, a
log structure M is a sheaf of commutative monoids on the Zariski site of a scheme X
endowed with a morphism of sheaf of monoids Mx — Ox where Ox is regarded as a
sheaf of monoids with respect to the multiplication. Further, Zariski locally on X, the log
structure My admits a chart by an fs-monoid. For a log structure My, let Mx denote
the quotient Mx/Ox.
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We recall some basic facts on log schemes from [22], [26, Sectlon 4.3]. For mor-
phisms X — S and Y — S of log schemes, the fiber product X Xg° Y is defined as a log
scheme. Note that X, Y, S are assumed to be fs-log schemes and X ng Y is the fiber
product in the category of fs-log schemes. We put log in the notation to indicate that the
underlying scheme can be different from X xg Y in the category is schemes. However,
for example if at least one of the morphisms X — S and Y — S is strict, the underlying
scheme 1s X X Y. In such a case, we will drop log in the notation.

For a Cartier divisor D of a scheme X defined by the ideal sheaf Z, C Ok, the
associated log structure is defined to be Mx = UneN ZLsomoy (Ox, 1})) endowed with the
injection Mx — Ox induced by the inclusions Z}, — Ox. For a finite family D = (D,) ;¢
of Cartier divisors D; C X, the associated log structure is defined by the amalgamated
sum of those associated to D; for 7 € I over OX. It is the push-out of the log structures
defined by D, for 7 € I. We have a canonical map N' — I'(X, MX) that can be lifted to
a chart locally on X. )

Let P be an fs-monoid and we consider two morphisms P — I'(X, Mx) of
monoids. Then, by applying [26, Proposition 4.2.3] to the surjection P 4+ P — P, we
conclude that the functor sending a log scheme T to the set

{f: T — X | the two compositions P — I'(X, My) N (T, My)
are equal to each other}

of morphisms of log schemes is representable by a log étale scheme over X, that may
be denoted by X X;’%P X. Locally on X, it is constructed as follows. Let P be the inverse
image of P by the sum P @ P# — P#. Locally on X, we take liftings P — I'(X, Mx) of
P— I'(X, MX) and let X — Spec Z[P + PJ be the induced morphism of log schemes.
Then, X XX » X 1s constructed as X XSpec z[p+p] SPEC Z[P).

We apply the construction in the following case. Let X — S and Y — S be mor-
phisms of log schemes, P be an fs-monoid and P — I'(X, My) and P — I'(Y, /\/ly) be
morphisms of monoids. Then, they induces two morphisms P — F(X leog Y, /\/l 102Y)

By applying the construction above, we define the log product X X, sp Y. It represents the
functor sending a log scheme T over S to the set

P — I'(X, My)

(f: T—=>X,g: T—Y) | the diagram l lf* 1s commutative

T(Y. My) — T(T, My)

of pairs of morphisms of log schemes over S.

Lemma 1.3.1. — IfP — T'(X, ./\;lx) and P — T' (Y, My) are locally lifled to charts, then
the projections X x?‘g}, Y—> XadX xg),gp Y — Y are strict morphisms of log schemes.
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Proof. — By the construction above, the monoid P also defines charts on
I
X xgh Y. O

We consider the following variant. Let X — S and Y — S be morphisms of log
schemes, P and Q) be fs-monoids and

P < Q —_— P

! l l

F(X, Myx) <— I['(S, Ms) — T(Y, My)

be a commutative diagram of morphisms of monoids. Then, we define the log product

X x?gp /o Y by the Cartesian diagram

log log
XXspgY —> X XgpY

(1.3.1.1) l l

S SN lesngS

where the bottom arrow is the diagonal map and the right vertical arrow is defined by
functoriality.

We make the construction explicit in the case where the log structures of X and Y
are defined by finite families D = (D;);c1 and € = (E,) ¢ of Cartier divisors D; C X and
of E; C Y with the same index set and the log structure of S is trivial. We define the log
product

(1.3.1.2) (X xsY)5 ¢

to be X X:,iﬂ Y defined by the canonical morphisms N! — I'(X, /\;lx), N' = I'(Y, ./\;1\7).
The canonical morphism (X x5 Y)p o = X X5 Y is log étale. If X =Y and D=E&, we
let (X X5 Y)p ¢ denoted by (X x5 X)p5. Further if D is clear from the context, we drop
the subscript D.

Locally, the log product (X X5 Y)p ¢ is described as follows. Assume that D; and
E; are defined by f; € I'(X, Ox) and g € I'(Y, Oy) respectively. Then, (f));c1 and (g);c1
define maps of monoids N' — I'(X, Ox) and N' — I'(Y, Oy) and they further induce a
map P=N'xN' - I'(X xgY, Oxxsy) from the direct sum. We identify the dual monoid
N = P* with N' x N' and let N, = N' C N' x N! be the diagonal submonoid. Then, the
corresponding submonoid P, = {p € P*® | f(p) € N for f € N,} C P® = Z' x Z' is equal
to {(a, b)) € Z' x Z' | a+ b € N'}. The log product (X xs Y)p ¢ is then equal to
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(1.3.1.3) X xsY),
=Xx5Y) X SpecZ[P] Spec Z[P, ]
= (X X5 Y) Xspeezis, 1ien Spec Z[S;, Tr, U5 i €1]/(S; = UT; i € D).

We have a global embedding as follows. For each i € I, let Z,, C Ox and Zy, C
Oy be the ideal sheaves. We consider the P'-bundle P(priZp, @ prjZs,) over X x5 Y.
The complement P; C P(priZp, @ priZg,) of the two sections defined by the surjections
priZp, ® pryly, — prilp, and prily, @ pryls, — prily, is a G,-torsor over X xg Y. The
log product (X xs Y)p ¢ is a closed subscheme of the fiber product ]
X Xg Y.

We consider the variant of log product. Further, let B be a Cartier divisor of S and
(7;) be a family of integers n; > 0 satisfying /*B=)"._,nD; and ¢'B =) n,E; for the
same family (7;);c; of integers n; > 1. We consider the log structure of S defined by B and
define the log product

i€l XxsY P; over

(1.3.1.4) X xsY)p e/m

tobe X x:gNI/NY defined by the canonical morphisms N — I'(S, Ms), N' - I'(X, MX),

N' — I'(Y, MY). It is a closed subscheme of (X x5 Y)p o. When B is clear from the
context, we let (X X5 Y)p ¢ /B denoted by (X x5 Y)p ¢ in order to distinguish it from
X' xsY)p e

The log product (X X5 Y)p ¢/ with respect to D, & and B is locally described
as follows. Suppose that D;, E; and B are defined by f; € I'(X, Ox), g € T'(Y, Oy) and
a € T'(S, Os) respectively. We put a =v[[.f" and a = w][];g" for v € I'(X, OF) and
w e T(Y,O05). Then, ((f)ic, v) and ((g)ic1, w) define maps of monoids N x Z —
(X, Ox) and N! x Z — I'(Y, Oy). Let P be the amalgamate sum (N' x Z) +x (N' x Z)
with respect to the map N — N' x Z sending 1 to ((n;), 1). Then, they further induce
amap P— I'(X x5 Y, Oxx.v). We identify the dual monoid N = P* with {((«), (§;)) €
N x N | Y o.ma; =) mb} andlet N, = N! € N ¢ N' x N! be the diagonal submonoid.
Then, the corresponding submonoid P, C P = (Z'x ZHZ' x Z)/ (((n;), 1, (—n;), —1))
is equal to {(a, @, b, b') € P | a+ b € N'}. The log product (X xg Y)B,S/B is then equal
to

(1.3.1.5) (X Xg Yv)(7 = (X Xs Y) XSpecZ[P] SpCC Z[Pa]
=(XxsY) X Spec Z[S;, Tj;icl, VEL W]

SpecZ[S;, T, U'siel, Vil,wﬂ]/

(si ~UT;iel,W— Vl_[U?l').
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In other words, in the presentation (1.3.1.3), it is the closed subscheme defined by the
relation priw /priv =[], U.

We study the boundary of log products. Let z € I and put I, =1\ {7} and D, =
(D))jei,- We define (D; xsD;)p. to be (D; x5 Di) Xxxex (X X5 X)%i. IfD,ND; =D; xx D;

1s a Cartier divisor of D; for every j € i,-, the scheme (D; xg Dl-)a, is the log product with
respect to the family (D; xx D;);;, denoted by D;.

Lemma 1.3.2. — Let X — S and D = (D;);c1 be as above. Let 1 € 1 and assume that
D; ND; = D; xx D; is a Cartier divisor of D; for everyj € I' =1\ {}.

1. The scheme E; = (D; xs D;) Xxxex) (X Xg X) 15 equal to the inverse images
prl_l(DZ-) = prQ_I(Di) of D; C X by the projections (X xg X)p — X. It 15 a G,,-lorsor over
(D; x5 Di)p.. The restriction of the log diagonal map D; — E; defines a trivialization of the restriction
of the G,,-torsor E; — (D; X Di)a- to D; C (D; x5 Di)lN?;'

2. Let B be a Cartier divisor of S. Assume that [*B = Z/— nD; and that the coefficient n; of
D; win f*B 1s strictly positive n; > 0. Then, the intersection E; N (X xg X)7 /B is a subscheme of a
W, -torsor over (D; Xg Di)gl_. The restriction of the log diagonal map D; — E,; defines a trinalization
of the restriction of the pv,,~torsor E; N (X Xg X)B/B — (D; xg Di){)i toD; C (D; xg Dl-)a_.

Proof. — 1. Clear from the inductive construction (X xs X)p = (X Xg X)B X XxgX

(X x5 X)p, of the log product.
2. Clear from the remark after (1.3.1.5). U

We define a log blow-up (X x5 Y)p ¢ of X X5 Y containing the log product
(X X5 Y)p ¢ as an open subscheme. For ¢ € I, let B; C N = N! x N! be the subset
{((ap), (b)) e N' x N' | ¢ = b, = 0 for k # ¢ and (;, b;) € {(1,0), (0, 1), (1, 1)}} consist-
ing of three elements and we put B =, B;. Then the set ¥ ={o |6 C B, Card(c N
B;) < 2 for every i € I} defines a regular proper subdivision of N. We let the log blow-
up (X Xs5Y)z denoted by (X X5 Y)p ¢. Since the diagonal submonoid N'cN' x N!
is generated by the subset 0 = {((;), (b;)) € B | ¢; = b; for every i € 1}, the log product
(X' x5 Y)p ¢ is an open subscheme of (X x5 YY) ¢.

We define a log blow-up (X x5 Y)p ¢y of X X5 Y containing the log product
X xsY)pe /p as an open subscheme, assuming 7n; € {0, 1} for every ¢ € I. In order to
define the log blow-up, we choose and fix a total order of the subset I' ={r € 1| n; = 1} of
the index set I.

First, we consider the case where I' =1 namely n; = 1 for every ¢ € I. The dual
N = P* of P = N! 45 N! is identified with {(a, b)) € N' x N!| Y o.a;=).b}. Let (¢) be
the standard basis of N'. We identify an element (z,7) € I x I with (¢;, ¢) € N and regard
I x I as a subset of N. We consider the product order on the product I x I. Let ¥ be
the set of totally ordered subsets 0 C I x I. For o € 2, let N, C N be the submonoid
generated by 0. Then, X defines a regular proper subdivision of N. We let the log blow-
up (X XsY)y denoted (X Xg Y)’D’ /B Since the diagonal 0 = A; C I x I corresponds to
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the diagonal submonoid N' € N C N' x N', the log product (X x5 Y)7 ¢ /3 1S an open
subscheme of (X xg Y)/D,(‘Z/B'

In the general case, we put I” =1\ I' and consider the subfamilies D" =
D)ier, £ = (Eicr, D" = Dy)icrrs " = (E)jerr. Then, we define the log product
(X X5 Y)p ¢/p as the fiber product by

(1.3-2.1) (X XS Y)/D,E/B == (X XS Y)/D’,E’/B XXXsY (X XS Y)/Z)//’g//.

1.4. Log Lefschetz trace formula over a discrete valuation ring. — We state and prove a
log Lefschetz trace formula over a discrete valuation ring. Let L be a henselian discrete
valuation field. We regard T = Spec O, as a log scheme with the log structure defined by
the closed point ¢ and also regard ¢ as a log point.

Let X be a weakly semi-stable scheme over T' = Spec Oy, with smooth generic fiber
Xr, and D C X be a Cartier divisor with normal crossings relatively to T. Letj: X;, — X
be the open immersion. In this section, we regard the scheme X as a log scheme with the
log structure Ox N, Oy, . It is log smooth over T. We consider the fiber X, = X x ¢ also
as a log scheme over a log point ¢. We put U =X\ D and let jy: U — X be the open
immersion.

It X is proper, we define the log étale cohomology with compact support by

logc(Ul" Ql) - log(Xt"jU’Qﬁ)

where ju; 1s defined on the log étale site.

Lemma 1.4.1. — Let X be a proper weakly semi-stable scheme over T = Spec Oy, and
D C X be a Cartier diwvisor with normal crossings relatively to 'I'. Then the cospecialization map

(1.4.1.1) H; . (Ui, Q) — H; (Ug, Q)

us an 1somorphism.

Progf. — In the case D =@, it follows from [33, Theorem (3.2)(ii)]. We reduce
the general case to this case. Let D be the normalization D and let 7: D — X be the
canonical map. Then, we have an exact sequence 0 — juQyu — Qpx — 7.Q,p —
A*m,Q, 5 — -+ . Thus the assertion follows. O

Let X’ be another weakly semi-stable scheme over T with smooth generic fiber X}
and D’ C X’ be a Cartier divisor with normal crossings relatively to T. We also regard
X" and X as log schemes over T and over ¢. Let ¢,: X, — X be an isomorphism of log
schemes over ¢ inducing an isomorphism D, — D/. Then, it induces an isomorphism

HY, (U, Q) — H., (U} Q).

Let I' C Uy, x Up be a closed subscheme of dimension = dim Ur.. We assume
that the second projection po: T' = Uj 1s proper. Then, in [27, Section 2.3], the map

(1.4.2.1) r*: H!(U;, Q) - H/(U;, Q))
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is defined as py.p5. We also let I'* denote the composition

r*

H!(U;, Q) H!(U;, Q) —— H!(Ui, Q)
(1.4.2.2) pT ~ CmpT:
HY, (U7, Q) —— H{, (U, Q)

loge

by abuse of notation. In this subsection, we give a Lefschetz trace formula computing the
alternating sum

2d
(1.4.2.3) Te(I*: HA(Up, Q) = Y (= DTe(I*: HI(Ur, Q) € Q.

9=0

assuming that X is weakly strictly semi-stable.

Let X, X', D and D’ be as above. We assume further that X and X’ are weakly
strictly semi-stable and that D =D, +---+ D, and D’ =D + - - - + D/ have simple nor-
mal crossings with the same indices. Let ¢,: X, — X be an isomorphism of log schemes
over ¢ inducing isomorphisms D;, — D, for every 1, ..., n.

Let T denote the log scheme T endowed with the log structure defined by the
Cartier divisor {. We consider an fs-monoid P, a morphism N — P of monoids and a
commutative diagram

P S N — P

(1.4.2.4) l l l

F(X, Mx) «— I'(T,My) — T'(X, Mx)
of monoids satisfying the following condition:

(P) The vertical arrows are locally lifted to charts and compatible with the isomor-
phism ¢,: X, — X.

To define the log product (X xt X')~, we define X to be the log scheme X
defined by the push-out M of the log structure My and that defined by the family
D = (Dy,...,D,). Similarly, we define X'. We consider

PEN" <«—— N —> PN
X, Myx) «— (T, My) — T'(X, Mx)
and define the log product
(1.4.2.5) (X xrX)"
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to be X X1 penyN X'. Since the canonical map (X xt X')™ — X xp X' is log étale,
the projections (X X1 X')” — X and (X x1 X')” — X' are log smooth. Similarly as
Lemma 1.3.1, the projections are strict and hence smooth.

By the universality of (X x7 X')~, the immersion X; — X and the composition
2 X, = X] — X defines an immersion X, — (X X X')™. By identifying X/ with X, by
the isomorphism ¢, let §,: X, — (X x1 X')™ denote the immersion. The generic fiber
(X x1X')™ x1 Spec L is identified with the log product (Xy, x, X} )~ with respect to the
families of Cartier divisors Dy, ..., D, and Dy, ..., D, .

Defimition 1.4.3. — 1. For a scheme S, let K(S) denote the Grothendieck group of the exact
category of locally free Os-modules of finite rank. For a locally free Os-modules E of finite rank, its class
is denoted by [E] € K(S).

2. For a noetherian scheme S, let G(S) denote the Grothendieck group of the abelian category
of coherent Os-modules. For a coherent Os-modules F, its class is denoted by [F] € G(S). For an
integral closed subscheme V, the class [Ov] s also denoted by [V].

We define a map G((Xy, x1, X})™) = G(X,) as follows.

Lemma 1.4.4. — Let X and X' be weakly strictly semi-stable schemes over T = Spec Oy,
with smooth generic fibers and D =Dy +--- 4+ D, C X and D' =D +--- + D/ C X' be divisors
with simple normal crossings relatively to T with the same indices. Let t,: X, — X be an tsomorphism
of log schemes compatible with the numberings of D and D' and we consider a commutative diagram
(1.4.2.4) of monouds satisfying the condition (P).

1. The pull-back G((X x1X')™) = G((X x1 X)) by the closed immersion (X x1X');
=X xr X)) x1t— (X x1 X')~ induces a map

(1.4.4.1) G((Xe x1.X)) ) = G((X xr X))).

2. Themap &,: X, — (X x1 X)) is a regular immersion and 1t defines a pull-back
(1.4.4.2) G((Xx1X),) = GX).

Progf. — 1. Since the projection (X Xt X')™ is smooth over X, the scheme
(X' xrX")™ is flat over T. Hence the closed immersion (X xpX');” = (X x1pX')™ is a reg-
ular immersion and is of finite tor-dimension. Thus, it induces a map G((X xt X')™) —
G(X xTX))).

Since the sequence

G((X XT X/):) —> G((X XT X/)N) — G((XL X7, X/L)N) — 0

1s exact and since the composition
G((X x2 X)) = G((X xr X)) = G{(X %2 X))

is the zero-map, the assertion follows.
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2. Since the projection (X xt X')” — X is smooth, the immersion §,: X, —
(X x1X')" is a section of a smooth map and is a regular immersion. Hence the pull-back
on the Grothendieck groups is defined. O

For an element I' € G((Xy, x1.X})™), by Lemma 1.4.4, its reduction I', € G((X x
X')7) and the intersection product

(1.4.4.3) (T, Ax,) =8*(T) € G(X,)

are defined.

Recall that for a weakly semi-stable scheme X over T, a semi-stable modification
Xy 1s constructed in Lemma 1.2.1 by patching log blow-ups. By the construction, the
pull-back Dy = D xx Xy 1s a divisor of Xy with simple normal crossings relatively to T.
The canonical map Xy — X induces an isomorphism Xy 1, = Xj, on the generic fiber.

Corollary 1.4.5. — Let weakly strictly semi-stable schemes X, X' over U and an isomorphism
2 X, = X and a commutative diagram (1.4.2.4) of monoids be as in Lemma 1.4.4. Let f: X5 —
Xand f": X5, — X' be the semi-stable modification as above. Then, the diagram

G(XpL %1 X)) — G((Xx))

| 2

G(XL x. X)) —  G(X)

s commulalive.

Proof: — We show that the diagram

Xy x1X5)~ /s Xy

(1.4.5.1) (fxffrl Lf
XxpX)” 2 X

1s Cartesian. By the definition (1.3.1.1) of (X x1 X')™, it suffices to show that the diagram
with X7 replaced by X7 is Cartesian. Since the assertion is local on X x1 X', we may
assume that we have charts P — I'(X, Ox) and P — I'(X', Ox/). Let Q be a sub-fs-
monoid of PP containing P as a submonoid. Let P be the inverse image of P by the sum
PP @ P — P and define Qsimﬂarly. Then, since P = Q% the inclusions P — P,
Q— Q to the first factors induce an isomorphism Z[ﬁ] Qzp) Z[Q] — Z[Q]. Hence
the diagram with Xy and XY replaced by with X xgycczp; Spec Z[Q] and X' Xgpeczip)
Spec Z[Q)] is Cartesian. Since Xy and X, are defined by patching them, the diagram
(1.4.5.1) 1s Cartesian by the local construction of log product.
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By the Cartesian diagram (1.4.5.1), we obtain a commutative diagram

G(Xs x1X5)") —> G((Xx))

(fo’)Il lf*

G(Xxr X)) — GEX).
Since the diagram

G(Xyg x1X5)") —— GX, x1, X])

o |

G((X XT X/)N) — G(XL X7, X/L)
1s commutative, the assertion follows. ]

Let X, X', D, D" and ¢,: X; = X/ be as above. Assume X and X' are strictly semi-
stable and let E,, ..., E, be the irreducible components of X, and E},...,E/ be the
irreducible components of X such that ¢, maps E; to E; forj =1,..., m. Then, the log
product (X x1 X')™ is equal to (X x1 X')pue pug: defined by the families of Cartier
divisors D = (Dy,...,D,),E=(E,...,E,) of X, D' =(D},...,D),E=(E],....,E)
of X" and ¢ of T. Consequently, in this case, the log blow-up (X x1 X')" is defined as
(1.3.2.1) and contains (X xt X')™ as an open subscheme. It contains the log product
(X x1 X')™ as an open subscheme. The generic fiber of the log blow-up (X x1 X')" —
X x1X'is equal to the log blow-up (Xy, x1,X])" — X, x,X] usedin [27]. IfD =D" =0,
the log blow-up (X x1 X')" is equal to the log blow-up (X x1 X')" used in [26].

Lemma 1.4.6. — Let (X x1 X') = X X1 X' be the log blow-up and let (D Xt

XY, X xt D) C (X xt X) be the proper transforms of D x1 X', X xp D" C X x1 X',
We consider the open immersions

(X xp X))\ (D xr XY UX xr D)) —2s (X xpX)'\ (X xp D

I [k
Xy, xL X))~ s (X xL X))\ (X x. D).

Then the canonical map

(1.4.6.1) Qs = RjginQy

us an 1somorphism on the log étale site.
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Progf. — For an irreducible component D; of D, let (D; xtX')" C (X x1X')" denote
the proper transform. For a subset I C {1, ..., n}, we put [ ..;(D; x1 X')' = (D; x1 X)’
and let 7;: (D x7 X')"\ (D; xt X)) N (X x1 D)) - (X x1 X) \ (X x1 D’) be the
closed immersion. Then, we have an exact sequence

O_>‘]1'QZ_>QZ_>®ZZ*QZ_> @ Z.{i\j}*Ql_> et
=1

I<i<j=n

Since (D; x1 X') is log smooth over T, the canonical map #,Q, — Rj,ur.Q, is an
isomorphism by [33, Theorem (0.2)]. 0

The following theorem is a key ingredient in the proof of a crucial step Proposi-
tion 6.3.2 of the proof of the conductor formula.

Theorem 1.4.7. — Let X and X' be proper weakly strictly semi-stable schemes of relative
dimension d over T with smooth generic fibers and D =Dy +---+D, C X and D' =D +--- +
D! C X' be divisors with simple normal crossings relatively to 'T. Let 1,: X, — X be an isomorphism
of proper log smooth schemes over t inducing isomorphisms (D;), — (D)), for i =1,..., n and we
consider a commutative diagram (1.4.2.4) of monoids satisfying the condition (P). We put U =X\ D
and U =X"\D'.

Let T C (Xy, x1, X})" be a closed subscheme of dimension d satisfying

/

(1.4.7.1) "N (D> X;) TN (Xe i, DY)

and we put Fr=r'n Xy, x1, X{)7. Then, for T =T"N (Uy, xy, U}), the second projection
pa: T — U s proper and, for the composition T'* (1.4.2.2), we have

(1.4.7.2) Tr(M*: H'(Uz, Q) = deg(T, Ax)).

Note that (Ft, Ax,) in the right hand side is defined in (1.4.4.3) using ¢,: X, — X].
The proof is a combination of that of [27, Theorem 2.3.4] and that of [26, Theo-
rem 6.5.1]. In the proper case where X = U, it 1s proved in [26, Theorem 6.5.1]. The
proof consists of verifying that the method in the proof of [27, Theorem 2.3.4] to treat
the open case also works in this context.

Proof. — By the argument in the beginning of the proof of [27, Theorem 2.3.4],
the inclusion (1.4.7.1) implies that the second projection pr,: I' — Uj is proper. Thus
the endomorphism I'* of H*(Uy, Q) is defined.

We prove the equality (1.4.7.2) first in the case where X and X' are strictly semi-
stable. We put

HY (Xq, x5, X(, Qu(d)) = H*(Xy, x1, Uy, (Ju X 1)1Qy(d)),



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 29
HY L (X xr X, Qu(d) = Hi (X xr U, (o x 1D)1Qy(d)),
HY L (X% X0 Qu(d)) = Hit (X, x, UYL (o x 11Qy(d)).

Then, in [27, Lemma 2.3.2], the cycle class [I'] € H,Qf(XL x1, X1, Qy(d)) is defined and
the map I'* is described in terms of the cycle class [I'] as in the upper line of the diagram
(1.4.7.4) below. We consider the image of [I'] by the composition

[Mle H (X x1. X], Q)

AN

~

restriction | &~

H (X x1 X, Q(d))

restriction
v

(1.4.7.3) [[,] e Hlog (X x, X, Qy(d))
tH
8?[1—1[] € HIQOdg c(Ul’ Qj(d))
Tr

v

Q.

Similarly as Lemma 1.4.6, the first arrow is an isomorphism by [33, Proposition (4.2)].
Since the cospecialization maps are compatible with the pull-back, cup-product
and the trace maps, we have a commutative diagram

(1.4.7.4)

i r r
HAUL Q) — s HAKXp xX,,Q) —2s HA(Up x UL Q) —s  HA(UL Q)

cospl cosp.l lcosp. J,C()Sp.

*

pr U[F] pr|
logc(U/ Q) 2 Hlog*'(XZ XX%,QZ) ! lOg£(Uz X U/ Q) LN Hlogc(UE’Qj)'

The composition of the arrows in the upper line is the map I'* (1.4.2.1). We define I'} to
be the composition of the arrows in the lower line. Then, we have

(1.4.7.5) Tr(T*: H} (Ur, Q) = Tr(I o 1y H, (U, Q).

The standard argument of the proof of Lefschetz trace formula using the Kiinneth
formula [32, Theorem (6.2)] and the Poincaré duality [33, Proposition (4.4)] for log étale
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cohomology, shows that the diagram

2d
@D End(H,, (U7, Q) —— H (X, x X}, Q,(d))
g=0

i b

Tr

Q —— HY (UL Q)

is commutative. Hence, the right hand side of (1.4.7.5) is equal to Tr(§;[I",]). Thus the
proof of (1.4.7.2) is reduced to showing

(1.4.7.6) Tr(87[0/]) = deg(T,, Ax,).

In the definition of the left hand side Tr(§;[I",]), we modify the diagram (1.4.7.3)
using Lemma 1.4.6. We consider the log blow-up (X x1 X') = X x1 X' defined by
(1.3.2.1). We consider the proper transforms (D x1 X')", (X x1 D’)’ € (X x1 X')" of
Dxr X, X xp D' CX xprX andletj;: (X xp X) \ (D xr X) UX xtD))—
X x1 X) \ (D x1 X')" be the open immersion as in Lemma 1.4.6. In the following
equalities, we define the left hand sides by the right hand sides

H; (X xrX), Q) =H] (XxrX)\ (X xrD)",j1Q))

H (X %0 X ), Q) = H (X x Xp) '\ (Xe x1. D) i Qy)-
We consider a commutative diagram

(1.4.7.7)
HY (XL, %1 X[, Qu(d) —— HY(Xp x1.X]), Qu(d) —— H* (XL x1.X[)™, Qu(d))

Ik

[ I I

HY L (X1 X, Q) —— Hit (X x1 X)), Q) —— Hif (X x1X)™, Q)
al & &
Hizo‘éw(U;, Q) —— Hff’g (X, Qu(d)) _ Hﬁé(X[, Qs (d)).

The upper vertical arrows are the restrictions to the generic fiber and are isomorphisms
by Lemma 1.4.6 and [33, Proposition (4.2)]. The top left horizontal arrow is an iso-
morphism by [27, Corollary 2.2.2]. By the proof of [27, Theorem 2.3.4], the cycle class
[T'] € HY((Xy. x1.X})', Qu(d)) is the image of [I'] € H(Xy, x1. X}, Q,(d)). Thus, in the
diagram (1.4.7.3), we may replace X x1 X' etc. by (X xt X')’ etc., H¥ (U,, Q,(d)) by

log,¢
Hizodg(Xt, Q,(d)) and [T'] by [I'']. Further, we may replace (X x1 X')" etc. by (X x1 X')~
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etc. and [I""] by [F] and drop .. Therefore the proof of (1.4.7.2) is further reduced to
showing

(1.4.7.8) Tr(87[T]) = deg(T, Ax,)
where the left hand side is defined by

[[]e HY((XL, x.X}|)™, Q(d))

N

restriction | =~

HY (X xr X)), Qu(d))

restriction
N

(1.4.7.9) [Tle HX(X xr X)), Q)

&

5iTle  HELX, Q@)

Tr

w

Q.

We prove (1.4.7.8). The proof goes similarly as that of [26, Theorem 6.5.1]. We
identify Ger((XL x1, X1)7)g with GrgG((XL x1, X1)7)q by the canonical isomor-
phism, cf. [26, Lemma 2.1.4]. Since we are assuming that X is strictly semi-stable, the
log product (X xt X')™ is regular. Hence, the restriction map Gr%K((X xt X)) —
GréK((XL Xy, X})7) is a surjection and the class [F] € GrN{.{K((XL x1, X1)7) is lifted to
an element [I'] € GréK((X x1 X')™). We define the class [I'] € H*((X xt X')~, Q,(d))
as the Chern character. Since the Chern character is compatible with the pull-back,
the class [F] € H*((Xy, x1, X})~, Qy(d)) on the top is the restriction of the class
[['] € HY((X x1 X/)™, Q,(d)). Further the trace map H*(X;, Q,(d)) — Qy is the com-
position of the canonical map H*/ (X3, Q,(d)) — Hizodg(X;, Q,(d)) with the trace map
HIQO‘;(Xz, Q,(d)) — Q,. Hence the left hand side of the equality (1.4.7.8) is the image of
[F] e H*((X x1 X)~, Q,(d)) in the second line of the diagram (1.4.7.9) with log re-
moved everywhere. Thus the equality (1.4.7.8) follows from the compatibility of the trace
map with the degree map [26, Lemma 6.5.4].

We reduce the proof of (1.4.7.2) to the case where X and X' are strictly semi-stable.
As in Corollary 1.4.5, we consider the semi-stable modifications Xy — X and X§ — X'
constructed in Lemma 1.2.1. The isomorphism ¢,: X, — X/ induces an isomorphism
us: Xg), = (X5),. Thus, by Corollary 1.4.5, it is reduced to the strictly semi-stable
case. U
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1.5. Log stalks. — In the next subsection, we prove an important complement
Proposition 1.6.2 to the log Lefschetz trace formula Theorem 1.4.7. As a preliminary,
we briefly recall some elementary terminology on log points and the stalks of a tamely
ramified sheaf at a log geometric point. For more systematic account, we refer to [19, Sec-
tion 4]. A reader familiar with the generalities on log schemes may skip this subsection.

Let ¢ be the spectrum of a field F. If ¢ is endowed with the log structure defined by
the chart N — F sending 1 to 0, we call ¢ a log point. Let 7 be the spectrum of a separably
closed field F of characteristic p > 0. If 7 is endowed with the log structure defined by the
chart Z, N [0, 0o) — F sending any element a > 0 to 0, we call  a log geometric point.
For alog scheme Y, we call a morphism ¢ — Y from a log point a log point of Y. Similarly,
we call a morphism ¢ — Y from a log geometric point a log geometric point of Y.

A typical example of log points and log geometric points are constructed as follows.
Let Oy, be a discrete valuation ring and regard T = Spec Oy, as a log scheme with the log
structure defined by the closed point ¢. Then, the scheme ¢ endowed with the pull-back
log structure is a log point. Assume further Oy, is henselian and let " denote the maximal
tamely ramified extension of L. Then, the limit of the standard log structures on Spec Oy,
for finite extensions I" of L in L defines a structure of log geometric point on the closed
point ¢ of Spec Opr. A morphism T — Y of log schemes define a log point / — Y and
further a log geometric point / — Y.

For a log geometric point ¢ of a log scheme Y, the log strict localization Y; is defined
in [19, 4.5]. The definition of the log stalk G; of a sheaf G on the Kummer étale site on
a log scheme Y at a log geometric point ¢ of Y is given in [19, Definition 4.3]. We will
make it explicit in a special case.

Let S be a regular noetherian scheme and D be a divisor with normal crossings.
We put W=S\Dandj: W— S the open immersion. Then, the log scheme S with the
log structure Mg = Og N}, Oy, is log regular [25]. We consider a locally constant sheaf
F on W tamely ramified along D. The direct image j,F on the Kummer étale site of S
is a locally constant sheaf by Abhyankar’s lemma. Let g: Y — S be a morphism of log
schemes and we consider the pull-back G = g%, F to the Kummer étale site of Y.

Let £ — Y be a log geometric point and let 5 denote the geometric point of S
defined by the composition  — Y — S. Letg: Y, — S; denote the map of the log strict
localizations induced by g and j J: W xg S; = S; denote the open immersion. The pull-
back of F on W xg S is a constant sheaf and hence the direct image F= = e (Flwxss)
is a constant sheaf on the usual étale site of S;. The log stalk Gj is Canonlcally identified
with the stalk (g*]: )7 at ¢ of the pull-back of the constant sheaf F. The map g: Y; > S;
induces an isomorphism (j,F); = G; of log stalks.

We consider the log cospecialization map [32, (2.8) 6]. We will use it only in the
following situation. Let g: Y — S be a morphism of log schemes and G = g/, F be as
above. Let V C Y be an open subscheme where the log structure is trivial and let 7 be a
geometric point of V. Assume that the image of the log geometric point / in Y lies in the
closure of the image of 7. Then, by choosing a lifting of 7 in Y:, a log cospecialization
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map G; — G; is defined as the usual cospecialization map @*]F-: ) —> @*.7’-: )i. Let & be an
intermediate geometric point of V such that the image of { lies in the closure of the image
of € and that the image of £ lies in the closure of the image of 7j. Then, by choosing liftings
€ — Y;and ] — Yz — Y; successively, we obtain the transitivity of cospecialization maps
G — G — G-

The following compatibility of the cospecialization map with the pull-back will be
used in the proof of Proposition 1.6.2.

Lemma 1.5.1. — Let S be a regular noetherian scheme and W = S\ D C S be the complement
of a divisor D with normal crossings. We consider a commutative diagram

of morphisms of log schemes. We assume t is a log point and t is a log geometric point.

Let h: Y; — Y be the morphism on the log strict localization induced by h. Let ) be a usual
geometric pownt of an open subscheme N C Y where the log structure is trivial. We take a lifting n — Y;
and let h: 7 — 1) be a morphism such that the diagram

e

[N ]

(1.5.1.1)

h

L ——

?

=1
[/ 3

s commutative.
Let F be a locally constant sheaf on W tamely ramified along D and we put G = g*(j.JF) and
G =g*(G.F) =h*G. Then, for the isomorphism h*: Gz — Q%, we have a commutative diagram

cosp.

g?—>gﬁ

cosp.

g — G;

Progf: — By the commutative diagram (1.5.1.1), we have a commutative diagram

7Py — 7Py
| [r
Z(Fn = (P

Thus it follows from the descriptions of the log stalks and the cospecialization maps. [J
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We consider a geometric situation. Let S be a regular noetherian scheme and W =
S\ D C S be the complement of a divisor D with normal crossings as above. Let f: X —
S be a proper weakly semi-stable scheme such that the base change X xs W — W is
smooth and let fi;: U — S be the restriction to the complement U C X of a divisor
E C X with normal crossings relatively to S as in Lemma 1.1.6. Then, for an integer
n invertible on S, by Lemma 1.1.6, the higher direct image F = R?f,Z/nZ is locally
constant on W and is tamely ramified along D.

Let T = Spec Oy, be the spectrum of a discrete valuation ring with the log structure
defined by the closed point £ € T and g: 'T'— S be a morphism of log schemes such that
the image of the generic point is in W. Then, the pull-back G = g%, F is a locally constant
sheaf on the Kummer étale site of T and the stalk G5, at the geometric point defined by
an algebraic closure L is identified with HY(Ug, Z/#Z) by the usual proper base change
theorem. By the proof of [33, Proposition (4.3)], we obtain a commutative diagram

cosp.

G i,

(1.5.1.2) l l

Hiiogc(va Z/?’ZZ) — Hz(Ui, Z/?’ZZ)

of isomorphisms.

1.6. Compatibility with cospecializations. — We prove a compatibility with cospecial-
ization maps, that gives an important complement to the log Lefschetz trace formula. We
consider the following data:

(1.6.1.1a) Let Y be a log scheme and V C Y be an open subscheme where the
log structure is trivial. Let #: Y — Y be a morphism of log schemes
satisfying £(V) C V.

(1.6.1.1b) Let T be the spectrum Spec Oy, of a discrete valuation ring Oy, regarded
as a log scheme with the log structure defined by the closed point ¢.
Let T — Y be a morphism of log schemes such that the image of the
generic point Spec L € T'is in V and that the map ¢ — Y of log schemes

is the same as the composition of { — Y LY. Let7he a log geometric
point above the log point ¢.

(1.6.1.1c) Let n be a geometric point of the strict henselization V¢ of V at a geo-
metric point £ above the image & € V of SpecL — T and h: 7 — 7 be
an automorphism compatible with .

(1.6.1.1d) Let f: X — Y be a proper and weakly strictly semi-stable scheme of
relative dimension d over Y such that the base change Xy =X xyV —
V is smooth. Let D =D, + --- + D, be a divisor of X with simple
normal crossings relatively to Y.
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The data above are summarized in the following diagram:

X>D
h
/T//Y/Y
(1.6.1.1) f L V=V
[ Ve Ve
n n

h

Let U =X\ D be the complement and fi;: U — Y be the restriction of /. Let
Uy C Xy and Uy, C X, denote the base changes of U C X by the inclusion and the
restriction 4|y respectively. We consider the log product and the log blow-up (Xy x v X{,)™
C (Xy xvy X§,)" with respect to the pull-backs (D y,...,D,v) and (D}, ..., D) by
the inclusion and by /|y of (D, ..., D,). Let (Dy xv X{,)’, (Xy xv D{)" C Xy xv X{,)’
denote the proper transforms of Dy xy X, and of Xy Xy Dj, respectively.

We consider a closed subscheme T C (Xy xy X§,)~ flat of relative dimension d
over V. Assume that the second projection pr,: I' = I'N(Uy xv Uy) — Uy is proper.
Then, the geometric fiber I'; C U x5 U% defines a linear map I': H/(U., Q,) —
H?(Uj;, Qy) and the morphism id x h: U; — U;-) induces an isomorphism A H?(Uj;, Qy)
— HY(U7, Q). Consequently, the alternating sum

2d
(1.6.1.2) Tr(™* o £*: HA(Uj;, Qy)) = Z(—l)m(r* o h*: H/(U;, Qy)) € Qy
¢=0

is defined.

Let ¢,: X, = X/ be the isomorphism defined by the assumption that the map
t — Y is the same as the composition with 2: Y — Y. It induces an isomorphism
Li Hfogc(UE’ Q) — HngU(Ug, Q,) as in (1.4.2.2). Since I', C Uy, %y, U} induces
I'f: H*(U-, Q) — H(Ug, Qy), the alternating sum Tr(I'*: H*(Ug, Qy)) is defined
by (1.4.2.3).

The following complement to the Lefschetz trace formula Theorem 1.4.7 will be

used in the proof of a crucial step Proposition 7.3.4 of the proof of the conductor formula.
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Proposition 1.6.2. — Let the notation be as in the diagram (1.6.1.1). We take a lLifting of
the geometric point 1 to the log strict localization Y; and assume that h: n — n s compatible with
the morphism h: ?; — ?; induced by h. Let T' be a closed subscheme of Uy xv Uy, flat of relative
dimension d over V. We assume that the second projection pry: I' — Uy, is proper.

We assume the following condition:

(1.6.2.2) There exist a regular noetherian scheme S, a proper weakly semi-stable scheme
f : Xs = S, a divisor Ds C Xg with normal crossings relatively to S and a mor-
phismg: Y7 — S from the usual strict localization satisfying the following conditions.

The pull-back of D C X over Y to Y7 is tsomorphic to that of Ds C Xs. There exists
a divisor Ds of S with simple normal crossings such that the pull-back of Xs to the
complement W = S \ Dg s smooth.

T hen, for the alternating sum (1.6.1.2), we have
(1.6.2.3) Tr(I™ o £*: HX(U;, Q) = Tr(I'™: H*(Ug, Qy)).

Proof. — By the definition of I'*: HY(Ug, Q) — H*(Ug, Qy), it suffices to show
the commutativity of the diagram

H'(Up, Q) — HNUL Q) '~ H'(U;, Q)

]

*

HI(Uz, Q) H(U:, Q) — H}(Ur, Q)

/

H;, (U1, Q)

where the non-horizontal arrows are the cospecialization maps. For the right square, it is
a consequence of the compatibility of a correspondence with usual cospecializations.

We show the commutativity of the left quadrangle. By replacing Y by the strict
localization, we may assume Y = Y;. We put Ug = X \ Dg in (1.6.2.2) and let fiy: Uy =
Us xs W — W be the restriction of f5: Xg — S. We consider the smooth Q,-sheaf F =
R7%w1Q,; on W tamely ramified along Ds. Let jw: W — S denote the open immersion
and define a smooth sheaf G = g%, F on Y;. We consider the diagram

cosp. cosp.

g; ng gfz

l ! !

Hi, (U, Q) — HI(Ur, Q) —— HI(U; Q).
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The right square is the usual commutative diagram for étale cohomology and the left is
(1.5.1.2). We have a similar commutative diagram for U’. By the transitivity of cospecial-
ization maps, the commutativity of the left quadrangle follows from Lemma 1.5.1.

2. Tamely ramified coverings

In this section, we give a definition for an étale morphism of schemes to be tamely
ramified along the boundary. The purpose of studying tame ramification first is to define
the wild ramification locus and to focus on it.

First, we formulate the definition of an unramified morphism to be tamely ramified
along the boundary using proper modifications and log products in Section 2.1. We give
a tameness criterion, Proposition 2.4.4, in terms of valuation rings in Section 2.4 after
recalling tamely ramified extensions of valuation fields and the limit of proper modifica-
tions in Sections 2.2 and 2.3 respectively. We study the relation with Kummer coverings
in 2.5. Finally, we give a criterion for a Galois covering to be tamely ramified in terms of
inertia groups in 2.6.

Although we don’t need to assume for schemes to be separated in a large part of
this section, we will assume it for simplicity.

2.1. Tame ramification and log products. — Recall that a morphism of schemes V — U
of finite type 1s said to be unramified if the diagonal map dy: V— V Xy V is an open
immersion. We consider a separated scheme Y containing V as an open subscheme and
introduce a notion that an unramified morphism f: V — U is tamely ramified with
respect to Y.

Lemma2.1.1. — Letf : V — U be an unramafied separated morphism of finite type of schemes
andj: N — Y be an open immersion of separated schemes. Let D = (D,)e1 be a finite famuly of Cartier
divisors of Y such that V N\ D; =@ for every 1 € 1.

For a commutative diagram

Y<LV

(2.1.1.1) l lf

S «— U

of separated schemes, let (Y xs Y)3, be the log product and define a closed subset Z%?/UY CYt
be the intersection A?g NW of the log diagonal with the closure of the open and closed subscheme
W= (VxyV)\ Ay CV xy Vn the log product (Y xsY)p.

Then, the closed subset ©F Y CY is independent of the choice of a diagram (2.1.1.1).
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For any morphisms Y <=V — U of schemes, we can complete them into a dia-
gram (2.1.1.1) by putting S = Spec Z.

Progf: — We consider a commutative diagram (2.1.1.1) with S replaced by another
separated scheme S’ and show that Z\?/UY C Y are the same. It suffices to consider the
case where S" = Spec Z. Hence, we may assume that there exists a morphism S — S’ that
makes the diagram

Y —S

e

S =—1U

commutative. The canonical map (Y x5 Y)5 — (Y xg Y)7 is a closed immersion since
it is a base change of the diagonal S — S xg S. Hence, the assertion follows. O

Defimtion 2.1.2. — Let f: V — U be an unramified separated morphism of finite type of
schemes and j: N — Y be an open immersion of separated schemes.

1. For a finite famaly of Cartier divisors D = (D)1 of Y such that VN D; = @ for every 1 € 1,
define a closed subset ©F Y CY to be the intersection Al{,)g N'W of the log diagonal with the closure
of the open and closed subscheme W = (V xy V) \ Ay C 'V xu V in the log product (Y x5 Y)7, as
in Lemma 2.1.1 by taking a commutative diagram (2.1.1.1).

Define a closed sunset Z\J; /UY C Y to be the intersection [\ p Z%),/UY CY where D = (D)) e
runs through finite families of Cartier divisors of Y as above.

2. Wesay f: V — U is tamely ramified with respect to Y, if there exists a proper scheme
X' over Y containing V' as an open subscheme such that X,;Y' = .

We will define the wild ramification locus Ty,yY as a closed subset of uY in
Definition 2.4.1. Since X7 uY D E\?//UY for D C D', there exists a finite family D of
Cartier divisors of Y such that %/ Y = xp suY 1Y is quasi-compact. In particular, the
condition X juY = is equivalent to the existence of a finite family D of Cartier divisors
of Y as in Definition 2.1.2.1 satisfying E\%UY =0.

Lemma 2.1.3. — Let S be a scheme and let

o

J

Y’ Y U
dl | |
Y <« v U

be a commutative diagram of separated schemes over S. Assume that V. — U and V' — U’ are un-
ramified and that the canonical map V' — V xy U’ s an immersion. Assume also thatj: V. — Y
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andj' : N — Y' are open immersions. If Oy — j.O\y is an injection, then we have g(Zy, wY) C
zyuY.

Proof. — Let D = (D;);e1 be a finite family of Cartier divisors of Y such that
D; NV =0 for every i € I. By the assumption that Oy — j.Oy is injective, the pull-
backs g*D; defines a family D’ = (D)1 of Cartier divisors of Y’ satisfying D'!N'V =
for every ¢ € I. Hence, the morphism (g x 2)7: (Y’ x5 Y)5 — (Y X5 Y)35 is defined.
By the assumption that V' — V x U’ is an immersion, the inverse image of Ay by
V' xuy V' = V xy Vis Ay. Hence V' X V' \ Ay C (Y x5 YY)} is a subset of the in-
verse image of V xy V' \ Ay. Thus, we have V' xv V/'\ Ay C (g x 2)~ '(V xy V\ Ay)
and EE;U,Y/ cg’! (Z\T“,'/UY). By taking the intersection, the assertion follows. U

Whether %/ suY 1s empty or not may depend on Y as the following example shows.

Example 2.1.4. — Let A be a ring where 2 is invertible and let V = Spec A[T5,
T;'1 C Y = A3 = SpecA[T), Ty]. We define an action of a cyclic group G of order 4 by
T, —Ty, Ty T,. Then, V is a G-torsor over U = V/G. For the blow-up Y' of Y at
the 0-section, an elementary computation shows that Iy uY' = @ while PN juY consists
of the O-section of Y.

2.2. Tamely ramified extension of valuation fields. — We will study tame ramification
defined in the previous subsection in detail in Section 2.4. As preliminaries, we first study
tamely ramified extensions of valuation fields in this subsection and limit of compactifi-
cations in the next subsection.

We recall the definition of tamely ramified extensions of valuation fields. For gen-
erality on valuation rings, we refer to [5, Chapitre 6] and [44, Chapter VI]. If LL is a finite
separable extension of a field K and if B is the integral closure in L of a valuation ring
A of K, then the map from the finite set of maximal ideals of B to the set of valuation
rings of L. dominating A sending a maximal ideal m to the local ring By, is a bijection [,
Chapitre 6, Section 8, n° 3, Remarque].

Defination 2.2.1. — Let L. be a finite separable extension of a field K and B be a valuation ring
of L. We put A=B N K. Let A and B be strict henselizations and let K™ and 1" be the fraction
Srelds.

We say that L. is tamely ramified over K with respect to B if the degree [L" : K*"] is invertible
in B.

If the residue field of B is of characteristic 0, an arbitrary finite separable extension
L over K is tamely ramified with respect to B.

We recall some standard terminologies on inertia subgroups. Let M be a finite
Galois extension of a field K of Galois group G = Gal(M/K) and A be a valuation
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ring of K. Let C C M be the integral closure of A and m be a maximal ideal of C.
The subgroup D = {0 € G | o(m) = m} is called the decomposition group of m and
I = Ker(D — Aut(C/m)) the inertia group. The local ring C,, is a valuation ring. Let
C:2 be a strict henselization and let M*™ be the fraction field of C:2. Then, the I-fixed part
of C! is a strict henselization A™ of A.

We regard the value group I'y = K*/A* as a subgroup of I'y, = M*/C/. Then
the map I x M* — (C/m)* defined by (o, ¢) = o (¢)/c induces a pairing I x I',/ 'y —
(C/m)*.

Lemma 2.2.2. — Let M be a finite Galois extension of a field K of Galois group G =
Gal(M/K) and A be a valuation ring of K. Let 1 C G be the inertia group of a maximal ideal m of
the integral closure G C M of A. Let p be the characteristic of the residue field A/miy.

1. ([44, Chapter VI, §12, Corollary of Theorem 24|) If p = 0, the pairing 1 x
[/ Ta = (C/m)™ s a perfect pairing of finite abelian groups.

2. ([Loc. cit. Theorems 24 and 25]) Assume p > 0 and let (I'yy / T's)" denote the prime-to-
p part of Uy / T a. Then, the kernel P of the induced map 1 — Hom(I"y, / Ta, (C/m) ) is the unique
p-Sylow subgroup of 1 and the induced pairing 1/P x (I'n/ T'a) — (C/m)* s a perfect pairing of
finute abelian groups.

For the rest of this subsection, in the case p = 0, we put (I',/ T'x) = T'n/ I's and
P=1.

Corollary 2.2.3. — Let K be a field and L. be a finite separable extension of K. Let A be a
valuation ring of K and B be the integral closure of A in L. Then the following conditions are equivalent:

(1) For every maximal ideal m of B, L is tamely ramified over K with respect to By, .

(2) There exist non-zero elements t,, . . ., t, of the maximal ideal ™ and integers my, . .., m,
invertible in A such that the normalization B' of A in L[Sy, ..., S,1/(S|" — ¢, ...,
St — 1) 1s finile étale over the normalization A" of A in K[Sy, ..., S,1/(S" — 4, ...,
S —1,).

Progf: — (1)=(2): We may assume L is a Galois extension of K. Let m be a maximal
ideal of B and let L' be the fraction field of the strict henselization of B at a geometric
point above m and define K* similarly. By Lemma 2.2.2, L:" is an abelian extension of
K" and the pairing Gal(L:"/K*") x (I'z/Ty) — (B/m)* is a perfect pairing of finite
abelian groups of order prime to . We take an isomorphism Z/mZ @ --- & Z/m,Z —
(I's/ T'a)" and its lifting y: Z" — I'p. Let ¢}, ..., ¢, € Z" be the standard basis and we
take elements ¢, ..., 4, € my satistying va(4;) = m;y (¢) for ¢t =1,...,n Then, we have
L = KSh(L‘l1 / I t,}/ ") and the assertion follows.

(2)=(1): Since [L:" : K*"] divides m - - - m,, the extension L is tamely ramified. [J

We give a criterion for a finite separable extension of valuation field to be tamely
ramified.
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Proposition 2.2.4. — Let L. be a finite separable extension of a field K and B C L be a valuation
ning of L. We put A=BNK, U= SpecK CS = SpecA and V = SpecL CY = SpecB.
Then, the following conditions (1)~4) are equivalent:

(1) L zs tamely ramified over K with respect to B.

(2) There exists a finite_ family D = (D,);c1 of Cartier divisors of Y such that the intersection
Z%),/UY =Wn Ag?g with the closure of W =V Xy V\ Ay in the log product (Y XsY)
s emply.

(3) Let M be an arbitrary finite separable extension of L. and o : L. — M be a morphism over
K different from the inclusion. For an arbitrary valuation ring C of M dominating B and
o (B), there exists a non-zero element b € B such that o (b)/b £ 1 mod mg.

(4) Let M be a finite Galois extension of K of Galois group G = Gal(M/K) containing L
as a subextension and m be a maximal ideal of the integral closure C C M of B such that
BNm=mg. Then, the subgroup H = Gal(M/L) C G = Gal(M/K) contains the
conjugaltes of the p-Sylow subgroup P of the inertia group 1 of m.

In (2), we did not say that V — U is tamely ramified with respect to Y because the
canonical map V — Y may not be an open immersion.

Proof. — (2)=(3) Let D = (D,) ;1 be a finite family of Cartier divisors of Y = Spec B
such that 25 Y = . Since C dominates B and o (B), the compositions L — M* — T'¢

and L* > M* — I'¢ are equal. Hence, the map ¥y = (1,0): Z =SpecC — Y x5 Y
induces a map y: Z — (Y x5 Y)p to the log product. Since o is different from the
inclusion, the image y(Z) is in the closure W of W=V xy V\ Ay. Hence, we have
y(Z)NAF CZD Y =0.

For : € I, let b; € B an element defining the divisor D;. Then, the closed subscheme
Al{,’g C (Y xsY)p is defined by theideal (0® 1 —1®b; b€ B, (,®1)/(1®b)—1;:1€]).
Hence the closed subscheme of Z defined by (o (b) —b; b € B, o(b;)/b;—1; 1 €1) is empty.
Namely the ideal of C generated by o (b)) — b for b € B and 0 (4;)/b; — 1 for ¢ € I contains
a unit. Thus the assertion is proved.

3)=>2)Weput W=V xy V\ Ay = ]—LEJ Spec M; where M; are fields. We regard
M; as an extension of L by the map defined by the first projection and let o;: L. — M, be
the map defined by the second projection. For each j € J, the set {C; | € L} of valuation
rings of M; dominating both B and o (B) is a finite set. For each Cj, take a non-zero
element b; € B such that 0j(4;)/b; # 1 mod mc; and let D; be the Cartier divisor of Y
defined by 4;. We put I = I_L’ej [ andlet D = (Dj)jey.ict; be the family of Cartier divisors.

We show that E\?/UY is empty. Let Z; be the closure of SpecM; in the log product
(Y x5 Y)5. Then, we have W = UjEJ Z; and E\?/UY = UjeJ(Zj N Al{;g). Hence, if E\?/UY
was not empty, the intersection Z; N Al{{)g would contain the closed point y of Y for some
index j € J. Take a valuation ring C of M; dominating the local ring Oz, ,. Then, C dom-
inates B and 0;(B). Hence it is equal to C; for some : € I; and 0j(b;)/b; — 1 is a unit of
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C = Cj. On the other hand, since the image y of the closed point of C is in Al{;g, the
ideal (0;(b) — b; b € B, 0j(by) /by — 1, k € ], 1 € I}) 1s different from C, as in the proof of
(2)=(3). Thus, we obtain a contradiction.

(1)=(3) By replacing K by an unramified extension, we may assume that the
residue field of L is a purely inseparable extension of the residue field of K. We may
assume M is a Galois extension and extend o : L - M to an element of the Galois group
G = Gal(M/K). Then, since both C and o (C) dominates o (B), there exists T € G such
that 7(C) = 0 (C) and that 7|,,: 0 (L) = M is the inclusion. Replacing o by 77 'o if
necessary, we may assume o (C) = C. Namely, by the assumption on the residue field,
we may assume that o is in the inertia group I C G of the maximal ideal of m¢. By the
assumption that oy, # idy, it is not an element of the subgroup H = Gal(M/L) C G
corresponding to L.

We put C = C/m¢ and we consider the perfect pairings I/P x (Fy./Ts) — C*
and INH)/(PNH) x (Ty./Tp) — C*. Since [ : K] = [I: TN H] is invertible in B,
the induced pairing I/(INH) x (T'y/ T4)’ — C* is perfect. Since o |y, is not the identity,
there exists an element b € L. such that o (b)/b % 1 mod mc.

(3)=(4) Let o be an element of a conjugate TPt~ of P. We regard L as a sub-
field of M by t|;,: L. &> M. Then, the maximal ideal m’ = t(m) satisfies o (m’) = m’
and 7|{'(m) = (0 o 7]~ '(W) is equal to BN m = my. If 0 was not an element
of H, the condition (3) would imply the existence of an element 4 € L™ such that
o(t(b))/t(b) # 1 mod m'. This implies that the order of o 1s not a power of p. Thus,
we get a contradiction.

(4)=(1) Let M be a finite Galois extension of K containing L as a subfield and
we put G = Gal(M/K) D H = Gal(M/L). We take a maximal ideal m of the integral
closure C above the maximal ideal of B and let I be the inertia group of m. Then, the
inertia group I is identified with the Galois group Gal(M*"/K*") and HN1 is the subgroup
of I corresponding to the field L*". Hence P C H implies that [Lh : K] = [1: TN H] is
prime to p. U

2.3. Limut of compactifications and valuation rings. — We study local rings of the limit of
compactifications. Let S be a separated noetherian scheme and U be a separated scheme
of finite type over S. We consider the category Cy,s of compactifications of U over S.
Namely an object of Cyys is a pair (X, ;) consisting of a proper scheme X over S and
an open immersion j: U — X over S. A morphism f: (X',;) — (X,/) is a morphism
f 1 X’ — X of schemes over S such that / oj’ = . In the following, we omit j from the
notation and write simply X for a compactification (X, ).

Lemma 2.3.1. — Let S be a separated noetherian scheme and U be a separated scheme of finite
lype over S.

1. The category Cy s s cofiltered. In particular, it ts non-emply.

2. The objects containing U as the complement of a Cartier divisor are cofinal in Cy)s.
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Proof: — By Nagata’s embedding theorem [31], the category Cy/s is non-empty.
Since a blow-up X’ — X is proper, the objects containing U as the complement of a
Cartier divisor are cofinal in Cyys. For objects (X, ;) and (X',;') of Cy/s, a morphism
X — X is unique if Ox — /Oy is injective. If X and X' are objects of Cy/s, the schematic
closure of the diagonal map U — X xg X' is an object of Cy/s. Hence, the category Cy/s
is cofiltered. [

We consider the projective limit X = limXe X 1n the category of locally ringed
u/s

spaces. The underlying topological space X is known to be quasi-compact [9, Theo-

rem 5.14]. For a point x = (xx) € X, we have Og ; = lim Ox - We will describe
’ —> XeCy /s ’

the limit X and the local rings O ; in terms of valuation rings.

Defination 2.3.2. — Let U be a scheme, u € U be a point and A be a valuation ring of the
residue field k (u).

1. We say A is U-external, if A ; Kk (1) and if there exists no intermediate ring A C A’ ; K (u)
such that the map u — U is extended to Spec A" — U.

2. Let U — S be a separated morphism of schemes. We say A s S-integral, if the composition
u— U — S s extended to a morphism Spec A — S.

Let v € U and A C «(u) be an S-integral valuation ring. Then, for an object X
of Cyys, the inclusion  — U is uniquely extended to a morphism Spec A — X over S
by the valuative criterion of properness. The images x4 € X\ U of the closed point of
Spec A define a point x5 = (x4) of the projective limit X = l(ir_mXE Curs X. Thus, we obtain
a natural map

(2.3.2.1) L[{S-integral valuation ring of ¥ (u)} - X.

ueU

An S-integral valuation ring A of k(«) is U-external if and only if {u} = U xx
Spec A G Spec A for an object X of Cys. Consequently, the map (2.3.2.1) induces

(2.3.2.2) L[{U-external and S-integral valuation ring of k (u)} — X\ U.
ueU

We show that the map (2.3.2.2) is a bijection.

Lemma 2.3.3. — (Cf. [9, 5.4]) Let S be a separated noetherian scheme and U be a separated
scheme of finite type over S. Let x = (xx)x € X \ U be a point in the complement and put O% ; =
lim Ox -

Then, there exists a unique point u € U such that U xx Spec Ok ; = Spec Oy, for every
object X of Cuys. The canonical map Ox ; — Ouy,, ts injective and its image is the inverse image of
a U-external and S-integral valuation ring A of « (u). For each object X of Cuys, the point xx is the
image of the closed point of Spec A by the unique map Spec A — X over S extending u — U.



44 KAZUYA KATO, TAKESHI SAITO

Proof. — Let x = (xx)x € X \ U be a point in the complement. For a morphism
X" — X of Cys, we have U xx X' = U if U is dense in X'. Hence the inverse image
U xx Spec Ok ; is independent of X. Thus, to show the existence of u € U such that
U xx Spec Ok ; = Spec Oy, it suffices to show the existence for one object X € Cys.
Take an object X € Cy/s. We may assume U is the complement of a Cartier divisor
DcX.

By [9, Proposition 5.12], the local ring Ok ; is Iz-valuative for I; = Zp, ,, Ox ; in
the terminology loc. cit. Hence, I'(U xx Spec Ok ;, Ox) = li_r)nx/ I'(U xx Spec Ox/
Ox/) is a local ring further by [9, Proposition 5.11]. Since SpecOxr,, — X' xx

WX/

Spec Ox .« 1s a limit of open immersions, its restriction U Xy Spec OX/,XX,, — U xx
Spec Ox . 1s also a limit of open immersions. Hence the local ring I'(U x x Spec Ox ;, Ox)
is a localization of I'(U xx Spec Ox ., Ox) and is equal to the local ring Oy, at a point
u € U. Further by [9, Proposition 5.11], the canonical map Og; — Oy, is an injec-
tion and its image is the inverse image of a valuation ring A of k(«) by the surjection
Ov.. — k(u).

Since I'(U xx Spec Ok ;, Ox) = Oy, the valuation ring A is U-external. Since A
is X-integral, it is S-integral. The image xx of the closed point of Spec O ; is the same
as the image of the closed point of Spec A by the induced map Spec A — X. U

Corollary 2.3.4. — The map (2.3.2.2) is a byection. The inverse ts defined by sending x to the
valuation ring O% ;/m, = Image(Ox ; — k (w)) C k(u), in the notation of Lemma 2.3.3.

Proof. — Let u € U be a point and A be a U-external and S-integral valuation ring
of k(u). Let ¥ € X be the point defined by the images of the closed point of Spec A. We
consider A" = Og ;/m, C k(¢') as in Lemma 2.3.3. We have a natural local homomor-
phism Og ; — A. By [9, Proposition 5.11], the ideal m, C Ox; is the intersection [, IZ.
Since A is U-external, we have (], I!A = 0. Hence, it induces a local homomorphism
A" — A. Since A’ is also U-external, we obtain «' = u. Further, since the valuation ring
A C k(u) dominates A’ C « (), we obtain A’ = A. O

2.4. Tame ramification and valuation rings. — We give a criterion for tame ramification
in terms of valuation rings, in Proposition 2.4.4. We slightly generalize Definition 2.1.2.2.

Defination 2.4.1. — Let f: NV — U be an unramified morphism of finite type of separated
schemes.

1. Let Y be a separated scheme of finite type containing V as an open subscheme. We define the
wild ramification locus Xvy,uY fo be the closed subset

Z\//UY = m NW’(E$/UY/)
Y/

where vy » Y — Y runs through objects of Cy )y
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2. Let'T be a separated noetherian scheme and assume that V s a separated scheme of finite type
over T. We say f: V — U is tamely ramified with respect to I, if there exists an object Y of
Cy/r such that Xy ,uY is emply.

Since the category Cy,r is cofiltered, the map f: V — U is tamely ramified with
respect to T if and only if X,y Y is empty for every object of Cyr. If U is a scheme over
S and if finite étale morphisms V — U and V' — U are tamely ramified with respect
to S, then the fiber product V xy V' — U is also tamely ramified with respect to S.
In particular, if a finite étale morphism V — U of connected normal schemes is tamely
ramified with respect to S, its Galois closure W — U 1is also tamely ramified with respect
to S.

Lemma 2.4.2. — Let'T" be a separated noetherian scheme, V' be a separated scheme of finite
type over ' and let f : N — U be an unramified morphism of finite type of separated schemes. Then, the
objects Y of Cy v such that there exists a finite famuly D of Cartier divisors satisfying Xy ,vY = E\?/UY
are cofinal in Cyr.

Proof. — For an object Y of Cy,r, let my: Y =lim Y’ — Y denote the pro-

(—Y'ECx/T
jection. Since CV/T 1s coﬁltered and Y 1s quasi-compact [9, Theorem 5.14], the objects
Y such that my (X5, /U =y JTY, V/UY’) and Y = JTY(Y) are coﬁnal in Cy,r by
Lemma 2.1.3. For such Y we have % /LY my (g (2 wY) =y wy (! (B9 /UY/ ).
Hence the assertion follows from the quasi-compactness of Y. U

Lemma 2.4.3. — Let T be a separated noetherian scheme and V be a separated scheme of finite
type over 'T'. Let f: NV — U be an unramafied separated morphism of finite type of schemes. Let v € V
be a point and B be a 'T'-integral valuation ring of k (v). We consider the conditions:

(1) There exists a proper scheme Y over U containing V as an open subscheme such that the
closed subset 37 uY CY does not meet the image of the map SpecB — Y.
(2) The finite separable extension k (v) over k (f (v)) s tamely ramified with respect to B

The condition (1) implies (2). If B ts V-external (Definition 2.3.2.1), then the conditions (1)
and (2) are equivalent.

Proof. — (1)=(2) The condition (1) implies that there exists a finite family D =
(D))ie1 of Cartier divisors of Spec B such that ng(v) Spec B is empty, as the pull-back by
Spec B — Y. Then, the condition (2) is satisfied by Proposition 2.2.4 (2)=(1).

(2)=(1) Assume that B is V-external. By Proposition 2.2.4 (1)=(2), there exists a
finite family D = (D;);c1 of Cartier divisors of SpecB such that ng(v) Spec B is empty.

Let Y = l(ir_nYeCWTY be the limit of compactifications and y = (yy)y € Y be the point

corresponding to B C «(v). We take a non-zero divisor f; € B defining D; and a lifting
Ji € Og; for each i € I. Since Oy ; = li_r)nY Oy, there exist an object Y of Cy,r, an open
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neighborhood W of yy and non-zero divisors g; € I'(W, Oy) invertible on VN W sent
to f; for 7 € I. By replacing Y by the blow-up of the closure of the divisors of g;, we may
assume that there exists a finite family Dy = (Dy;);c1 of Cartier divisors of Y such that
Dy, NV =0 and Dy; N W is defined by g for each ¢ € I. Then the inverse image of
E%?/YUY by the map SpecB — Y is equal to ng(v) Spec B and hence is empty. Thus the
assertion is proved. UJ

Proposition 2.4.4. — Let T be a separated noetherian scheme and NV be a separated scheme
of finite type over T. For an unramified separated morphism f: N — U of finite type of schemes, the
Jollowing conditions are equivalent:

(1) f: V= U s tamely ramified with respect to 'T'.

(2) For every point v € V and for every T-integral and V-external valuation ring (Defini-
tion 2.3.2) B of k (v), the extension k (v) over k (f (v)) s tamely ramified with respect to
B.

(8) For every point v of V and for every T-integral valuation ring B of k (v), the extension k (v)
over K (f (v)) s tamely ramafied with respect to B.

Proof. — (3)=(2) Clear.

(1)=(3) It follows from Lemma 2.4.3 (1)=>(2).

(2)=(1) Let Y = h_r)nYE Con Y be the limit of compactifications and let my: Y>Y
denote the projection. By Lemma 2.4.3 (2)=(1), for every point y € Y of the boundary,
there exists a proper scheme Y over T containing V as an open subscheme such that
the inverse 1rnage of EV/LY C Y does not contain y. In other words, the intersection
(Myecy r 2y /UY) cYis empty. Since Yis quasi- compact and since the category Cy r

is coﬁltered, there exists an object Y of Cy,r such that 7y ' (Z¢ yuY) is empty. Thus the
assertion follows. U

Corollary 2.4.5. — Let 'T' be a separated noetherian scheme and NV be a separated scheme
of finate type over 'U'. Let f: NV — U be a separated unramified morphism of finite type. If one of the
Jollowing conditions s satisfied, then f: NV — U s tamely ramified with respect to 1.

(1) T us a scheme over Q.
(2) Vs a G-torsor over U for a finite group G of order invertible on 'T'.

Progf. — Let v € V be a point and B be a T-integral and V-external valuation ring
of k(v). Then, either of the conditions (1) and (2) implies that the extension « (v) over
k (f(v)) 1s tamely ramified with respect to B. Hence the assertion follows from Proposi-

tion 2.4.4 (2)=(1). O

Corollary 2.4.6. — Let T be a separated noetherian scheme and V be a separated scheme of
Sfinate type over T. Let f: NV — U be an unramified and separated dominant morphism of schemes of
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Jinate type. Assume that U and V are integral and let § € U and n € V be the generic point respectively.
We consider the following conditions:

(1) f: V= U s tamely ramified with respect to 'T'.
(2) The extension k(1) of k(&) s tamely ramified with respect to an arbitrary T-integral
valuation ring of k (n).

Then, the implication (1)=>(2) always holds. The other implication (2)=>(1) holds if 'V s
regular.

Proof. — (1)=(2) It follows from Proposition 2.4.4 (1)=(3).

(2)=(1) Assume V is regular. Let v € V and let B C «(v) be a T-integral valu-
ation ring. Since V is regular, there exists a valuation ring By C k(1) dominating Oy,
such that the residue field of By is «(v). Let B, be the inverse image of B C k(v) by
the surjection By — «(v). Then B, C «(n) is a valuation ring and T-integral. Thus, by
Proposition 2.4.4, it suffices to show that k (v) is tamely ramified over « («) with respect
to B assuming « (1) is tamely ramified over « (§) with respect to B;.

We put A=BN«k(x) and A; =B Nk (§). Then, the map A; — A is a surjection
and we have « (v) =k (x) @4, B,. Hence we have B = A ®4, B;. Let Aﬁh and leh be the
strict henselizations and « (¢ )Slh and K(n)ﬁh be their fraction fields. By the assumption, the
degree [K(n)slh : k()3 is invertible in B. Let A™ and B be the strict henselizations and
k(1) and Kk (v)™ be their fraction fields. Then, A™ and B™ are quotients of Aslh and of
leh and the canonical map « (1) ® A leh — k(v)™ is an isomorphism. Hence, we have
[k ()™ 2 ke (0)™] = [k () : k(§)}] and the assertion follows. O

The following example shows that the condition (2) need not imply (1) if we replace
“regular” by “normal”.

Example 2.4.7. — Let k be an algebraically closed field of characteristic p > 0,
E be an ordinary elliptic curve over £ and £ be a very ample invertible Og-module on
Ee.g O(3-[0]). Let Xy = Spec @ ' (E, L®") be the affine cone. The blow-up X; of X,
at the origin is the line bundle over E associated to £. Let Y; — X, be the base change
of the map V: E? — E and Y, — X, be the Stein factorization of the composition
Y, — X = X,.

Let C — C be a finite étale cyclic covering of affine curves of degree p. We assume
that the map C — C of the compactifications is wildly ramified. We put V=Y, x C,
Y =Y, x C and we consider the action of E[pl(k) x Gal(C/C') >~ (Z/pZ)* on Y. Let
G C E[pl(k) x Gal(C/C’) be a diagonal subgroup and X =Y /G be the quotient. Since
the action of G on V s free, the map f: V— U =V/G is finite and étale.

We show that Y — X satisfies (2). Since V: E®’ — FE is finite étale, the blow-up
Y, = X, of Yo — X, is finite étale. Hence, the action of G on Y, x C is free and the
map Y, X C — (Y, x C)/G is finite étale.
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We show that Y — X does not satisfy (1). The inclusion C — Y at the origin of
Y, induces 6/_—> X. By the assumption, the covering C — C s widely ramified at the
boundary ¢ € C '\ C. Since the valuation ring Og , is Y-integral, the assertion follows.

2.5. Tame ramification and Kummer coverings. — We consider a finite étale morphism
S/ V= U of separated schemes of finite type over a separated noetherian scheme S. We
study the condition for f: V — U to be tamely ramified with respect to S in terms of
Kummer coverings.

Defimation 2.5.1. — Let X be a scheme, U C X be an open subscheme and f: V — U be a

finute étale morphism.

1. Let x € X\ 'U be a point of boundary. We say [ : NV — U s of Kummer type at x if there exist
an open neighborhood W of x, functions t,, . . ., t, € T (W, Ox) wvertible on Uyy = U N'W, integers
my, ..., m, > 1 mvertible on W and an étale surjective morphism W' — W, such that the base change
of f: V= U by the élale map U xx (W[Sy,...,S,1/(ST" —t1,.... 8" —1,) xwW') = Uz
a constant étale covering.

2. Wesay f: V — U s of Rummer type with respect to X 1f it ts of Kummer type at every point
of x e X\ U.

Lemma 2.5.2. — Let S be a separated noetherian scheme and f: NV — U be a finite étale
morphism of separated schemes of finite type over S. Let u € U be a point let A be an S-integral
valuation ring of k (u). We consider the conditions:

(1) For every point v € f~'(u) and for every valuation ring B of k(v) dominating A, the
extension k (V) over k (1) is tamely ramified with respect to B.

(2) There exists a proper scheme X over S contarning U as an open subscheme such that V- — U
i of Kummer type at the image of the closed pownt of Spec A by Spec A — X.

The condition (1) implies (2). If A s U-external, then the conditions (1) and (2) are equivalent.
Progf: — (2)=>(1) Since the assertion is étale local on Spec A, it follows from Corol-

lary 2.2.3 (2)=(1).
(1)=(2) Assume that A is U-external. By Corollary 2.2.3 (1)=>(2), there exists non-

zero elements ¢, ..., t, € my and integers my, ..., m, > | invertible in A such that, for
every v € /' (u), the normalization of A in x(v)[Sy,...,S,1/(S|" — ti, ..., S™ —¢) is
finite étale over the normalization of Ain k (¥)[Sy, ..., S,1/(ST" —#, ..., S" —1¢,). We put

Ay =A[S,....S,1/S" =1, ..., 8" —1t,) and let A™ denote the strict henselization of A.
Then, the étale covering V, = V xyu of u is trivialized by the base change A — AP RAA,.
Consequently, there exist an étale A-algebra A" and a maximal ideal m’ of A" above the
maximal ideal m, such that the étale covering V, =V Xy u of u is trivialized by the base
change A — A’ ®, A;.
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Let X = th Curs X be the limit of compactifications and x € X be the point
corresponding to A C k(u). We write A= OXx and let p =m, C A denote the ker-
nel of the surjection A — A. We take liftings byl € A of Ly...,t, € A and put

A[Sl, e S/ (ST — tl, A 1,). We also take an étale A—algebra A’ such
that A ®x x A=A and put A’ A’ Rz A1 Then, we have an isomorphism A Rz A —
A’ ®4 A,. Let M be the maximal ideal of A above m’ and m1 be a max1mal ideal A’
above m’. We will apply the following lemma to the localization A/ L

Lemma 2.5.3. — Let A be a local ring and p be a prime ideal of A such that A s canonically
wsomorphuc to the inverse image of A/p by the surjection Ay, — k(). Let B be a finite A-algebra such
that B ®a A, 15 flat over Ay and that B @ 5 k (p) w5 isomorphic to the product k (p)". We define an A-
subalgebra B" of B@a A, to be the inverse image of (A/p)" by the surjection B@x Ay — B @4k (p).
Then, B 1s finite étale over A and the canonical maps B @5 Ay — B’ @A A, and B'/pB' — (A/p)"

are isomorphisms.

Proof. — We may assume B is p-torsion free and identify B C B ®4 A,. By the
assumption on A, the prime ideal p = Ker(A — A/p) is equal to the maximal ideal
pA, = Ker(A, — «(p)). Hence, we have pB" C pA,(B ®4 Ay) = pA, - B=pB C pB".
Thus, we have an equality pB’ = pA, (B ®4 A,) and an isomorphism B'/pB" — (A/p)".
Since the A-module B'/B is isomorphic to (A/p)"/(B/pB), the A-module B’ is of finite
type. Hence, by Nakayama’s lemma, B’ is finite flat over A and hence is étale over A.
The canonical map B @, «(p) — B’ ®4 «(p) is an isomorphism and hence B ®, A, —
B" ®a A, is also an isomorphism. 0

~ We go back to the proof of Lemma 2.5.2. By [9, Proposition 5.11], the local ring
A is canonically isomorphic to the inverse image of A/p by the surjection A — k(p).
We show that the local ring A L, also satisfies the condition of Lemma 2. 5 3. Since

A’ is flat over A, it follows that A is canonically isomorphic to the inverse image of
A’ \/ pA’ = A’ ®x A by the surjection A % A — A ®3 « (p). Thus the claim follows by
localization.

By Zariski’s main theorem, there exists a finite A—algebra B such that B ®x Ov.
is isomorphic to I'(V xy Spec Oy, Oy). Hence, by Lemma 2.5.3, the base change of
V xy Spec Oy, — Spec Oy, by A— A’ is extended to a finite étale covering on a neigh-
borhood of m}. By replacing A’ by an étale algebra contained in A we may assume that
the base change of V xy Spec Oy, — Spec Oy, by A— A’ Is a constant finite étale
covering.

Since A = h_r)nX Ox ., there exist an object X of Cyys, an open neighborhood W
of xx and non-zero divisors f, ..., f, € T'(W, Ox) invertible on UNW sent to 7 for i =
l,...,n and an étale morphism W' — W such that A is the pull-back of W' — W by
SpeCA — W. We put Wy = WISy, ..., S,1/(S" —fi,.... S —f,). Then further by A=
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li_r)nX Ox ., replacing X if necessary, the base change of V.— U by W) xyw W — X is a
constant finite étale covering. 0J

Proposition 2.5.4. — Let S be a separated noetherian scheme and f: N — U be a finite étale
morphism of separated schemes of finite type over S. Then, the following conditions are equivalent:

(1) f:+ V — U s tamely ramified with respect to S.
(2) There exists a proper scheme X over S contarning U as an open subscheme such that V- — U
us of Kummer type with respect to X.

Proof. — (2)=(1) It follows from Lemma 2.5.2 (2)=(1) and Proposition 2.4.4
2)= (D).
_ ()=(2) By Proposition 2.4.4 (1)=(2) and Lemma 2.5.2 (1)=(2), for every point

yeX= l<ir_1r1Xe o X of the boundary, there exists a proper scheme X over S containing
u/s

U such that the maximum open subscheme Wx C X where V — U is of Kummer type
contains the image 7x(x) € X of x € X by the pl"OJCCthIl 7x: X — X. In other words,

the family (5 ' (Wx))xecy /s 1s an open covering of X. Since X is quasi-compact and since
the category Cys is cofiltered, there exists an object X of Cy/s such that g 'Wyx) =X
Thus the assertion follows. 0

2.6. Tame ramification of Galois coverings. — The following proposition shows that
the definition of tame ramification here is equivalent to that given by Gabber [43, Sec-
tion 2.1] for Galois coverings. Let X be a normal scheme, U C X, be a dense open
subscheme and V — U be a finite G-torsor. Then, for a geometric point x of X, the
inertia subgroup I; of G is defined up to conjugacy.

Proposition 2.6.1. — Let S be a separated noetherian scheme and U be a separated normal
integral scheme of finite type over S. For a G-torsor [+ V — U for a finite group G, the following

conditions are equivalent:

(1) f: V= U s tamely ramified with respect to S.

(2) There exists a proper normal scheme X over S and an open immersion U — X over S such
that for every geometric pownt x of X, the order of the inertia subgroup Iz C G s invertible
at x.

Progf: — (1)=(2) By Proposition 2.5.4 (1)=>(2), there exists a proper normal scheme
X over S and an open immersion U — X over S such that V — U is of Kummer type
with respect to X. Hence the assertion follows.

(2)=(1) For every point u € U, for every S-integral and U-external valuation ring
A of k (u), for every v € f~!(«) and for every valuation ring B of k (v) dominating A, the
order of the inertia group Ig/4 is invertible in A. Hence, by Proposition 2.4.4 (2)=>(1), the
map V — U is tamely ramified with respect to S. O
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Corollary 2.6.2. — Let f - NV — U be a finite étale morphism and let X be a normal scheme
containing U as a dense open subscheme. We assume f : N — U s a G-torsor for a finite group G. We
consuder the following conditions:

(1) £+ V — U s tamely ramified with respect to X.

(2) For every geometric point x of X, the order of the inertia subgroup Iz C G s invertible at .

(8) Let x be an arbitrary point of X such that the local ring Ox , is a discrete valuation ring.
Then, f: NV — U is tamely ramified with respect to Ox .

Then, we have implications (2)=(1)=>(3). If X s a regular separated noetherian scheme and if
U is the complement of a divisor with normal crossings, then (3) implies (2).

Proof. — (2)=(1) It follows from Proposition 2.6.1 (2)=(1).

(1)=(3) It follows from Proposition 2.4.4 (1)=(2).

(3)=(2) By [37, Proposition 5.2] (Lemme d’Abhyankhar absolu), the condition (3)
implies that V — U is of Kummer type with respect to X. Hence (3) implies (2). U

If we drop the assumption that U is the complement of a divisor with normal
crossings, the implication (1)=>(2) nor (3)=>(1) need not hold even if X is regular, as the
following examples show. The authors thank M. Raynaud for the help to find Exam-
ple 2.6.3.2.

Example 2.6.3. — 1. Let £ be an algebraically closed field of characteristic p > 0
and V, — U, = Specklt, 7', (1 — D)7'1 =P, \ {0, 1, 00} be a finite étale connected
Galois covering of degree divisible by p tamely ramified at 0, 1, 00. We put X = A? =
Speck[x, 9] D U = Speck[x, », (xp(x — »))~'] and define a map U — Uj by sending ¢ to
x/y. Let V.=V, Xy, U be the pull-back by the map U — U,. Then, since Vo — Uj is
assumed tamely ramified, the covering V — U is tamely ramified with respect to X and
satisfies the condition (1). Since the inertia group at the origin 0 € X is equal to the Galois
group Gal(U,/Vy), the condition (2) is not satisfied.

2. Let k be a field of characteristic p > 3 and m > 1 be an integer. We consider the
cyclic covering

7 = Speck[x,y, z]/(z:p—l_(me(p—l)—l + xm(p—l)-ym(p—l) _|_y2m(p—l)))
X =A? = Specklx, y]
of degree p — 1 ramified at the divisor D = (x¥"(¢=D=1 4 ym=Dymp=1 4 52m(p=Dy We put

U =X\D and W = Z xx U. We consider the Artin-Schreier covering of Z xx (G,, x A")
defined by T? — T = y"¢*=2 2/ Since
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ym(p—Q) z z bz z
xmp xnzym xmym

_ (me(p—l) _ (me(/)—l)—l + xm(p—l)-ym(p—l) +y2m(p—1)) + xm(p—l)-ym(p—l))z
- xm/;))mp

_ xm([)—?)—lz

- ymp

it is extended to a finite étale covering on Z \ 7 ~'(0). Hence it defines a finite étale Galois
covering V — U of Galois group F x F,, tamely ramified with respect to X \ {0}. Thus
the Galois covering V — U C X satisfies the condition (3) in Corollary 2.6.2.

Let X’ — X be the blow-up at the origin and Z’ be the normalization of X’ in W.
We put ;= x/_)) Then, since x?m(ﬁ—l)—l + xm([i—l)’ym(ﬁ—l) +)}2m(p—l) :yQM(IJ—I)—I(tQm(p—l)—I +
"?=Dy + ), the cyclic covering Z’ — X' is totally ramified along the exceptional divisor
E C X and the valuation of y"*=2 z/x" = z/(x*""?=?) at the generic point of the inverse
mage E' =E xx Z'1s @m(p — 1) — 1) — 2m(p — 1) = —1. Hence the Artin-Schreier
covering V — W is totally ramified along E' and V — U is not tamely ramified with
respect to X. Thus the Galois covering V — U C X does not satisty the condition (1) in
Corollary 2.6.2.

3. Complements on localized intersection products

We compute certain tor-sheaves in Section 3.1. This computation plays a crucial
role in the proof of the excision formula and of the blow-up formula in Section 6.2. We
recall the definition of the localized intersection product and some useful formulas in
Section 3.3.

The results in Sections 3.2 and 3.4 are used only in an explicit computation of
the logarithmic different in Section 5.1. In Section 3.4, we prove a refinement Propo-
sition 3.4.3 of the excess intersection formula [26, Proposition 3.4.2], which relates the
classes of certain tor-sheaves defining the localized intersection product with the mapping
cone of exterior derived power complexes. In Section 3.2, we show that the class of the
mapping cone of exterior derived power complexes is given by the localized Chern class.

3.1. A computation of Tor sheaves. — We compute certain Tor sheaves related to
blow-up. We recall some terminology on tor-sheaves. For a Cartesian diagram

Y «—— 7

(3.1.0.1) l l

S «— X
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of schemes, a quasi-coherent Ox-module F, a quasi-coherent Oy-module G and an in-
teger ¢ > 0, a quasi-coherent Oz-module 707?5 (F, Q) is defined in [11, (6.5.3)]. If S =
Spec A, X = Spec B, Y = Spec C are affine and if 7 and G are the quasi-coherent sheaves
associated to an B-module M and an C-module N respectively, then ’Tor(?s (F, Q) is as-

sociated to the B ®, C-module Tor{‘?(M, N). If F = Ox, we put L f*G = Torqos (Ox, G).

Defimtion 3.1.1. — 1. ([16, Definition 1.5]) Let X and Y be schemes over a scheme S. We
say that X and Y are tor-independent over S ¢f TorqOS(OX, Oy) =0 for every ¢ > 0.

2.([16, Definition 3.1]) Let f : X — S be a morphism of schemes. We say that f s of finite
tor-dimension, if there exists an integer n > 0 such that, for every quasi-coherent Ogs-module F and
every integer g > n, we have Lf*F = 0.

If X or Y is flat over S, then X and Y are tor-independent over S.

Lemma 3.1.2. — We consider morphisms

s <L x L ¥

of schemes. Assume that X and Y are tor-independent over S. Then, X' and Y are tor-independent over
S if and only if X' and X xs'Y are tor-independent over X.

A% g

Progf- — By the assumption that Tor?s(ox, Oy) = 0 for every ¢ > 0, we obtain an
isomorphism Torfs (Ox, Oy) — TorqOX (Ox/, Oxxgy) for every ¢ > 0. O

Lemma 3.1.3. — Assume that the schemes S and X are noetherian and Y s of finite type over
S i the diagram (3.1.0.1). Then, for a coherent Ox-module F and for a coherent Oy-module G, the
Oy -modules Torf)s (F, G) are coherent.

Proof. — Since the question is local on Z, we may assume that schemes S, X, Y
and Z are affine. We take a closed immersion Y — P = A{ to an affine space. Since an
Oz-module is coherent if it is coherent as an Oxp-module, we may replace Y by P.
Hence, we may assume further that Y is flat over S. Then, a resolution £ of G by free
Oy-modules of finite rank is a resolution by flat Os-modules. Since Torqos (F,G) is a
cohomology sheaf of the complex F ®¢, L, it is a coherent Oz-module. UJ

Let S be a regular noetherian scheme of finite dimension. Then, for a scheme
S+ X — S of finite type over S, the dimension function X — N is defined as in [26, Sec-
tion 2.1]. Namely, for a point x € X and s = f(x), we put dimx = tr.deg(x (x)/xk (s)) +
dim S — dim Os ;. Using this dimension function, the topological filtration F,G(X) and
the lower numbering Chow groups CH,(X) are defined. We have a canonical map
CH.(X) —» GrfG(X) sending the class [V] of an integral closed subscheme V of X to
the class [Oy] also denoted by [V].
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By Lemma 3.1.3, for a morphism /: X — Y of noetherian schemes of finite tor-
dimension and for a scheme A of finite type over Y, the pull-back map

fF1 G(A) = G(A xy X)
is defined by f*([F]) = Z([ZO(_ 1)‘1[7'0770Y (F, Ox)] for a coherent O 4-module F.

Lemma 3.1.4. — Let S be a regular noetherian scheme of finite dimension and f : X —'Y be
a quasi-projective morphism locally of complete intersection of relative virtual dimension r of schemes of
finute type over S.

Then, for a scheme A of finite type over Y, the pull-back f*: G(A) — G(A xy X) preserves
topological filtration in the sense that f* maps FeG(A) to For, G(A Xy X). Further, for an integer
q > 0, we have a commutative diagram

CH,(A) —1— CH,,,(A xyX)

(3.1.4.1) l l

Gr'G(A) L= G, G(A xy X).

Progf: — By the assumption on f, it is the composition X — P — Y of a regu-
lar immersion X — P and a smooth morphism P — Y. Since, it is clear for a smooth
map, it is reduced to the case where f is a regular immersion. Then, it follows from [26,
Proposition 2.2.2]. OJ

We compute 7 0r9%(Ox, Oy) for morphisms Y — X’ — X under certain condi-
tions. Corollaries 3.1.6 and 3.1.7 of the following proposition are crucial in the proof of
Proposition 6.2.1 and Theorem 6.2.2 respectively.

Proposition 3.1.5. — Let X be a scheme and N be a locally free Ox-module of finite
rank ¢. Let o2 N — Ox be an Ox-linear map and C C X be the closed subscheme defined by
Ze = Im(a: N — Ox). Let P C P(N) be an open subscheme of the associated P~ -bundle
P(N) = Proj(S*N) and p: P — X be the canonical map.

Let & = Ker(p* N — Op(1)) = Q4 x (1) be the kernel of the canonical surjection. Let
X' C P be the closed subscheme defined by the image Txr = Im(a’: € — Op) of the restriction
o =prale: E—> OptoE C PN and q: X' — X denote the composition.

We consider a Carlesian diagram

Ey E Pe C

(3.1.5.1) l l l l

y £, x <
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of schemes. Let f : Y — X denote the composition of the bottom arrows. We assume that Fy = E xx'Y
s a Gartier dvvisor of Y.

1. The upper middle arrow £ — Pe =P xx C s an isomorphism. The restriction X'\ . —
X\ Cof g: X' = X is an tsomorphism. The composition of the immersions X'\ E. — P\ Pg —
P(N) is the composition of the isomorphism X'\ E — X\ C and the section X \ C. — P(N) defined
by the surjection o|x\c.: Nxvc = Oxc-

The map o N — Ox induces a surjection f*N — Ly, C Oy. The composition Y —
X' — P(N) is the section defined by the surjection f*N — Ty,

2. We assume that the immersion X' — P is a regular immersion of codimension ¢ — 1 [4,
Definition 1.4]. Let y: Y — Py =P xx Y be the section defined by g and I" C Py be the image of
y regarded as a closed subscheme of Py. Let pr,: Py — P and pry: Py — Y denote the projections.

Then, the composition q: X' — X is of finite tor-dimension and there exists a spectral sequence
E;’ = E of Ox s y-modules such that

(3 l 5 2) E _ KCI‘(OX/XXY —> OF) ifr: 0,
o " Te%(O0x, Oy)  ifr#0,
), =pri " 0+ g+ D@priNg & ifp>0,¢>0,p+g<c—2

and E[f = 0 otherwise.
3. Assume that Y s noetherian. The surjection Ox iy — Or is an isomorphism outside
E x¢ Ey and we have equalities

[Ker(Oxriyy = O] + ) (=1 [Tor(Ox. Oy)]

r>0
c—1 y4
(3.1.5.3) =Y (=17 [pric () ® prNy ]
p=1 =1
(3.1.5.4) = Z(— D [ATN] - Z [priO(=n] - [priNg/y ]
s=2 ¢>1,r>1,q+r<s

m G(E x¢ Ey) where w: E x¢ Ey — X denotes the canonical map.

Progf- — 1. The first paragraph is clear from the definition of X’ and of C. The map
a: N — Ox defines a surjection N' — Z; C Ox and hence induces a surjection f*N —
Tr, C Oy. By the first paragraph, the kernel of the surjection f*N — g*(Ox (1)) is equal
to the kernel of f*N — Zp, on the complement Y \ Ey. Since a section Y — P(N)
1s uniquely determined by its restriction to the complement of a divisor, the assertion
follows.
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2. By the definition of regular immersion [4, Definition 1.4], the Koszul complex

K =Kos() =[A7T'E > - > £ O]

is a resolution of an Op-module Ox . Since P is flat over X and X’ — P is assumed to be
a regular immersion, the composition ¢: X' — X is of finite tor-dimension. Further, we
obtain an isomorphism

H,(K @0y Oy) — Tor?*(Ox, Oy)

from the resolution IC — Ox.

We construct a resolution of the Op -module Or. Let B: pri€ — priZg, be the
restriction of the map prip*N = prif*N — priZ;, to the kernel pri€ = Ker(prip*N —
priOp(1)). The map B induces the pull-back pri€ — Op, of o'. Since the section
y: Y — Py is defined by the surjection f*N — Ty, by 1, the closed subscheme I' C Py
is characterized by the condition that the cokernel Coker(f: pri€ — priZg,) is an
invertible Or-module. Hence the Koszul complex K’ = Kos(f’) defined by the twist
B': pri€ @ priZy;| — Op, of B is a resolution of the Op, -module Of..

We consider the morphism of complexes K ® o, Oy — K’ induced by the inclusion
pri€ — pri€ ® prél'gyl. Then, it induces the canonical surjection Ox/ .y = Or. Hence,
for the complex M = (K'/(K @0y Oy))[—1], we have an isomorphism H,M — E,.

The p-th component M, of the complex M is given by

M, = (A"'priE® pr;‘IE_\pr))/A/’HprTE
=ApriE® (pr;Ig\pr)/OpY).

We define an increasing filtration F, on M by F, M, = A" 'pri€ @ (prfgl'];fqﬂ)/ Opy).
Then, we obtain a spectral sequence

E),=Gr" My, = H M.

Since Gr" My=ATpri€ @ pr;‘/\/'E_Y(/q;(r Vand £ =Q) /x (1), the assertion follows.

3. By 2, we have the equality (3.1.5.3). By the exact sequence 0 — & —
PN — O1) — 0, we have an exact sequence 0 — AP N(—(c — p)) — -+ —
AP N (=1) - APE — 0 and an cquality [A?E] = Z;H:Hl(—l)’*l[A“’p*./\/(—r)].
Substituting this and putting p + r = 5, we obtain the second equality (3.1.5.4). O

Corollary 3.1.6. — Let X be a noetherian scheme and C. C X be a closed subscheme such that
the immersion G — X s a regular tmmersion of codimension ¢. Let ¢: X' — X be the blow-up at C
and let E = X" xx C denote the exceptional divisor.

LetY be a noetherian scheme over X such that Ey = E xx' Y CY is a Cartier divisor and let
" denote the image of the section Y — X' xx Y. Letpr,: Ex¢Ey — Eandpry: Ex¢Ey — Ey
denole the projections.
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Assume that q: X' — X 15 locally of complete intersection. Then, we have an equality

(3.1.6.1) [Ker(Oxuxy = Op)] + D (=1 [Tor® (Ox, Oy)]

r>0

c—1 V4
=D =D Y [P @ priNg ]
p=1

q=1

in G(E x ¢ Ey).

Progf. — Locally on X, there exists a surjection N' = O — Z of Ox-modules.
Hence, applying Proposition 3.1.5.3 to P = P() and the closed immersion Y = X' —
P, we obtain a spectral sequence (3.1.5.2), locally on X. By the proof of Proposition
3.1.5.3, it suffices to construct the spectral sequence (3.1.5.2) globally.

If we have another locally free Ox-module N of rank ¢ and a surjection N — Z,
then locally we have an isomorphism N'— A’ compatible with the surjections to Zg. It
induces an isomorphism of spectral sequences and the assertion follows. UJ

The authors do not know how to construct globally the spectral sequence (3.1.5.2)
under the assumption of Corollary 3.1.6 without using patching.

Corollary 3.1.7. — Let U be a scheme of finite type over a noetherian scheme S and D C U
be a Cartier divisor. Let ¢: (U xg U)™ — U x5 U be the log product with respect to D and assume
that q: (U x5 U)™ — U xg U s locally of complete intersection of relative dimension 0. Let Ay C
U xs U and ALng C (U xs U)™ denote the diagonal and the log diagonal respectively and identyfy the
mnverse image of Ap C U xs U by (U xs U)™ — U x5 U with G, p.

Then, the kernel of the surjection ¢* O, — O Al and L,q* O, for r > 0 are coherent Og,, ;-
modules and we have

[Ker(g"Ony = Op00) ]|+ D (= 1) [Lig"On] =[Gl

r>0

in G(Gyp).

Progf: — We define a locally free Oy u-module of rank 2 by N = priZy & priZlp
and define a P'-bundle P(priZp @ priZp) over U x5 U. The complement P C P(priZp, @
prsZp) of the sections defined by the surjections N = priZp @ priZp — prilp fori =1, 2
is a G,,-bundle on U xg U. We regard the log product (U xsU)™ as a subscheme of P. By
the assumption that (U xg U)™ — U xg U is locally of complete intersection of relative
dimension 0, the immersion (U xg U)™ — P is a regular immersion of codimension 1 by
Lemma below.
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We apply Proposition 3.1.5 to the diagram

D —— PstD _— PstD E— DXSD

(3.1.7.1) l l l l

U—> UxsU)™ —> P —— UxsU

where the image of the first arrow U — (U X U)™ in the bottom is Alfjg and that of the
composition U — U xg U is Ay. In the notation there, we have C =D xs D, Y =U,
Ey =D and E is the G,,-bundle Pp,p. Hence E x¢ Ey is Pp = G, p.

In the right hand side of (3.1.5.4), the pull back of N = pr}Z;, @ priZp to D is Nng
and the second exterior power A*m*N is ]%QU. Since Ny, vy = Np,u and the pull-back
of O(1) to D is also NVp su by Proposition 3.1.5.1, the assertion follows. ]

Lemma 3.1.8. — Let S be a noetherian scheme, X — S be a scheme locally of complete
intersection of relative dimension d and P — S be a smooth scheme of relative dimension n. Then, an
immersion X —> P over S 1s a regular immersion of codimension n — d.

Proof. — Since the assertion is local on X, we may take a regular immersion X — Q)
of codimension ¢ over S to a smooth scheme Q) of relative dimension d + ¢ over S. The
immersion X — P xg Q is the composition of the section X — P xg X of a smooth
morphism of relative dimension 7 and the smooth base change P xg X — P x5 Q) of the
regular immersion X — Q) of codimension ¢ and is a regular immersion of codimension
n+ c. It is also the composition of the section X — X xg Q of a smooth morphism of
relative dimension d + ¢ and an immersion X xg Q — P xg Q). Hence, the immersion
X x5 Q — P x5 Q is a regular immersion of codimension (z+¢) — (d +¢) =n—d on
the image of X by [13, Proposition 19.1.5]. Since X xXg Q — P xg Q is a smooth base
change of X — P, the assertion follows. O

3.2. Derved exterior power and localized Chern classes. — We study the relation between
derived exterior power complexes and localized Chern classes. Let X be a noetherian
scheme, £ and &£’ be locally free Ox-modules of the same finite rank n and e: £ — &’ be
a morphism. For an integer £ > 0, we consider the complex [A* — A*E'] where A*E’
is put on degree 0. Let D be a closed subset of X such that K = [€ — £’] is acyclic on
the complement X \ D. We define a morphism

(3.2.0.1) [A'E — A, GX) — G(D)

by sending the class [F] of a coherent Ox-module F to [Coker(F ® A — F ®
AEN] — [Ker(F @ AYE — F @ AEN].

Recall that homomorphisms A, y;: K(X) — 1 +KX)[[{]] € K(X)[[{]]* are de-
fined by 1,([€]) = ZZZO[Aqg]ﬂ and y,([€]) = X _ ([E]). We define operators y;(K)p:

t
1—t
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G(X) = G(D) for k£ > 1 by requiring that y,(K)p =Y_,_, %(K)p - £* is given by

n

(3.2.0.2)  y(K)p= (Z[A’fg — A, (%) ) SA(r)

k=1

If () without the suffix D denotes the composition with G(D) — G(X), we have
L+ 7K =1+ @AED = v(ED) - v(ED ™ = (€T~ [ED.

Let ¢,(K)p: CH.(X) — CH,_;(D) be the localized Chern class map defined by
using the graph construction in [10, Section 18.1].

Proposition 3.2.1. — Let S be a regular noetherian scheme of finite dimension. Let X be a
scheme of finite type over S, E and E' locally free Ox-modules of the same finite rank and ¢: € — &'
be a morphism such that the restriction on the complement of D s an isomorphism. For the complex
IKC=le: £— E'] and an integer k > 0, we have the following.

1. The map v (K)p: G(X) — G(D) sends the topological filtration ¥;G(X) to F;_,G(D).

2. The diagram

CH,X) 2 cH_ (D)
(3.2.1.1) l l
e 258 ot G)

15 commulalive.

Proof- — 1. It suffices to show y,(K)p([X]) € F,_,G(D) assuming that X is integral
of dimension 4 and D # X, by a standard argument. We show this by using the most
elementary case of MacPherson’s graph construction cf. [10, Section 18.1].

Let n be the rank of £ and p: G — X be the Grassmann scheme Grass,(€ & £’)
classifying subbundles of rank n. The second factor £ C € @ &’ defines a section sp:
X — G. Let t denote the coordinate of G,,x. Then, the graph of ¢! - ¢: &g, — 5/
defines a section 5: G, x = G, ¢. At ¢t = 1, the restriction 5|;: X — G is the sectlon
defined by the graph of e.

On the complement U =X \ D, the restriction e[y : Ey — & is an isomorphism.

The transpose of the graph of ¢+, : 1; — &1, defines asection s: Ay — A, Att=0,
U

the restriction s|g: U — Gy 1s the restriction so|y. The restrictions of s and 5 on G,y =
G, x NA} are the same. Let X c A}, denote the schematic closure of 5(G,, x) U 5(A{)
and let 7:X— A be the projection. Since 5|p: U — Gy is the restriction of sy, the fiber
XO X x AL X at 1 = 0 contains 5p(X) as a closed subscheme.

Let £ C & @ & be the restriction to X c A|, of the tautological subbundle and

@ &> &% be the restriction of the second projection. We consider the complex K=
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[5 — &L %]. The restriction of KtU= 5(A}) is acyclic. We put D= A} x AL X and let
mp: D — A}, be the projection. We consider the composition

(K )D

GKX) — G(D) > G(A}).
The pull-backs 7}, 7 G(Af)) — - G(D) by the sections D — A} at t=1,0 are the same
isomorphisms. Since the fiber ICl at ¢ =1 recovers the original complex K on X, we

have yk(/C)D([X]) =1 nD*(yk(/C)D([X])) Let /Co denote the pull-back of K to Xo and let
Ty Xo — X be the projection. We put Do DN Xo We have further y,(K)p([X]) =

ZOHD*()/k(/C)D([X])) = 170 (1 (Ko), ([Xo ).
Let [Xo] denote the class of the kernel Ker(@x0 — Oy x)) of the SUI‘_]CC-

tion. Since the restriction /Clyo(x) is acyclic and X, C DO, we have yk(lCo)Do([XO]) =
y/c(’CO)DU([XO]) =& - [£1)(1X,]). Hence,

3.21.2) 300 (IX]) = m0.(n([€] - 181) (Ko))

is an element of F,_,G(D) as required.
2. In the notation a@vc, the localized Chern class ¢;(K)p N[X] € CH,_;(D) is de-
fined as 7o, (¢(E)e(E) ™ ([Xo]))dim=d— [10, Section 18.1]. Hence, the assertion follows. []

The proof of Proposition 3.2.1 shows that the system of maps y;(K)p is character-
ized by the compatibility with the Gysin maps for regular immersions and the normaliza-
tion property that the composition with the natural map G(D) — G(X) is equal to the
map Y;([€'] — [€]). Similarly as (3.2.1.2), we have

(3.2.1.3) [A%(E) — AN(E)], (IX1) = 7o (([AF(E)] = [ARE)]) (IXo))).

Similarly as [10, Section 18.1], we have the following properties.

Corollary 3.2.2. — Let X be a scheme of finite type over a regular noetherian scheme S of finite
dimension and D C X be a closed subscheme.

L. Let € — &' be a morphism of locally free O 1 -modules of finite rank such that the complex
of K =[E — &' is acyclic outside Ay, Let ICo and IC, be the pull-back of IC by the 0-section and the

1 -section respectively. Then, we have

Ye(Ko)p = v (K)p.

2. Let & — & and &€ — &, be morphisms of locally free Ox-modules of finite rank such
that the complexes K, = [E) — E]] ana’ Ko = [E — &3] are acyclic outside D. If KC; — Ky is a

quast-isomorphism, we have

Ye(KDp =y (Ko)p.
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Let K be a complex of Ox-modules such that there exist a morphism &€ — &’ of
locally free Ox-modules of finite rank and a quasi-isomorphism [€ — £'] — K. Then,
we define the map Y, (K)p: G(X) = G(D) to be y,([€ = £'])p. This is well-defined by
Corollary 3.2.2.2. The localized Chern class ¢,(K)p: CH;(X) — CH,_,(D) is defined
similarly as ¢ ([€ — &'])p if X is of finite type over a regular noetherian scheme S of
finite dimension.

We consider coherent Ox-modules F, " and a morphism f: F — F’ of Ox-
modules satistying the following condition:

(3.2.8.1) There exists a locally free Ox-module £’ of finite rank and a surjection
& — F'. Thekernel £ =Ker(F @ E — F') is alocally free Ox-module
of the same finite rank as &£’

Let D C X be a closed subscheme such that / is an isomorphism outside D. Then,
since the map [€ — £'] - K = [F — F'] is a quasi-isomorphism, the map y(F —
Fp: G(X) = G(D) and the localized Chern class ¢,(F — F)p: CH;(X) — CH,_,(D)
are defined.

We further assume that F is of tor-dimension < 1 and let 7 be the virtual rank.
In other words, for a surjection & — F as in (3.2.3.1), the kernel £ = Ker(€ — F) is
locally free of rank rank & — r. Since the canonical map Ker(€ — F) — Ker(£' — F')
is an isomorphism, the sheaf F” is also of tor-dimension < | and of virtual rank 7.

We also define a map §,(F — F')p: G(X) = G(D) for £ > 0 by requiring that
S(F —-> Fp= Z:il 8i(F — F)p - " is given by

8,(.7:—> f’)D = yz(}"—> ]:/)D . yt([]:] — r).

We recall that the localized Chern class ¢.(F — F)p: CH;(X) — CH;_;(D) is defined
by requiring

(3.2.3.2) ch(}_/ — ‘7:)1) = (Z o(F — F’)D . tk> o (F)
k>0 k>0

in [27, (3.24)].

For the definition and properties of the derived exterior power LA*F, we refer to
[26, Section 1.2]. We recall that for a locally free resolution [£ — £] — F as above, we
have a quasi-isomorphism [[*L > T*'LQE — .- > L AY'E - A*E] - LAF,
where I'* denotes the divided power. For an integer £ > 0, the mapping cone [LA*F —
LA*F'] of the derived exterior powers is defined. We define a map

[LAFF — LAFF'] - G(X) - G(D)

sending [G] to Zq(—l)"TorqOX([LAk}" — LAY*F'], G). We describe the map [LA*F —
LA*F'p using the operators y,(F = Fp: G(X) = G(D).
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Proposition 3.2.4. — Let S be a regular noetherian scheme of finite dimension and X be a
scheme of finute type over S. Let F, F' be coherent Ox-modules of tor-dimension < 1 and of virtual rank
rand f: F — F' be a morphism of Ox-modules satisfying the condition (3.2.3.1). Let D C X be a
closed subscheme such that f is an isomorphism outside D.

L. We put formally B, = Y_,° \[LA*F — LA*F'Ip(5)": G(X) = GD)[[]]. Then,
we have §,(F — F)p =1 —1t)'B,.

2. Forn=r+1, we have

(3.2.4.1) [LA”]—“—> LA"]—“/]D = 5n(f — _7-“/)D
and it sends the topological filtration ¥;G(X) to ¥,_,G(D). Further the diagram

‘n (-7:/7?)[)
= 3

CH,(X) CH,_,(D)
(3.2.4.2) l l
Grae) IR g G)

15 commutative.

In the case where F = 0 and D = X, Proposition 3.2.4.2 is proved in [26, Propo-
sition 2.4.4].

Proof. — 1. The equality 6,(F — F')p = (1 — ¢)’B, is reduced to the equality
(3.2.4.3) 8,(F = F),(IX]) = = 0" B(X])

in G(D)[[¢]], by a standard argument. In fact, since G(X) is generated by the classes
of integral closed subschemes V, it suffices to prove the formula for [V] and to take
the push-forward. By the assumption that 7 and F’ are of tor-dimension < 1, the ker-
nel £ = Ker(£ - F) = Ker(E' — F') is locally free and we have quasi-isomorphisms
[£L — &l — F and [£L — &1 — F'. Hence, we obtain [LA*F — LA*F'p([X]) =
Zgzo(—l)q[Ak_qg — A1ENR[TL]([X]). We apply the graph construction to £ — &’
and use the notation in the proof of Proposition 3.2.1. Then by (3.2.1.3), we have

[LA'F — LA"F](1X])

_ HO*(i(_m([Awg] _ [Akqé‘])[rm]([io])).

g=0
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Thus, we obtain

B.(1X1) = 70 (7 ([E]) = v (EEN)m(1£) ™ (1Xo)))
! 1 ~~
(1) )

() ) 9
= v(P([€ - £]),(X]).

Since y,(F) = y(F —ny:(1) = y(F —r)(1 — )™, we obtain the equality (3.2.4.3).
2. Forn=r+1, we have

5t(f—> f/)D =(—-0B

=Y [LA'F > LAF] Q=

k=1

+[LA"F — LA"F'], - /(1 — )~ mod .

Comparing the coefficients of ¢, we obtain §,(F — F')p = [LA"F — LA"F']p. The
remaining assertion follows from this and Proposition 3.2.1. U

Lemma 3.2.5. — Let € and &' be locally free Ox.-modules of the same rank n and let E' —
E — Ox be morphisms of Ox.-modules. We consider the Koszul complexes K = Kos(€ — Ox) and
K'=Kos(E" — Ox) and the induced morphism IC' — K of complexes.

Let M = [K* — K'*] be the mapping cone of the morphism of the dual complexes. Then, the
homology sheaves H (M) are Hy(K') = Ox/(Image &£’)-modules.

Progf. — The product £ ® K — K of Koszul complex induces a canonical map
K ® K* — K*. The canonical maps £ ® K* — K* and K’ @ K* — K™ induces ' ®
M — M. This defines a multiplication Hy(K') @ H, (M) — H,(M) compatible with

the Ox-module structure. Thus the assertion follows. U

Let X be a scheme and K — K’ be a morphism of chain complexes of flat Ox-
modules. For an integer ¢ > 0, we consider the mapping cone [LAK — LAYK']. The
canonical maps LA™K — LAK ® K and LA™K’ — LAK' @ K’ [26, (1.2.1.4)] in-

duce a map
(3.2.5.1) [LA™'K — LA™'K'] — [LA’K — LA’K'| @ K.

We consider the following condition on a complex K of Ox-modules.
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(L(n)) For every x € X, there exist an open neighborhood U of x, locally free Oy-
modules £ and L of rank n and 1 respectively and a quasi-isomorphism

[£L— E]l— Klu.

If a complex K of Ox-modules satisfies the condition (L(n)), it is a perfect complex of tor-
dimension < 1. For a perfect complex K of Ox-modules satisfying the condition (L(n)), let
7. denote the closed subscheme of X defined by the annihilator ideal Z, = Ann A"H(K)
and ¢: Z — X denote the immersion. Then, for a quasi-isomorphism [£ — &] — K|y
on an open subscheme U of X as in (Li(n)), the intersection ZN U C U is the largest closed
subscheme where the map £ — & is the zero-map. Further, a quasi-isomorphism [£ —
€] — Klu induces an isomorphism *£ — Ly|znv = Li*K|znu. Hence, £, = L7*K is
an invertible Oz-module [26, Lemma 2.4.1.1].

Corollary 3.2.6. — Let IC and K’ be complexes of Ox-modules satisfying the condition (1(n))
and IC — K be a morphism such that the mapping cone [IC — K'] is of tor-dimension < 1. For
q >0, let [LAK — LAYK'] denote the mapping cone.

Let 7. and 7! denote the closed subschemes of X defined by the annibilator ideals T; =
AnnA"Hy(K) and T, = AnnA"Ho(K'). Leti: 7. — X and 7' : 7! — X denote the immersions
and let L7, = Ly7*IC and L7, = Ly"™*KC" be the invertible O-module and O -module respectively.

1. The scheme Z. is a closed subscheme of 7! and the canonical map L', @, Oz — Ly is an
wsomorphism.

2. The homology sheaf H,([LAYKC — LAIK']) s an Oy -module if p > 0 or ¢ > n.

3. The map (3.2.5.1) induces an isomorphism

(3.2.6.1) Hyr ([LA™'K — LA™ K']) - H,([LA’K - LA'K']) ® £,
Jorp>0orqg>n.

In the case where KC = 0, Corollary 3.2.6.2 (resp. 3.2.6.3) is proved in [26, Lemma
2.4.2.1 (resp. 2.4.2.2)].

Progf: — 1. Since the question is local, we may assume that there is a quasi-
isomorphism [£ — £'] — K’ for locally free sheaves £ and L of rank n and 1. Then,
the mapping cone [’ @ K — K'] is a perfect complex of tor-amplitude [1, 1] and hence
is quasi-isomorphic to £[1] for a locally free sheaf £ of rank n. Thus, we obtain a quasi-
isomorphism [£ — £] — K. Since the pull-back of £L — &€ to Z is the zero-map, the
pull-back of £ — &’ to Z is also the zero-map. This shows that Z is a subscheme of 7.
Further, the canonical map £, ®o, Oz — L is induced by the identity of £ and is an
isomorphism.

2. Since the assertion is local, we may assume, as in the proof of 1, that I =

[Ox > E] and K' =[O 5N E'] where £ and &’ are locally free of rank n, and K — K’
is induced by £ — £’ compatible with ¢ and ¢. Then for ¢ > 0, the derived exterior
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power complex LAYK is identified with the complex [Ox — & Sy Y e Gy 74 )
Consequently, if ¢ > n, its shift (LAYKC)[—¢] is isomorphic to the dual of the Koszul
complex Kos(¢*: £ — O) associated to the dual of e: Ox — £ and similarly for the
complex (LAK’)[—¢]. Since the ideal sheaf 7, C Ox of Z' is the image of ¢*: £ —
Ox, the assertion follows from Lemma 3.2.5.

3. We show that (3.2.5.1) induces (3.2.6.1). The map (3.2.5.1) induces a homomor-
phism

Hyt (LA™K — LA™ K']) = Hyt ([LA’K — LA | @ K')
=Tor 5 ([LA’K — LA'K], K).

p+1

Since K is of tor-dimension < 1, the spectral sequence
E?, = Tor%(H,([LA’K — LAK']), K')
= Tor %Y ([LAK — LAK'], K')

s+t

induces a homomorphism

TorX ([LA‘IIC — LA”C/], IC/) - Torlox (Hp([LAqK ~ LA[IIC/]), ,C/).

p+1

Since ‘H,([LAK — LA?’K’]) is an Oz-module, we have an isomorphism

Tor ™ (H,([LA'K — LA’K']). K') — H,([LA’K — LA’K']) ® Lii*K’
=H,(|[LA’K - LAK']) ®0,, L.

(cf. [26, Lemma 2.4.1.3]). They define a canonical map (3.2.6.1).
By [26, (2.4.2.2)], the canonical maps

LA™K - LAK ®0, L, LA™K - LAK Qo, L),

are isomorphisms. Further by 1, the canonical map L,A’K ®¢o, L; = L,A'K ®o,, Lz
is an isomorphism. Thus the map (3.2.6.1) is an isomorphism. O

3.3. Localized intersection product. — We briefly recall terminologies and properties
on cotangent complexes [14, Chapitre II] and excess conormal complexes [26, Defini-
tion 1.6.3] which will play the central roles in this and the next subsections.

For a morphism of schemes X — S, the cotangent complex Ly/s is defined in [14,
Chapitre II] as an object of the derived category D, ,(Ox) of the category of quasi-
coherent Ox-modules. We have H(Ly/s) = Qég/s and H;(Lx/s) =0 for i < 0. For a
morphism f: X — Y of schemes over S, we have a distinguished triangle

<3.3.0.1> Lf*Ly/s — LX/S - LX/Y - .
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If X — P is a regular closed immersion over S and if P is smooth over S, then there exists
a canonical isomorphism

d
(3.3.0.2) Lx/s — [NX/P - Q11)/5 X0 OX]

to the complex where the conormal sheaf Nx p = Zx /I% is put on degree 1 and Qi, /s Q0p
Ox is put on degree 0. If T — S is flat, then the canonical map LpLx /s = Lxuxgr/7 Is an
isomorphism where p;: X xg T — X denotes the first projection.

For an immersion V — X of schemes, the conormal complex My x is defined in
[26, Definition 1.6.3] to be the shift Ly x[—1] of the cotangent complex Ly,x. We have
a canonical isomorphism Hy(My,x) = Ny/x to the conormal sheaf.

Lemma 3.3.1. — If X — S us flal, then there exists a canonical isomorphism Lixs —
Mx/xxsx)-

Proof. — We consider the distinguished triangle (3.3.0.1) for X — X x¢ X — X
where the first arrow is the diagonal §: X — X x ¢ X and the second arrow is the second
projection. Since Lx/x = 0, we obtain an isomorphism Mx xxsx) = Lix/xxsx)[—1]1 =
Lé*Lixxgx)/x- Since X — § is assumed to be flat, the canonical map pLx/s = Lxxsx)/x
1s an isomorphism where p; denotes the first projection. It induces an isomorphism

Lix/s = L Lpilicss = L™ Lixxgx/x- -

For an immersion V — X and for a morphism W — X such that T =V xx
W — W is a regular immersion, the excess conormal complex My, x y; is defined in [26,

Definition 1.6.3] as an object of the derived category D, (Oy) of the category of quasi-

coherent Oy-modules. We have a distinguished triangle

qeoh

My xw = Lg"My/x = Npjpw —

where g is the morphism T — V.
We recall the definition of locally a hypersurface [26, Definition 3.1.1].

Defination 3.3.2. — Let S be a scheme. A scheme X of finite presentation over S s called locally
a hypersurface of relative virtual dimension n — 1 if; locally on X, it is a Cartier divisor of a smooth
scheme of relative dimension n over S.

For such X, if z: X — P is a regular immersion to a smooth scheme over S, the
cotangent complex Lys is canonically quasi-isomorphic to the complex [Nxp — *Qjp ]
inducing a canonical isomorphism Ho(Lx,s) = Q4 ss- Gonsequently, the complex Ly/s
satisfies the condition (L(n)) in Section 3.2.

We recall the definition of the localized intersection product [26, Definition 3.2.2].
Let S be a regular noetherian scheme of finite dimension and let X be a scheme of finite
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type over S that is locally a hypersurface of relative virtual dimension n — 1. Let Z be
the closed subscheme of X defined by the annihilator of €25 5, 11 Z — X be the closed
immersion and let £, = L;*Lx/s be the invertible O-module. The underlying set of Z
is the complement of the largest open subscheme of X smooth over S.

Let V be a closed subscheme of X and W be a noetherian scheme over X. We
put T =V xx W. Then, for a coherent Oy-module F, a complex G € D’ | (Ow) of Oy-
modules with bounded coherent cohomology sheaves and for a sufficiently large integer
q, the Op-module Torfx (F, G) is supported on the inverse image Z1 = Z xx T and the
class [’Tor(f9X (F,9)]in G(Z1),z, = Coker(L; — 1: G(Zr) = G(Zr)) depends only on
the parity of ¢ by [26, Theorem 3.2.1].

Definition 3.3.3. — Let S be a regular noetherian scheme of finite dimension and let X be
a scheme of finite type over S that is locally a hypersurface of relative virtual dimension n — 1. Let Z.
be the closed subscheme of X defined by the anmihulator of Q2 5, 12 Z — X be the closed immersion
and let L, = 1,7"L/s be the invertible O -module. Let V' be a closed subscheme of X and W be a
noetherian scheme over X. We put' T =V xx W, Zy =7 xx T and G(Z+),, = Coker(L, —
1: G(Z1) — G(Zy)).

Then, the localized intersection product

(3.3.3.1) ((, Nx: GV) x GW) = G(Z1) 2,

is a buadditive parring defined by

(3.3.3.2) (171 16))) = (=D([Tor7X(F. G)] = [Tor 5(F. 9)])

Jor a coherent Oy -module F, a coherent Ovy-module G and for a sufficiently large integer q.

In [26], it 1s denoted [[, ]]. We have changed the notation to emphasize the sim-
ilarity with the usual intersection pairing (, ) of algebraic cycles. It is proved in [26,
Theorem 3.2.1], that the right hand side of (3.3.3.2) is independent of ¢ sufficiently large
and defines a pairing.

For G = Oy, we put

(3.3.3.3)  ((IF1.1OW]))y = (IFL, W),
The localized intersection product with W defines a map
(3.3.3.4) (. W)x: G(V) > G(Z1) ;-

Similarly, we define a map ((V, ))x: GIW) = G(Zr),z,. If ¥ C W is a closed subset
such that the restriction W \ ¥ — X is of finite tor-dimension, the map (3.3.3.4) is lifted
to a map

(3.3.3.5) (( , W))X G(V) —> G(ZT Xw E)/ﬁz'

We recall some formulas on localized intersection product.
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Lemma 3.3.4. — Let X and X' be locally hypersurfaces of relative virtual dimension n — 1
and n' — 1 over a regular noetherian scheme S of finite dimension and

V «— T

X «— W

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed immersions.

We assume that the immersion f: X' — X s of finite tor-dimension. We also assume that
7. xx X' is a closed subscheme of the closed subscheme 7! of X' defined by the annihulator of Qg‘;, /s and
that the map G(Zr) — G(Z7.) induced by the inclusion 2y — 7! induces a map G(Zr),z, —

G(Z)e, -
T hen, the composition

(C ,W))x /
GV) 8 G(Z)e, = G,

is equal to the localized intersection product
((, [L/"OwD)x : G(V) = G(Zy) .z,
with [Lf*Ow] € G(W).

Progf.: — Tt follows from the canonical isomorphism Torfx (F, Oy) — Torfx’ (F,
L/*Oy) for a coherent Oy-module F [26, Lemma 1.5.1]. O

Lemma 3.3.5. — Let X be locally a hypersurface of relative dimension n — 1 over a regular
noetherian scheme S of finite dimension and

V «—— T
ml lm
X «— W

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed immersions. We
assume V s regular.
Then, the map ((, W))x: G(V) = G(Zr),c, ts equal to the usual intersection product

(, (V. W))x)y: GV) = G(Zn) e,

with the localized itersection product (V, W))x € G(Zr)z,.
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Assume n addition that V is locally of complete intersection of relative dimension n — ¢ over S,
that W s of dimension p and that the immersion 'U — W is a regular immersion of codimension ¢'. Let
My x w denote the excess conormal complex. Then, we have

(3.3.5.1) (V. W))x = (=) ey (M ) N T

n GI‘[ILC(G(ZT)/Ez)'

Progf: — We apply [26, Lemma 3.3.1] to the spectral sequence EIQ, .= Torf V(F,
’TorqOX Oy, Ow) = E,y, = Torﬁ’;(f , Ow). Then, similarly as in the proof of [26,
Proposition 3.3.2.1], we obtain an equality ((F, W))x = (F, ((V, W))x)v for a coher-
ent Oy-module F.

The equality (3.3.5.1) is [26, (3.4.4.1)]. U

Lemma 3.3.6. — Let X be locally a hypersurface over a regular noetherian scheme S of finite
dimension and

vV T T
ml lm lm
X W o« W

be a Cartesian diagram of noetherian schemes over S where the vertical arrows are closed vmmersions. We
assume that g: W' — W is of finite tor-dimension.
Then, the map ((, W)x: G(V) — G(Z1),, s equal to the composition of

(C.W))x g
G(V) -3 G(ZT)/LZ — G(ZT/)/L’Z-

Proof. — It suffices to put G = Oy and 'H = Oy in [26, Proposition 3.3.2.1]. O

Lemma 3.3.7. — Let X be locally a hypersurface over a regular noetherian scheme S of finite
dimension and let X' be locally a hypersurface over a regular noetherian scheme S of finite dimension. We
consider a Cartesian diagram

v v T
ol A lo
X <L x w

of noetherian schemes over S where the vertical arrows are closed immersions. We assume that f : X' —
X 15 of finite tor-dimension. We also assume that Zy =7 xx T is a subset of 2!, =2 xx/ T set-
theoretically and that the canonical morphism G(Zy) — G(Z7}) induces a morphism G(Zv),z, —

G(Z)e,
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Then, the composition ((, W))x: G(V) = G(Zr),z, — G(Z)c,, 15 equal to the com-
position of

7 Wy ,
G(V) —— G(V) —= G(Z)z,-
Progf. — Similarly as [26, Corollary 3.3.4.3] applied by taking W = X" and V' to
be W, it follows from [26, Proposition 3.3.3]. O
3.4. Relative excess intersection formula. — We establish a refinement of the excess

intersection formula [26, Proposition 3.4.2]. The result in this subsection will be used
in the proof of an explicit computation of the logarithmic different in Proposition 5.1.2.
Most of the proofs in this subsection are immediate variations of those in [26, Sections 1.6,
1.7]. The reader is recommended to read them before following the proof here. The
authors apologize for possible inconvenience.

We consider a commutative diagram

T S5 W

Ll

VvV — X
of schemes satisfying the following condition:

(3.4.0.2) The horizontal arrows are closed immersions and the immersion
T — W is a regular immersion. The upper square and the tall rectangle
are Cartesian.

Let g: W — X denote the composition of the right vertical arrows. Recall that a simpli-
cial algebra Ay xw on T such that the normal complex N(Ay/x w) computes Lg*Oy
is defined in [26, 1.6.3, 1.6.4]. Further, an ideal Iy,xw C Ay/xw is defined as the
kernel of the surjection Ay xw — Or and the excess conormal complex M, Xw =
N(yxw/Iy xw)[—1]is defined as a complex of Or-modules loc. cit.

We construct a variant of the spectral sequence E;, = HoprJLATMY x vy =
Torfi’f]' (Oy, Ow) [26, (1.6.4.3)]. We further assume that the map /: X' — X is of finite
tor-dimension. We define an object C of D_, (Ox/) fitting in the distinguished triangle

(3.4.0.3) —C—> L Oy — Oy —

as follows. Since Lf*Oy is acyclic in degree > 0, the 0-th subcomplex 7-(L/*Oy in
the canonical filtration is quasi-isomorphic to Lf*Oy. Namely, for a complex C’ defin-
ing L/*Oy in the derived category and the subcomplex t-(C’ defined by replacing the



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 71

components C; by 0 for ¢ > 0 and C; by Ker(Cj — C',), the inclusion ¢’ — ('’
is a quasi-isomorphism. Let C be the subcomplex of C’ obtained by further replacing
Ker(C; — C’ ) on degree 0 by the kernel of the surjection Ker(C; — C’ ) = Oy. Then,
the complex C fits in the distinguished triangle (3.4.0.3) and is independent of the choice
of C" up to a canonical quasi-isomorphism.

We use the notation in [26, Proposition 1.6.4]. A simplicial algebra Ay x w and
an increasing filtration F*Ay xw = I}, /x.w are defined in [26, Definition 1.6.3]. Sim-
larly Ay xw and its filtration F* are defined. They define a filtered chain complex
C = [Av/xw — Av/x w] of simplicial modules. Here Ay//x/w is put on degree 0 and
Ay/x.w is on degree 1. Then, since Px(Oy) and Px/(Oy) are resolutions of Oy and of
Oy by free simplicial algebras [14, 1.5.5.6], we have a quasi-isomorphism [ NC — Lg*C
from the associated simple complex. Thus, we obtain a spectral sequence

(3.4.0.4) E! =H,.,Gry” [NC = Tor, % (C, Oy).

Lemma 3.4.1. — Let the notation be as above. Then, for the E'-term of (3.4.0.4), there exists
a canonical isomorphism

(3.4.1.1) E, , = Hoprf[LAM, oy = LAM, 1 ]

of Op-modules.

By Lemma 3.4.1, we obtain a spectral sequence
- ’ — / Oy
(3.4.1.2) E) = Hop [LAMY = LATMY, ] = Tor,l (C, Oy)

of Or-modules.

Proof. — The proof is similar to [26, Proposition 1.6.4]. Similarly as loc. cit.,
the canonical map S(Gr;C) — Gr,C is an isomorphism. The normal complex of the
graded piece Gri‘C = [Grl{‘AV/X,W — Gri‘AV//Xr,W] is defined by the canonical map
My, /x,w[l] — My, /X’,W[l] of conormal complexes. Hence the normal complex NGI{«C =
N[Gr’;Av/x,W — GrbAy /x,w] 1s canonically quasi-isomorphic to the mapping cone of
NS/ My wllD) = NS/ (Mg, wl1]). Thus by [26, Proposition 1.2.8], the E'-term
E}  =H,,Gry’ [NC is given by Hy, [LATM, « v = LA7M, . ] as required. [J
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We consider a commutative diagram
C
T — W

L

(3.4.2.1) v _S,x _S,p

L

C C

V X P

of schemes satisfying the following conditions:

(3.4.2.2) The horizontal arrows are closed immersions and the immersions
X — P and X' — P’ are regular immersions of the same codimension.
The immersion T'— W is also a regular immersion. The upper square,
the left tall rectangle and the right square are Cartesian.

In [26, (1721)], a map )"V/X/P,\V: L[\/JIVI/V/X’Wr — NX/P ® LAﬁ_lM{//X’WY[l] is de-
fined as the composition of the maps

(3.4.2.3) LAYM x w = My g w ® LA MY o = Nxyp @ LAY MY [

induced by the canonical map My, xow LgtMy/x = LgiMx p[1] = Nx,p ® Or[1]. We
identify Nx//p/ :f*NX/p and define kv//x//p/"\r : LAPM/V’/X’,W — NX/p ®LAP71M/V’/X’,W[1]
similarly. We will construct a map (3.4.2.5) below compatible with Ay x/pw and
AV /X PW -

We use the notation in the proof of [26, Proposition 1.7.2]. Then, we have a com-
mutative diagram of exact sequences

0 — Julfy — B A 0
(3.4.2.4) T T T
0 — Js/Js — B/Ji A 0

of filtered simplicial modules. The lower exact sequence is constructed for V— X <~ W
and the upper one is for V' — X’ <— W'. Further we have a quasi-isomorphism [A —
A'l = [Ay/x,w = Av/x,wl. By the assumption that the right square in (3.4.2.1) is Carte-
sian, we have an isomorphism Nxp ® [A — Al — [ Js/J3 — Ju/J5] by iii in the step 1
of the proof of [26, Proposition 1.7.2]. They induce a canonical map

(3.4.2.5) A: [LA'MY x = LAMY, o] = Nxgp @ [LAY MY
— LA"IMY, o w ]
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By the step 3 in the proof of [26, Proposition 1.7.2], we see that it fits in a commutative
diagram of distinguished triangles

(3.4.2.6)
Av A
LAPMY x w A Nx/p @ LAPIMY x 1]
AV X P W
LA'MY, v MALLELEN Nx/p ® LAY My, o 1]

b d b d

/ ! A — ! — !
[LA/My = LAMY, o] ——> Nxpp @ [LA MYy — LAY M L1

v v

Lemma 3.4.2. — Let B denote the spectral sequence Ell] , = By (3.4.1.2) and let
E7[—1, 3] denote the spectral sequence E; -3 = Ejpqg—o.
Then, there exists a map

(3.4.2.7) o: E7 — Nxp ® E7[—1, 3]
of spectral sequences where the maps of E'-terms are induced by the map A in (3.4.2.5).

Proof. — 'This is a variant of the construction in [26, Proposition 1.7.2] where the
corresponding map for the spectral sequence E;’ s = HoprJLATMy x v = Torp(?:; (Oy,
Ohw) is defined. Similarly as the step 1 in the proof loc. cit., we obtain a map of spectral

sequences. The assertion on the map of E'-terms is clear from the definition of A. U

We prove a relative version of the excess intersection formula [26, Proposition

3.4.2].

Proposition 3.4.3. — Let S be a regular noetherian scheme of finite dimension and X, X' be

locally hypersurfaces over S. We consider a commutative diagram

T—C>W

Lo

(3.4.3.1) AV < X/

Ll

V 5 X
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of schemes over S satisfying the condition (3.4.0.2). Let ¢ be the codimension of the regular immersion
T — W. Let MY,y g and My, ., be the excess conormal complexes.
We assume that, locally on X, there exists a commutative diagram

C

v X/ P
(3.4.3.2) l lf l;
V—5 X —5P

of schemes over S satisfying the following condition:

(3.4.3.3) The maps X — P and X' — P’ are regular immersion of codimension 1 and that
V — P and V' — P’ are regular immersion of codimension n. The right square is
Cartesian. The schemes P and P’ are smooth of relative dimension n over S.

Let U C X' be an open subscheme such that V' xx U — V xx U’ is an open immersion
and put & =X'\'U". Let ! C X' be the closed subscheme defined by the annihilator of 2%, s and we
put Ly =Ly7" L s where i1 2/ — X' s the closed immersion. Then, we have the following.

1. Themap [+ X' — X is of finile tor-dimension.

2. The canonical map LA™~ M, xow > LA"™"M, /w5 a quast-isomorphism on the
complement U\ (Z/; xx 2).

3. We define f[V] — [V'] € G(Z N (V xx X)) by

SIVI=[V] = [Ker(/* Oy — Ov) ]+ > (= 1)[L,/*Oy]

7>0

and put d = dim W. Then, we have

(3.4.3.4) (((f' [V]— [V/])’ W))X, = [LNH/ (M/V/X,W - M/V’/X’,W)]

n Fd—n—&-c’G(Z'/l‘ XX 2:)/LZ’ :

Proof. — 1. In the diagram (3.4.3.2), the schemes X and P’ are tor-independent
over P. Since f is of finite tor-dimension, the map f is also of finite tor-dimension.

2. The assertion is local on X. Recall that the diagram (3.4.3.2) defines a quasi-
iSOmOI‘phiSH’l M/V/X,W —> [NX/P ® OT d KCI‘(NV/I) ® OT — NT/W)] [26, Lemma 171]
and similarly for My, v, . Hence the excess conormal complexes My, y and My, v v
satisfy the condition (L(z — ¢)) in Section 3.2.

The map V' — V xx X' defined by the diagram (3.4.3.1) is an open immersion
outside ¥. Hence the canonical map My, x v = My, x/ 1 1s a quasi-isomorphism on the
complement T \ T xx/ ¥ by the description of the excess conormal complex recalled
above.

Let Z| C T be the closed subscheme defined by the annihilator ideal of
A" H (M, xw)- By the assumption that the right square in (3.4.3.2) is Cartesian,
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the canonical map Nxp ®0, Ox — Nx/,p is an isomorphism. Hence the assumption
that the mapping cone [My, x w = My, x y] is of tor-dimension < 1 is satisfied. Thus by
Lemma 3.2.5, the homology sheaves Hq([LA”_”/1\/[’\,/&W — LA”_C/M/V,/X,’W)] are OZE'
module for ¢ > 0.

Since the diagram (3.4.3.2) defines an isomorphism [Nx//p — Qll,, /s @0y Ox]—
Lx//s, we have an inclusion Z| C Z7. of closed subschemes of T. Hence the assertion
follows.

3. The proof is similar to [26, Proposition 3.4.2] using Lemmas 3.4.1 and 3.4.2.

By 2, the right hand side of (3.4.3.4) is defined as an element of F,_, /G (Z} xx X).
Since X and P’ are tor-independent over P, we see that the canonical map Lf*Oy —
Lf*Oy is a quasi-isomorphism. Hence, the complex C of Ox,-modules in Lemma 3.4.1 is
acyclic outside X. We consider the spectral sequence (3.4.1.2) and will show the equality

(3.4.3.5) > =ME), ] = (DTE]+ (=) [Ep]

prq=r,r+1

for sufficiently large r. The right hand side of (3.4.3.5) is independent of sufficiently large
7 by [26, Theorem 3.2.1] and defines the left hand side of (3.4.3.4).

We show that the left hand side of (3.4.3.5) equals the right hand side of (3.4.3.4).
By [26, Lemma 3.4.1], the map Ay xp,w induces an isomorphism L, A7 M, xow
Nx,p ® L, A’M, IXW for ¢ > n — ¢ and similarly for Av//x//p w. By the commutative di-
agram (3.4.2.6), it induces an isomorphism E/;q - Ly ® E/1)+1,q—3 f—@p+1)>n—-/¢.
Hence, the left hand side of (3.4.3.5) is equal to Zq(—1)_(’2_5/)+4[E1_(n_[,),q] and to the
right hand side of (3.4.3.4).

We show the equality (3.4.3.5) applying [26, Lemma 3.3.1]. Note that, in [26,
Lemma 3.3.1], the map «, is used only to show that the right hand side is independent of
r > 1y and that we can drop the compatibility assumption with the restriction o, |tny since
it is not used in the proof. We apply [26, Lemma 3.3.1], to the maps (3.4.2.5) and [26,
(3.1.3.1)] and the map (3.4.2.7). Then, by Lemma 3.4.2, the maps of E'-terms of (3.4.2.7)
are 1somorphisms for sufficiently large p 4 ¢ and the assumption of [26, Lemma 3.3.1] is
satisfied. Thus, we obtain the equality (3.4.3.5). UJ

4. Intersection product with the log diagonal

From this section on, we fix a complete discrete valuation field K with perfect
residue field I of characteristic p > 0. We put S = Spec Ok and s = SpecF. Both 0 and
p are allowed as the characteristic of K. A morphism of schemes over S is always a mor-
phism over S.

We introduce in Section 4.3 the localized intersection product with the log diag-
onal by applying Definition 3.3.3. We establish an important property that the localized
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intersection product with the log diagonal is independent of the boundary in Proposi-
tion 4.3.5. In preliminary subsections 4.1 and 4.2, we study local structure of log products
and the logarithmic cotangent complex respectively.

4.1. Log products. — In this subsection, we study the log self-product of a regular
flat scheme X of finite type over S = Spec Ok with respect to a divisor D C X with simple
normal crossings. We do not assume inclusion between D and the closed fiber Xy. The
case where D = Xy and Xk is smooth over K is treated in [26, Sections 5.1, 5.2]. First,
we study the local structure of X.

Lemma 4.1.1. — Let X be a regular flat scheme of finite type over S and D be a divisor with
sumple normal crossings. Then, for every point x of X, there exist an open neighborhood U of x, a smooth

scheme P over S, a divisor D of P with simple normal crossings relatively to S and a regular immersion
U — P of codimension 1 such that D NU =D xp U.

Progf- — It suffices to prove the cases where «x is a closed point of Xy and of Xx
respectively. First, we show the case where «x is a closed point of Xy. Let Dy, ..., D, be the
irreducible components of D containing x and take ¢, ..., 4, € m, defining Dy, ..., D,, on
aneighborhood of x. We extend it to a minimal system ¢, .. ., ¢, € m, of generators. Then,
the map U — A{ defined by ¢, ..., on an open neighborhood U of x is unramified.
Hence, after shrinking U if necessary, there is an étale scheme P — Ag and a regular
closed immersion U — P of codimension 1 such that D N U is the sum of the pull-back
of the first m coordinate hyperplanes by [13, Corollaire (18.4.7)].

Next, we show the case where «x is a closed point of Xk. We take a minimal system
tiy...,t, € m, of generators as above. There exists an element ¢ € Ox, such that the
residue field « (x) is a finite separable extension of K(%) and that K(%) is purely insep-
arable over K by Lemma 4.1.2 below. Then, the map U — Ag“ defined by to, 41, ..., 4,
on an open neighborhood U of x is unramified. Thus, we conclude similarly as above. [

Lemma 4.1.2. — Let k be a field of characteristic p > O such that [k : k'] = p. Then, for a
finite extension L. of k, there exists an integer e > 0 such that L is a separable extension of k"""

Progf: — Let Ly be the separable closure of £ in L and put [L. : L ] = . Then since
[L, : T/1=1[k: k] =p, it follows that L is a unique purely inseparable extension L}/p of
L of degree * and is a separable extension of £'//'. U

We show a relative version of Lemma 4.1.1.

Lemma 4.1.3. — Let X and Y be regular flat schemes of finite type over S and f: Y — X
be a morphism over S. Let D C X and E C'Y be dwisors with simple normal crossings such that
Y\ E Cf "X\ D). Let y be a point of Y and we put x = f (y) € X.
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Then, there exists open neighborhoods U and V of x and y respectively satisfying f (V) C U and

a Cartesian diagram
V — QDE
(4.1.3.1) f"’l l;

U—> P>oD
of schemes over S satisfying the following conditions:

o The schemes P and Q) are smooth over S and D= > D,CPandE = Z E C Q are
divisors with relative sumple normal crossings relatwely to S respectively. For eacfz i, we have
f I(Dy) = Z el]E Jor some mz,‘egem ¢; > 0. The horizontal arrows are regular immersions

of codimension 1 and D N U = DxpUand ENV =E Xq V aswm Lemma 4.1.1.

Progf: — It suffices to prove the cases where y is a closed point of Yy and of Yk
respectively. First we prove the case where y is a closed point of Yy and hence x is a
closed point of Xy. By the proof of Lemma 4.1.1, we obtain a diagram (4.1.3.1) with-
out f together with étale morphisms P — Ag = Spec O[Ty, ..., T,] and Q—) Al =
Spec Ok[S1, ..., S,] such that D and E are the pull-back of the ﬁrst m and m' coordi-
nate hyperplanes respectively and that the maximal ideals m, C OX,x and m, C Oy, are
generated by , =T;|y fort=1,...,nand 5= Silv forj =1, ..., n respectively.

For:=1,. mweputf*t—v]_[s forsomeunltsv onV Fori=m+1,...,n,
we also put /¥4 = Z a;s; for some functlons a; on V. After shrinking Q, we take units v;
on Q) lifting v; and functlons a; on Q lifting a; and define amap g: Q — A{ by sending T}
to v, ]_[J- S;g fori=1,...,mandto Zj a;S;jfori=m+1, ..., n. By replacing Q by an étale
neighborhood Q x4z P, we obtain a map f: Q— P that makes (4.1.3.1) a commutative
diagram.

The equalities /- (D)) = Z eyE follow from the definition of g. We show that
the dlagram (4.1.3.1) thus obtamed is Cartesian on a neighborhood of y. Let m, C Op,
and m, C Oq,, be the maximal ideals. Since the horizontal arrows are regular immer-
sions of codimension 1, it suffices to show that the canonical map [, /= m/ tﬁj
induces an isomorphism Ker(f,/Mm? — m,/m?) — Ker(m /m% — my/mj) on the sub-

spaces of dimension 1. Since mx/mx ={(4,...,t,) and m},/mj = (§1,...,5/), we have
m,/m? = Ker(®,/m? - m,/m?) & (T, ..., T,) and ﬁly/ﬁlj = Ker(tf'g},/ﬁlj — my/mf,) &)
(S1,...,Sy). By the definition of g, the map f* sends the subspace (T,,...,T,) C
m,/@? into (S, ...,S,) C ﬁlj/ﬁlf Since &, T;,..., T, and 7, S,,...,S, are bases of
m,/m? = Ker(m,/m? - m,/m?) & (T4, ..., T,) and of ﬁ‘ly/ﬁlj respectively, the image of
Ker(f®,/m? — m,/m?) is not in (Sy, ..., S,). Hence the map Ker(m,/m? - m,/m?) —

Ker(f,/fm; — m,/m’) induced by J* is an isomorphism as required.
Next, we prove the case where y is a closed point of Yk and hence x is a closed
point of Xg. Let 7w be a prime element of Okx. We may take 4, € Ox , and s, € Oy, such
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that {) = 7 mod m, and sy = 7 mod m, if K is of characteristic 0 and rg = 77 mod m,
a+b .
and s, = mod m, for some integers @ > 0,5 > 0 and «(x) and k(y) are separa-

ble extensions over K(%) and over K(5) respectively if K is of characteristic p > 0 by
Lemma 4.1.2. Then, we obtain a diagram (4.1.3.1) without / together with étale mor-
phisms P — Ag+1 = Spec Ok[Ty, Ty, ..., T,] and Q — Ag+1 = Spec Ok [So, Si, ..., Sy]
b

similarly as above. We put f*f = s + Zpo ay;si and take liftings g as above. By the
same procedure for ¢ > 0 as above, we define a rnjlpf: Q — P that makes (4+.1.3.1) a
commutative diagram satisfying the equalities /~'(D;) = Z eyE

We show that the diagram (4.1.3.1) thus obtained is Cartesmn on a neighborhood
of y. By the definition of /, the map /* sends the subspace (T}, ..., T,) C m,/m? into

a+b

(Sp,...,Sy) C /M. Since TV —7,T,,...,T,and S, —7,S,,...,Sy are bases of
m,/m? = Ker(f,/m? > m,/m?) & (Ty,...,T,) and of mj,/ﬁij respectively, the image
of Ker(m,/m? — m,/m?) is not in (Si, ..., Sy). This implies the required assertion as
above. O

Let X be a regular flat separated scheme of finite type over S and D C X be a
divisor with simple normal crossings. We consider the log product (X xg X)™ defined as
(X xg X)p with respect to the family D = (D)1 of irreducible components of D.

Lemma 4.1.4. — Let X be a regular flat separated scheme of finite type over S and D C X be
a divisor with simple normal crossings.

Then, the log product (X xsX)™ s locally a hypersurface (Definition 3.3.2) over X with respect
to either of the projections.

Progf: — Let x € X be a point, U C X be an open neighborhood of x and U — P
be a regular immersion of codimension 1 to a smooth scheme P over S satisfying the
condition in Lemma 4.1.1. We define the log product (P xg X)™ similarly. Since the
second projection (P xg X)™ — X is log smooth and strict by Lemma 1.3.1, it is smooth.
Hence the log product (P xg X)™ is regular.

By the universality of log product, we have a Cartesian diagram

(UxsX)” 25 U

(4.1.4.1) l l

(P xsX)™ P

Hence the ideal defining the immersion (U xg X)™ — (P x§ X)™ 1s locally monogenic.
Thus, to conclude that (U xg X)™ is a divisor of (P xg X)™, it is sufficient to show that
the immersion (U xg X))~ — (P x5 X)™ 1s nowhere dominant. Thus, it 1s reduced to the
case where D 1s empty. In this case, U xg X is a divisor of P xs X since X is flat over S. [



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 79

Corollary 4.1.5. — Let X and Y be regular flat separated schemes of finite type and D C X
and £ C'Y be divisors with simple normal crossings. Let f: Y — X be a morphism over S satisfying
F D) C E set-theoretically.

Then, the map (f X< f)7: (Y xsY)™ = (X xs X)™ s locally of complete intersection and

hence 1s of finite tor-dimension.

Proof. — Since the assertion is local, we may take a Cartesian diagram (4.1.3.1). By
the Cartesian diagram (4.1.4.1) and the corresponding one for Y, the diagram

V xs V)" L0 U xeX)~

(4.1.5.1) l l

QxsV)™ 25 (PxsX)”
1s Cartesian. Since (P xg X)™ 1s smooth over X and (Q x5 Y)™ is smooth over Y, they
are regular. Hence the bottom horizontal arrow (f x f)~ 1s locally of complete intersec-
tion. Since the vertical arrows are regular immersion of codimension 1 and the diagram
is Cartesian, (U xg X)™ and (Q Xgs Y)™ are tor-independent over (P xg X)~. Hence
the top arrow (fy X /)~ is locally of complete intersection of the same virtual relative
dimension. U

We study the local structure of the log product (X x g X)™ inductively on the num-
ber of irreducible components of D. Let X, D and the log product (X x5 X)™ be as in the
beginning of this subsection. Let X, be a regular divisor of X such that D; =D N X is
a divisor of X with simple normal crossings. Let D = (D;);1 be the family of irreducible
components of D and we consider the family D; = (D, N X);¢; of smooth divisors of X.
Then, the log product (X; xgs X;)~ with respect to D is identified with the inverse image
of X xg X, by the canonical map (X xg X)” — X xg X.

The sum D" =D U X is a divisor of X with simple normal crossings. We consider
the log product (X xg X)™ with respect to D'. By the inductive construction of the log
product, we have a canonical isomorphism (X X X)™ — (X xg X)™ Xxxex (X Xg X%, -
The inverse image E of (X; xg X;)™ by the canonical map (X xg X)™ — (X xg X)™ is
a G, -torsor over (X; xg X;)” by Lemma 1.3.2. They are summarized in the Cartesian
diagram

E —_—> (X] szl)w —_—> XI X5X1
(4.1.5.2) l l l
(X X8X)% — (X X5X)N —_—> XXSX

where the vertical arrows are closed immersions. The morphism (X x5 X)™ — (X Xg
X)™ is an isomorphism on the complements of E and (X, xg X;)”. The subscheme



80 KAZUYA KATO, TAKESHI SAITO

E C (X xgX)™ is the inverse image of X; C X by the composition of the canonical map
(X x5 X)™ = X x5 X with either of the projections X xg X — X.

To understand the local structure of the log product, it suffices to study it on a
neighborhood of E by the inductive construction of the log product.

Lemma 4.1.6. — Let the notations X, D, X, E etc. be as above.

1. Assume X s flat over S. Then the immersion (X, xg X))~ — (X xg X)™ s a regular
immersion of codimension 2 and E. is a Cartier divisor of (X x g X)~.

2. Assume Xy s a subscheme of the closed fiber Xy and put d = dim Xy. Then the scheme
(X x5 X))~ s smooth of dimension 2d over F.

Progf: — 1. The immersion (X; xg X;)” — (X xg X)" is locally of complete in-
tersection by Corollary 4.1.5. Hence, the assertion follows from Lemma 3.1.8.

2. Since the projections (X; Xy X;)” — X, are smooth of relative dimension d,
the assertion follows. (l

We show some tor-independences (Definition 3.1.1.1). Its consequences Corol-
lary 4.1.8.1 and 4.1.8.2 will be used in the proof of Propositions 6.1.1 and 6.1.2 respec-
tively.

Lemma 4.1.7. — Let X and Y be regular flat separated schemes over S of finite type and
S Y = X be a morphism over S. Let D C X be a regular divisor such that Dy =D xx Y s a
divisor of Y and let D' be a divisor of Y with simple normal crossings. We assume that either both D
and Dy are flat over S or they are schemes over T

1. The fiber products D xs D and Y xsY are tor-independent over X x g X.

2. Let (X x5 X)™ and (Y xsY)™ be the log product with respect to D and D' respectively.
Assume that Dy =D xx Y is a subset of D' set-theoretically. Further assume that either D and D' are
Sflat over S or D and D' are schemes over F.

Let E C (X x5 X)™ be the pull-back of D C X by either of the two projections. Then E and
(Y xsY)™ are tor-independent over (X xg X)™.

Progf: — 1. By Lemma 3.1.2, it suffices to show that D xg D and X x5 Y are
tor-independent over X xg X and that D xg Dy and Y xg Y are tor-independent over
X xsY.

By the assumption that Dy =D xx Y is a divisor of Y, it follows that D and Y
are tor-independent over X. Either if D 1s flat over S or if D is a scheme over F, the
fiber product D xg D 1is flat over D. Hence D xg D and Y are tor-independent over X
with respect to the second projection D xg D — X by Lemma 3.1.2. Thus, by applying
Lemma 3.1.2to Y > X < X xg X < D x5 D, we conclude that D xg D and X x5Y
are tor-independent over X xg X.

Similarly, either if Dy 1s flat over S or if D and Dy are both schemes over F, the
fiber product D xg Dy is flat over D. Hence D xg Dy and Y are tor-independent over
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X with respect to the first projection D xg Dy — X by Lemma 3.1.2. Thus, by applying
Lemma 3.1.2t0 Y > X < X X5 Y < D x5 Dy, we conclude that D xg Dy and Y x5 Y
are tor-independent over X Xg Y as required.

2. First, we show the case where D and D’ are flat over S. By Lemma 4.1.6.1,
E is a divisor of (X xg X)™. Since every D] is flat over S in this case, the pull-back
E. C (Y x5 Y)™ of an irreducible component D’ of D’ by either of the two projections
(Y x5 Y)”™ = Y is also a divisor. Hence, if Dy = ) _.¢D!, the pull-back (f x /)™ E =
> .¢E!is also a divisor and the assertion follows in this case.

Assume D = Dy. Since the assertion is local, we may take a Cartesian diagram
(4.1.3.1) satistying the condition in Lemma 4.1.3 and we consider the diagram (4.1.5.1).
By applying Lemma 3.1.2 to U - P <= (X x5 P)™ < (Y x5 Q)~, we conclude that
the schemes (X xg U)™ and (Y xs Q)™ are tor-independent over (X xg P)™. Since
EN X xg U)~ is a divisor of (X x5 P)™ and (f x f/)™E N (Y x5 V)™ is a divisor
of (Y x5 Q)7, the schemes EN (X xg U)™ and (Y xg Q)™ are tor-independent over
(X xgs P)”. Then, applying Lemma 3.1.2 to (Y Xxs Q)7 = (X Xs P)7 <« (X xg U)™ «
EN (X x5 U)™, we conclude that EN (X x5 U)™ and (Y xgs V)™ are tor-independent
over (X xgU)™. ]

Corollary 4.1.8. — Let the notation be as in Lemma 4.1.7 and we put Dy =D xx Y =
> .eD!and ¢ = dim Yg — dim Xk.

1. Let f;: D) — D be the restriction of [ : Y — X and (f; x f)*: G(D xsD) — G(D)] xg
D) be the pull- bac/f Then, the map (f X f)*: GrFG(D xs D) = Gr',, G(Dy x5 Dy) defined
byf X [:Y xXs Y = X xg X 15 the composition of

o+2¢

. (%) .
GrlGM xs D) 22 DGl GD, xs D)

N
Zi,] ¢j+¢j-can

G(Dy x5 Dy)

0+2r

2. Weput E' = E X xugxy~ (Y X5 Y) ™ and let E; C (Y x5 Y)™ be the pull-back of D. C'Y
by etther of the projections. Then, the restriction g;: E. — E of (f X f)7: (Y XxgY)” = (X xsX)~
is of finite tor-dimension. Further, the map (f X £)™*: GriG(E) — Gr® 0. G(E) defined by (f x

N7 (Y xsY)” = (X xg X))~ is the composition of

GrlG(E) — EB G, G(E, ) Z G, G(E).

Proof: — 1. By Corollary 4.1.5 applied to (LI,D}) xg (LI;D)) — D xg D with the
trivial divisor, the map f; X fi: D; x5 D; = D x5 D is of finite tor-dimension. Hence
the map (f; x /)*: G(D xgs D) — G(D’ Xg D) is defined. Let fp: Dy — D be the base
change of /. Then, by Lemma 4.1.7.1, the map (f x f)*: G(D xs D) = G(Dy xs Dy)
1s the same as the pull-back by f X fp: Dy xs Dy = D xg D. By the assumption, either
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every D/ is flat over S or is a scheme over F. Hence, there exists a filtration on Op, x¢py
such that graded pieces are invertible OD;stj’. -modules with multiplicities ¢;¢. Thus the
assertion follows.

2. Both E} and E Xpy,p (D! xg D)™ are G,,-torsors over (D xg D’)~. The map
E! — E Xpxep (D! xg D)™ induced by g;: El — E is compatible with the ¢-th power
map of G,, and is flat. Hence, the map g is of finite tor-dimension by Corollary 4.1.5. By
Lemma 4.1.7.2, the map (f x f)™*: G(E) — G(E') is the same as the pull-back by the
restriction g : E' — E. Since there exists a filtration on Oy such that graded pieces are
mvertible OE;—modules with multiplicities ¢;, the assertion follows. O

4.2. Logarithmic cotangent complex. — We define a logarithmic version of the cotan-
gent complex.

Definition 4.2.1. — Let X be a regular flat separated scheme of finite type over S = Spec O
and D be a divisor of X with sumple normal crossings. We put n = dim Xg + 1. Let (X xg X)~
denote the log product with respect to the famuly (D;) of Cartier divisors consisting of the vrreducible
components of the divisor D. We regard X as a closed subscheme of (X x s X)™ by the log diagonal map
§: X—> (X xgX)™.

Define the logarithmic cotangent complex Lx/s(logD) o be the conormal complex
Mx)xxsx)~ = Lix/xxsx)~[1] and a coherent Ox-module Q;(/S(logD) lo be the conormal sheaf
Nx/xxsx)~ = Ho(Lix/s(logD)). Define a closed subscheme Yxs of X to be that defined by the
annihilator of the n-th exterior power Q0% s (logD) = A”Q;(/S (logD).

If the characteristic of K is 0, the coherent sheaf Q; /S(log D) is locally free of rank
n—1 on the generic fiber and hence Xx/s is supported on the closed fiber set-theoretically.

Since the log diagonal map §: X — (X xg X)™ is a section of the projection
(X xg X)™ — X, the pull-back L§*Lxxsx)~/x of the cotangent complex [14] is canoni-
cally identified with the conormal complex Mx xx¢x)~ [26, Definition 1.6.3.1] and hence
with the logarithmic cotangent complex Lx/s(log D).

Lemma 4.2.2. — Let X be a regular flat separated scheme of finite type over S and D be a
dwisor with simple normal crossings.

1. Let U be an open subscheme of X and U — P be a regular immersion of codimension 1
into a smooth scheme P over S satisfying D N'U = D xp U as in Lemma 4.1.1. Then, we have a
quasti-isomorphism

(4.2.2.1) [Nup — 2b5(logD) ®0, Ou] — Lyslog D).

Consequently, the logarithmic cotangent complex Lix s (log D) satusfies the condition (L(n)) in Section 3.2
and we have an exact sequence

(4.2.2.2) Nup = Qb s(logD) ®0, Ou — Q5(log D) — 0.
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2. Let Dy, ..., D, be the irreducible components of D. Then, we have a distinguished triangle

m

(4.2.2.3) — Lx/s = Lx/s(logD) — @ Op, —

=1

and consequently an exact sequence

(4.2.2.4) 0— Qs — QL 5(logD) - @ Op, — 0.

=1

Proof. — 1. The distinguished triangle (3.3.0.1) for the immersions U —
(U x5 X)™ = (U xg P)™ defines a distinguished triangle

SIENUxsx)~ /s~ = Nujuxspy~ = Mujwxsx~ = -

Since U — (U x5 P)™ is a section of the smooth morphism (U x5 P)™ — U, the iso-
morphism prjQ} ss(logD) — €2 {UxsBy~ v induces a canonical isomorphism Ny wxsp)~ =
Q; /S(logf)) ®op, Ou. By the Cartesian diagram (4.1.4.1), the canonical map Ny,p —
81T NUxsx)~/(Uxspy~ 1s an isomorphism. Thus the assertion follows.

2. The distinguished triangle (3.3.0.1) for X — (X xg X)” — X xg X defines a
distinguished triangle

(4.2.2.5) Lx/s = Lx/s(logD) — LS*L(XXSX)”/XXSX - .

Let E,,...,E, be the inverse images by either of the two projections (X xg X))~ —

X. Then, we have a canonical isomorphism Q(y, )~ /x.x = @Dij Ok, It suffices

to show that this induces an isomorphism L&*Lxxgxy~/xxsx = P Op,. The as-
sertion 1s local on X. By comparing the isomorphism (4.2.2.1) with the isomor-
phism [Ny — Qp s ®0, Oul = Luys, the distinguished triangle (4.2.2.5) implies that

L& Lixxsx)~/xxsx — D1, Op, is an isomorphism. O

If there exists a dense open subscheme of X smooth over S, the coherent Ox-
module Q%{/S (logD) is locally free of rank n — 1 on it and the first map Ny,p —
Qb s (logD) ®o, Oy in (4.2.2.2) is an injection.

On an open subscheme U C X with a regular immersion U — P asin Lemma 4.1.1,
ife,...,e,1s abasis of Q%,/S(log ﬁ) ®e, Ov and if aje; + - - - + a,¢, is the image of a basis
of Ny/p, then the restriction 5 /S(log D)|y is isomorphic to Oy/(ay, ..., a,) and hence
the annihilator ideal Ann Q% /s (logD)|y C O is generated by ay, ..., a,.

We study the logarithmic cotangent complex Lx/s(log D) more in detail. First, we
consider the case where there exists a dense open subscheme of X smooth over S.

Lemma 4.2.3. — We put Xy =), 1D, as a divisor of X and define a Cartier divisor D'
of Xby D' =3 ) x,.pep iDi Weput 7. = T s and let i : 7. — X be the closed immersion. We
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also put n = dim Xg + 1. Assume that there exists a dense open subscheme of X smooth over S. Then,
we have the following.
1. There exists a unique Ox-linear map

leg?T . OD/ (D/ — XF) = OD/ ®OX IXF—D’ g Q;(/S(log D)

sending a local generator g of the ideal Ix,_1ry C Ox to dg+ g - dlog(ww/g) for a prime element 7w
of K. The map -dlog 1 is independent of the choice of a uniformizer 7.

2. The map -dlogm: Op(D' — Xyp) — Q)lg/s(logD) s an injection and the cokernel
Q;i/s(log D) /O (D' — Xy) s an Ox-module of tor-dimension < 1.

3. The Oz-module 1,7* /S(logD) s wvertible. For a normal scheme W over ¥ and a
morphism ¢ : W — Z over S and for the pull-back ¢*Lii*Q s(log D), there exists a canonical

isomorphism
Nys ® Ow — ¢*Li7" Q;(/S(log D)

of trivial invertible Ovy-modules, where N s denotes the conormal sheaf Wy /m. of the closed point s

of S.

The complement X \ Z is the largest open subscheme of X smooth over S, which
is assumed to be dense in X. In the case X \ D C Xk, we have D' = X and the cokernel
Q;i/s(log D)/Ox, will be denoted by Q%(/S (logD/logk).

Progf.— 1. The local section dlog(7 /g) of Q4 ss(log D) is independent of the choice
of a prime element w. We have d(ug) + (ug) - dlog(mw/ug) = u(dg + g - dlog(mw/g)) +
g(du — udlogu) for a unit u and the last term is 0. Hence the Ox-linear map dlogm- :
Ox (D — Xyp) — Q;i/s(logD) is well-defined.

Since (7w/g)(dg + g - dlog(m/g)) = (w/g)dg + gd(7w/g) = dm = 0, it induces
Op (D' —Xy) — QQ/S(logD).

2. For the injectivity, it suffices to show it at the generic point of each irreducible
component D; of D’. Hence, we may assume Xg = X \ D. Then, it follows from [26,
Lemma 5.3.4.2].

We show that Q% ;s(logD)/ Op (D' — Xy) is of tor-dimension < 1. Since the ques-
tion 1s local, we take an immersion U — P as in Lemma 4.1.1. Let g be a function on P
lifting g =7/ [, tl-li. Then, on a neighborhood of U, the divisor U C P is defined by an
equation 7 =g - []. T!. Hence, the image of Ny p — Qll,/s(logﬁ) ®o, Ou is generated
by d(g-TT, T)). Since the image of the section ([;£)~'d@-[[,T)) =dg+g- Y, bdlog T,
of ng/s (logﬁ) ®o, Ou in Q;(/S(log D)|u is dg 4 g - dlog(r/g), we have a locally free res-
olution 0 — Nyp(D') — Qp g (logﬁ) ®0, Ou — (2 5(log D)/ Oy (D' — Xp)) [y — 0.

3. Since Qy ss(logD) satisfies the condition L(r) in Section 3.2, the Oz-module
Ly* Q4 /S(log D) is invertible.
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We may assume W is integral. Let sy =20 ¢: W — X denote the composition.
Then, since Qéqs(logD) is of tor-dimension < 1 and the Oz-modules i*Qég/s(logD)
and Lli*Qéi/S(logD) are locally free, the canonical map (p*Lli*Qéi/S(logD) —
Lz, Qx ss(logD) is an isomorphism.

First we consider the case &w(W) ¢ D. By &w(W) ¢ D, we have L;5,0Op, = 0.
Hence the exact sequence (4.2.2.4) induces an isomorphism L, z';k\,Q;/S — L i\*\,Qg/S (logD)
of invertible Oy-modules. Let Z’ be the closed subscheme of X defined by the annihi-
lator ideal of €2y g = A"QY ss- For a morphism g: T — X of schemes, the Or-module
L1g* Q2 ss is invertible if and only if g factors through 7/, since QL ss satisfies the condition
L(n) in Section 3.2. Since Ly, Q% ss 1s invertible, the map zy: W — X factors through
the closed subscheme Z’. Hence, the assertion follows from [26, Lemma 5.1.3.1].

Next, we consider the case oy (W) C D. Then the exact sequence 0 — Ox(—Xp) —
Ox(D' — Xp) = Op(D' — Xy) — 0 defines an isomorphism 7, Ox(—Xy) = Nys ®
Ow < Li33,Op (D' — Xp). Further the map dlogm-: Op(D' — Xy) — S2§</S(logD) in-
duces a map L, 4,0 (D' — Xp) — Lli\”‘\,Qéi /S(log D). We show that it is an isomorphism.

Since the question is local, we take an immersion U — P asin Lemma 4.1.1. Then,
by the proof of 2, we have a commutative diagram of exact sequences

(4.2.3.1)

0 —— Nyp — Nyp(D') —> Op (D' =Xp)|ly —— 0

| Jomere

0 — Nyp —> QblogD) ®0, Oy —— Q% 5logD)|y —> 0.

Then both Lyz,Op (D’ — Xg) and Ly, Qx /s (logD) are identified with #,Ny,p and the
assertion follows. ]

Next, we consider the case where Xx,s = X. This occurs only if the characteristic
of Kis p> 0.

Lemma 4.2.4. — Assume Yx;s = X. Then, there exists a canonical isomorphism Qé ®
Ox = Hi(Lxs(logD)) of invertible Ox-modules.

Proof. — Let Ky = K? C K and put Sy = Spec Ok,. The composition of closed
immersions X — (X xg X)” — (X xg, X)™ defines a distinguished triangle
(4.2.4.1) — L3*L(XXSX)~/(XXSOX)~[1] — Lx/s,(logD) — Lx/s(logD) —
of cotangent complexes. By the Cartesian diagram

X xsX)” —— (X x5, X)~

! !

S e SXg0 S,
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we obtain a surjection €2§ 150 ®0s Ox = Nixxgx)~/(xxs,~- We claim that this map and
the map H,Lx/s(logD) — N(Xxsxr/(XstX)” defined by (4.2.4.1) are isomorphisms. This
will complete the proof since €24 /Se = Q¢ is an invertible Os-module.

To show the claim, it suffices to show that the canonical map H,Lx/s,(logD) —
H,Lx/s(logD) is the 0-map since HoLx/s,(logD) — HoLx/s(logD) is an isomorphism
and H,Lx/s(logD) is invertible. We show that H,Lx/s,(logD) — H,Lx,s(logD) is the
0-map. Since the assertion is local on X, we may assume that there is a regular immer-
sion X — P, of codimension 1 to a smooth scheme P, over Sy as in Lemma 4.1.1. It
induces an immersion X — P = Py X, S to a smooth scheme P over S. Then, the map
H,Lx/s,(logD) — 'H,Lx,s(log D) is identified with the canonical map Nx,p, = Nx/p of
the conormal sheaves induced by the projection P = Py x5, S — P;. Since X xg, S =
X Xxp, P regarded as a Cartier divisor of P is p-times the Cartier divisor X of P, the
assertion follows. ]

We study a consequence of Lemma 4.1.3.

Lemma 4.2.5. — Let f: Y — X be as in Lemma 4.1.3 and put n = dim Xx + | and
n' =dimYg + 1 respectively. Then, for the closed subschemes Yx;s C X and Xy;s C'Y defined
by the annihilators A" /s (logD) and A" Q. /s (logE), the pull-back Xx/s xx Y 15 a subscheme
of Tyys.

Proof. — The assertion is local on Y. We consider a Cartesian diagram (4.1.3.1)
satisfying the condition in Lemma 4.1.3. Then, we have a commutative diagram of exact
sequences

(4.2.5.1)

0 —— fTyNup —— [15(2} 5(logD) ®0, Ov) —— [15Qk 5(log D)y —— 0

! | l

0 —— Nyiq ——  QslogE) @0, Ov  ——  Qy5logB)ly — 0

The closed subscheme (Zx/s Xx Y) NV is the largest closed subscheme where the pull-
back 1 Ny,p —>f|{‘,(§211,/s(log]3) ®o, Ov) is the zero-map. Similarly ¥y, NV is the
largest closed subscheme where the pull-back Ny, — Q(lg/s (log E) ®o,, O is the zero-
map. Hence the assertion follows from (4.2.5.1). O

Next, we study consequences of Lemma 4.1.6. As loc. cit., we assume that X,
is a regular divisor of X and that D, = D N X, is a divisor with simple normal cross-
ings. Let (X x5 X)™ and (X xs X)~ be the log product with respect to D and D’ =
D U X respectively and E be the inverse image of X, by either of the two projections
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(X x5 X)~¥ = X. We have Cartesian diagrams

X, — E X, —— (X xs X))~

(4.2.6.1) l l l l

X —5 X xsX)¥, X — XxsX)~

by the definition of E and by the universality of log product, respectively.
First, we consider the case where X is flat over S.

Lemma 4.2.6. — Let the notation be as above and assume that X, s flat over S. Let 1 :
X — X denote the closed immersion. Then, the left Cartesian diagram (4.2.6.1) defines a distinguished
triangle

Lx,s(logDr) — Li*LX/S(IOgD/) - Ox, —
on X;.

Proof: — By Lemma 4.1.6.1, the vertical arrows in the left Cartesian dia-
gram (4.2.6.1) are regular immersion of codimension 1. Hence the canonical map
Li*Lx,s(logD’) — Mx, /i to the conormal complex is a quasi-isomorphism. Since E —
(X xgs X;)~ 1s smooth, the morphisms X, = E — (X, Xg X;)” define a distinguished
triangle Lk, /s(logD;) — My, — QE/(XNXI)N ® Ox,. Since E is a G,,-torsor over
(X) xs X;)™ splitting on X, we have a canonical trivialization Qh X xsX)~ @ Ox, —
Ox, . Thus, the assertion follows.

Next, we assume that X is contained in the closed fiber Xy. Since the immer-
sions X; — E and X, — (X xy X)™ are regular immersions of smooth schemes over
F, the Cartesian diagram (4.2.6.1) define the excess conormal complexes My, x)~ i
and My xx0~.x, xpx,)~ @8 complexes of Ox,-modules as in [26, Definition 1.6.3.2]. By
the definitions Ly s(log D) = My xxsx)~ and Lx/s(logD") = Mx/xxsx)~, they fit in the
distinguished triangles

(4.2.7.1) — MY xwexr~.p = LitLxys (logD’) — Ny, /g =
(4.2.7.2) — MY xsx0.xirxn~ — Lii Lxys(log D) — | p(logDy) —
by [26, Proposition 1.6.4.2]. More concretely, they are described as follows.

Lemma 4.2.7. — Let the notation be as above and assume that X, s a smooth scheme of
dimension d over ¥. Let N, s be the conormal sheaf wi /my, of the closed point s of S.

L. There exists a canonical isomorphism My x . oxy~ 1 —> Nys ®r Ox [1].

2. There exists a canonical isomorphism MX/(XXSX) Xaxn~ > [Nys ® Ox, —
Nx,/x1. The complex My JXxsX) = (X xpXp)~ O X w5 acyclic outside the intersection X, N Xxs
where Xx s 15 defined in Definition 4.2.1.
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Proof: — 1. Let ¢ : X; = X be the closed immersion. Since the immersion X; — E
is a regular immersion of codimension ¢ + 1, the canonical surjection 7} €2y ss(log D) —
Nx, /e 1s an isomorphism. Hence, by the distinguished triangle (4.2.7.1), we obtain
an isomorphism MY JXXSX)SE Li¢{Lx/s(logD’) [1]. Thus the assertion follows from
Lemma 4.2.3.3 and Lemma 4.2.4.

2. Similarly as Lemma 4.2.2.2, we have a distinguished triangle — Ly s(logD) —
Lx/s(logD’) — Ox, — and hence a distinguished triangle — Li{Ly/s(logD) —
LifLx/s(logD’) — LifOx, —. By (4.2.7.1), (4.2.7.2) and by the exact sequence 0 —
Qy, ;rlogDy) = Nx,/x = Ox, = 0, we obtain a distinguished triangle

! ! *k
= My s x> Myyaxgxomp, = L Ox [11—

Hence the assertion follows from 1 and the isomorphism L;¢fOx, — Nx, /x.
On the complement of Xx/s, the immersion X; — Xy is an open immersion and
, . )
the complex My, ox)~.(x, xpx;)~ 18 acyclic. UJ

Assume that the underlying set of the closed fiber Xy is a subset of D and put
n=dimXg 4+ 1. We give a variant of Lemma 4.1.4 and Lemma 4.2.3. We define a
variant (X xg X)™ of the log product by the Cartesian diagram

X xgX)” — X xgX)~

! l

S —> (S x5S~

where (S xg S)™ is the log product defined with respect to the Cartier divisor s of S.

Lemma 4.2.8. — Let X be a regular flat scheme of finite type over S and D C X be a divisor
with simple normal crossings. Assume that the underlying set of the closed fiber Xy s a subset of D.

Then the scheme (X xs X)™ s flat and locally a hypersurface over X with respect to either of
the projections.

Progf. — The log scheme X with the log structure defined by D is log flat ([26,
Section 4.3]) and log locally of complete intersection ([26, Definition 4.4.2]) over S with
the log structure defined by the closed point, similarly as [26, Lemma 5.2.1]. Since the
projection (X xg X)~ — X is strict, it 13 flat. Since the assertion is local, we take a regular
immersion U — P of codimension 1 as in Lemma 4.1.1. Then, we have a closed immer-
sion (U xg X)™ — (P x5 X)™. Then, since (P xgX)~ is smooth over X and (U xg X)™~
is locally of complete intersection, the immersion (U xg X)~ — (P xg X)™ is a regular
immersion by Lemma 3.1.8. We verify that it is a regular immersion of codimension 1 by
reducing to the case where D is empty. 0J

We also define a variant Lx/s(logD/logF) of the logarithmic cotangent complex
to be the conormal complex Mx,xx¢x)~. The coherent Ox-module Q%{ /s (logD/logF)
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defined as Hy(Lx/s(logD/logF)) is the conormal sheaf Nx,xx¢x)~. For a regular im-
mersion U — P as in Lemma 4.1.1, we have shown in the proof of Lemma 4.2.8
that the immersion (U xg X)™ — (P xg X)™ 13 a regular immersion of codimen-
sion 1. The immersions U — (U xg X)™ — (P xg X)~ define a distinguished triangle
81T N Uxex)~/Pxsx)~ = Nuyexsx)y = Mujuxgxy~ — . Similarly as for Ly s(log D), it de-
fines a quasi-isomorphism

(4.2.9.1) [Nuxsx)/xsxr~ ® Ouv = 24 /S(logﬁ) ®0, Ou] = Lx/s(logD/logF)|u.

This shows that the logarithmic cotangent complex Ly s(logD/logF) satisfies the con-
dition (L(n)) in Section 3.2. If there exists a dense open subscheme of X smooth over S,
the coherent Ox-module Q5 ss(logD/logF) is locally free of rank 7 — 1 on a dense open
subscheme and the map N(uxgx)-/xsx)~ ® Ou = 2b/s(log D) ®o, Ou in (4.2.9.1) is an
mjection.

The immersions X — (X xg X)™ — (X xg X)~ define a distinguished triangle
(4.2.9.2) L3*Lixxsx)~/xxsx)~ —> Lixys(log D) = Lx/s(logD/logF) — .

Since (S x5S)™~ = Spec Ox[U*']/((U — 1)7r) for a prime element 7, the conormal sheaf
Ns/(sxgs)~ 1s isomorphic to I and is generated by dlog 7w. Hence, the distinguished triangle
(4.2.9.2) gives an exact sequence

(4.2.9.3) Ox, — Q;i/s(logD) — Q;i/s(logD/logF) — 0.

If there exists a dense open subscheme of X smooth over S, the first arrow Ox, —
Q;i/s(log D) is an injection by Lemma 4.2.3.2. If X is nowhere smooth over S, the second
arrow Qy ss(logD) — Q ss(logD/logF) is an isomorphism of locally free Ox-modules
of rank n+ 1. We put €25 (logD/logF) = A”Qé(/s(logD/logF).

Lemma 4.2.9. — Let Z. be the closed subscheme of X defined by the ideal Ann 2y (logD/
logF) and i : 7. — X be the closed tmmersion. Then the restriction of the invertible Oz-module
L Q%( /s (logD/log[) to the reduced closed fiber Zy yeq ts trivial.

Progf: — It suffices to consider the cases where the complement X \ Z is dense
and Z = X respectively. First, we prove the case where the complement X \ Z is dense.
In this case, the proof is similar to [26, Lemma 5.3.5.1]. Let ¢': Zp,.q = X be the
immersion. Similarly as in Lemma 4.2.3.3, the restriction of the invertible Oz-module
L Q>I</s (logD/logF) to Zy yeq 1s isomorphic to L;¢* QPI(/S (logD/logk).

By the exact sequence (4.2.9.3) together with the injectivity of Ox, — Q% ss(logD),
we obtain an exact sequence

0 — Li*Ox, — Lii*Qy s(logD) — Li*Qy s (logD/log F)
— 1"Ox, = 1"Qy s(logD) — *Qy s (logD/log F) — 0.
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By a local description of Z similar to that given before Lemma 4.2.3, it follows that the
last map 7* Q5 ss(logD) — Q2 ss(logD/logF) is an isomorphism of locally free Oy -
modules. Hence the map L,7*Qy (logD/logF) — i*Ok, is a surjection of invertible
O2y y-modules and is an isomorphism. Therefore, the map L,7*Ox, — L,7*Qy (log D)
is also an isomorphism of invertible Oy, -modules. Since L;7*Ox, is isomorphic to
O > the assertion follows.

We show the case where Z = X. The proof in this case is similar to that
of Lemma 4.2.4. We show that there exists a canonical isomorphism Q¢ ® Ox —
H,Lx/s(logD/logF) of invertible Ox-modules. Let Ky = K C K and put Sy =
Spec Ok, as in the proof of Lemma 4.2.4. The composition of closed immersions X —
(X xg X)” = (X xg, X)" defines a distinguished triangle

(4.2.9.4) — L8"Lixxex)/xxs, )~ [11 = Lix/s, (log D) — Lx/s(logD/log F) —

of cotangent complexes. By the Cartesian diagram

X xsX)” — X x5, X)~

! !

S —> (S xs5,9)7,

we obtain a surjection Qé /S (logF) ®0s Ox = Nxxex)~/(xx 5 X)~ - Similarly as in the proof
of Lemma 4.2.4, this map and the map H,Lx;s(logD/logF) — Nixxgx)~/(xxs, %~ de-
fined by (4.2.9.4) are isomorphisms. This complete the proof since /s, 10g F) is isomor-
phic to Os. O

4.3. Intersection product with the log diagonal. — Let X be a regular flat separated
scheme of finite type over S = Spec Ok and D C X be a divisor with simple normal
crossings. We put n = dim X + 1. We define the localized intersection product with the
log diagonal as follows.

We recall the notation from the previous subsection. The log product (X xgX)™ is
defined with respect to the family D = (D,);¢; of irreducible components of D. The log-
arithmic cotangent complex Ly/,s(logD) is defined as the conormal complex Mxxx¢x)~
of the log diagonal §: X = A;‘;g — (X xg X)” and we have a canonical isomorphism
Ho(Lx/s(logD)) — Q;(/S(logD). We define a closed subscheme Xx,s of X to be that
defined by the annihilator ideal of €25 /s (logD) = A”(Q% /S(log D)). Let Ly s denote the
invertible Oy s-module L;2* Ly s(log D) where ¢: Xx/s — X denote closed immersion.

We consider the following special case of Definition 3.3.3. We consider X and the
log product (X xg X)™ as S and X in Definition 3.3.3. The log product (X xg X)~ is
locally a hypersurface of relative dimension n — 1 over X by either of the two projections
by Lemma 4.1.4. As V in Definition 3.3.3, we take X regarded as a closed subscheme of
(X xg X)™ by the log diagonal. Since the canonical map S*Q%XXSX)N/X — Qég/s(logD)
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is an isomorphism, the intersection Z Xx V C V in Definition 3.3.3 is ¥x,s C X in our
setting.

We consider a scheme W of finite type over S and a morphism g: W — (X xg X)~
over S as W — X in Definition 3.3.3. Then, Z1 C T C W in Definition 3.3.3 are the
inverse images g~ '(Zx/s) C g_l(Al;()g) C W where Al;;g denotes X regarded as a closed
subscheme of (X xg X)™ by the log diagonal. Since the canonical map Lé*Lxxsx)~/x —>
Lx/s(log D) is an isomorphism, the pull-back of £, to Z xx V in Definition 3.3.3 is the
invertible sheaf EEX/S = L;"Lx/s(log D) on Xx/s in our setting. By Lemma below, under
the assumption (A) there, the group G(Zr),., in Definition 3.3.3 is G(g_l(ZX/S)) in our
setting.

Lemma 4.3.1. — Let the notation be as above. In particular, let W be a scheme of finite type over
S and g: W — (X x5 X)™ a morphism over S. Assume that the morphism g: W — (X xg X)~
satisfies the condition:

(A) The inverse image g~ (Exs) is supported on the closed fiber Wy set-theoretically.
Then the multiplication of the pull-back of the invertible O, s-module L s on the Grothendieck group
G(g™! (Xx/s)) 18 the identity.

Progf: — Since the Grothendieck group G(g~'(Zx/s)) is generated by the push
forward of the classes of the normalizations of integral closed subschemes, it follows from
Lemma 4.2.3.3 and Lemma 4.2.4. UJ

Thus, we make the following definition as in [26, Definition 5.1.5].

Definition 4.3.2. — Let X be a regular flat separated scheme of finite type over S = Spec O
and D C X be a disor with simple normal crossings. Let W be a scheme of finite type over S and
g W — (X xg X)™ be a morphism over S satisfying the condition (A) in Lemma 4.3.1. Then, we
define the localized intersection product with the log diagonal

(4.3.2.1) (%) serag- - GOW) = G(g7' (Zxys))
as the product (3.3.3.1) with the class of F = Ox.

In [26, Definition 5.1.5], we defined the localized intersection product with the log
diagonal under the assumption that the generic fiber is smooth and D = Xy. Here, we
replace the assumption by the condition (A) in Lemma 4.3.1.

The logarithmic localized intersection product ((Algzg, ) xxsx)~ i G(W) —
G(g™'(Zx/s)) preserves the topological filtration in the sense that it induces a map

F,GOW) > F,_,G(g ' (Zx/s))
[26, Theorem 3.4.3.1].



92 KAZUYA KATO, TAKESHI SAITO

If we take a closed immersion A — (X xs X))~ as W — (X xg X)7, the condition
(A) in Lemma 4.3.1 can be written as

(A") The intersection §~'(A) N Yx/s 18 supported on the closed fiber Xy set-
theoretically.

Under this assumption, the localized intersection product with the log diagonal
lo —
(4.3.2.2) (( 1+ A%)) xxey  GA) = G(871(A) N Bxy)

is defined as the product (3.3.3.1) with the class of G = Ox by taking X — (X xg X)™ as
W — X in Definition 3.3.3. By the symmetry of 7 or, we have

(( ’Al;gg))o(xsxr - ((Aig’ ))<XXSX)~'

The localized intersection product with log diagonal has the following functoriality.

Lemma 4.3.3. — Let' Y be another regular flat separated scheme of finite type over S and E. C'Y
be a divisor with simple normal crossings. Let (Y X5 Y)™ be the log product with respect to Y. and we
putV =Y\ E. Let f : Y — X be a morphism over S such that f (V) C U =X\ D and we consider
themap (f X f)7: (Y xsY)” = (X x5 X))~ of log products.

Let A be a closed subscheme of (X xs X)™ satisfying the condition (A") after Definition 4.3.2
and assume that Ay = (f X f)"""(A) C (Y x5 Y)™ also satisfies the corresponding condition that
oy "Ay) N Yy/s 15 supported on the closed fiber Yy set-theoretically. Let ™ G((Sgl (A) N Xxs) —
G(S;l (Ay) N Zyys) be the pull-back by f: Y — X.

Then the pull-back (f x f)™: G(A) = G(Ay) by (f xf)7: (Y xsY)” = (X xsX)~
is defined. Further, the diagram

log

(.AY) .
GA) —— G(x (A) N Xxys)

(Fxf )N*J, lf*

(. AY%) .
GAy) —— Gy (Ay) N Zyys)

15 commutative.

Progf. — By Lemma 4.2.5, we have /~'(Zx;s) C Zys. Since f*'((Sgl(A)) =
8§1(Ay), the map G((S;(l(A) N Xx/s) = G(3§1(Ay) N Xy/s) is defined by the assump-
tion (A).

By Corollary 4.1.5, the map (f X /)7: (Y XsY)” = (X xg X)™ is of finite tor-
dimension. Hence, the pull-back (f x /)™ : G(A) = G(Ay) by (f xf)7: (Y xsY)” —
(X x5 X)™ 1s defined.

We apply the associativity, Lemma 3.3.6, by taking A = (X xg X)™7 « X «
Y as V— X <~ W < W'. Then the composition via upper right is equal to the
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map (( ,Al\?g))(XXSX)N. We also apply the associativity, Lemma 3.3.7, by taking A —
X xsX)" <« (Y xsY)” <~ YasV— X <« X' <~ W. Then, the composition via lower
left is also equal to the same map. U

We establish an important property that the localized intersection product with the
log diagonal is independent of the boundary, in Proposition 4.3.5 below. We begin with
preliminary computations. Let X; be a regular divisor of X such that the intersection
D; =X, ND is a divisor of X; with simple normal crossings. Let D = (D;);c; be the
family of irreducible components of D and we consider the family D; = (D; N X);e1 of
smooth divisors of X;. We identify the log product (X; xs X;)™ with respect to D; with
the inverse image of X; xg X, by the canonical map (X xg X)™ — X xg X. The sum
D'=DUX is a divisor of X with simple normal crossings.

We consider the log product (X xs X)~ with respect to D', the log diagonal map
§: X = (X xg X)¥ and the canonical map (X xs X)~ — (X xg X)~. The inverse
image E of (X; x5 X;)” C (X x5 X)” by (X x5 X)¥ = (X x5 X)” is a G,,-torsor
over (X, xsX;)” by Lemma 1.3.2. The pull-back of the G,-torsor E by the log di-
agonal X, — (X, xg X,)7 1s trivialized by the restriction to X, of the log diagonal
X = (X xg X)™. We identify E X x,x¢x,)~ X; with G,, x, and the restriction of the log
diagonal X; — E X(x,x¢x;)~ X with the I-section Ix,. They are summarized in the
Cartesian diagram

G,.x, — E — X xsX)~

(4.3.4.1) l l l

X1 —_—> (X] szl)w —_—> (X X5X)N.

Lemma 4.3.4. — Let X, be a regular vrreducible divisor of X such that D, =X, ND s a
divisor of Xy with simple normal crossings. Let (X xs X)™ denote the log product with respect to D' =
DUX, and let £ be the closed subscheme of X defined by the annihilator ideal Ann €2 ¢ (log D).

Let A be a closed subscheme of £ C (X xg X)~ satisfying the condition (A") afler Defini-
tion 4.3.2. We dentify E X x, xsx,)~ X1 with G, x, and the section X, — E X (x, xsx,)~ X1 defined
by the restriction of the log diagonal with 1x : X, — Gy, x,. Then, the intersection product

4.3.42)  ((, A : G(A) > G(87H (A NEL )

)) XxgX)™
with the log diagonal satisfies the following.

1. Assume that X, is flat over S. Then the composition A — E — (X xs X))~ satusfies the
condition (A) in Lemma 4.3.1 and the localized intersection product

(4.3.4.3)  ((AY, : G(A) = GAN Gy, xy, )

))(XIXSXI)N
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with the log diagonal X, — (X, xs X))~ 15 defined. Further, we have ¥x, js = Xy ;5N X, and the
map (4.3.4.2) 1s induced by the composition

(4 3 4 4) ((A;(;T’ ))(XIXSXI)N (’IXI)Gm.Xl .
s GA) ———— GANG, 5 ) — G (A) N Xy, s).

2. Assume that X, is a subscheme of the closed fiber Xy. Then, we have X, C L /s and the

map on the graded quotients (( , Al)Zg))(XxSX)“ : GriG(A) — GrffnG(S_l(A) N X ss) induced
by (4.3.4.2) 1s induced by the usual intersection product

(. 1xy)

(4.3.4.5) G(A) —5 GO '(A) NX)).

Proof. — 1. By Lemma 4.2.6, we have an exact sequence 0 — Q;ws(long) —
Qy s(logD) ® Ox, — Ox, — 0. This defines an isomorphism QY )s(logDy) —
Q5 s(logD’) ® Ox,. Hence, we have Xy, s = Eég/s N X;. Thus the condition (A’) for
A — (X xg X)™ implies the condition (A) for A — (X; xg X;)™.

By Lemma 4.1.6.1, E is a Cartier divisor of (X x5 X)~ and we have (E, A;’g)(XXSX)s
= [Al;é‘;g]. We apply Lemma 3.3.4 to the diagram

A «— ANX,

! l

E «— X

! l

XK xgX)¥ «— X

Then, the map (4.3.4.2) is the same as ((, 1x,))e: G(A) — G 'A)N Yx,/s). Further
we apply Lemma 3.3.6 by taking the upper line in the Cartesian diagram

E D E— Gm,Xl D E— Xl

l l

X xs X7 — X

as X <= W < W’ on the lower line in the diagram of Lemma 3.3.6. Then the map
((,1x)e: GAA) —> G '(A) N Yx,s) 1s equal to the composition of ((, [G,,x, )k :
GA) - GAAN Gm-,EXI s) with the usual intersection product ( ,Xl)Gmel: GA N
G, 5y, 5) = G(87'(A) N Xx,ss). Since E is flat over (X; xg X;)~, the first map
(L [Gux, D)e: GA) — GAN Gm,le/s) is the same as (4.3.4.3)

2. We show X, C X /s Since X; is assumed irreducible, it suffices to show that
the generic point &, of X is contained in Xy . It suffices to consider the case where
the complement X \ Xy ¢ is dense. Then, we have an exact sequence 0 — Ox, —
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Q;(/S(logD’) — Q;(/S(logD’/logF) — 0 on a neighborhood &,. By the assumption that
the complement X\ ¢ ¢ is dense, the free part of the module QL ss(logD")g, over the dis-
crete valuation ring Ox ¢, has rank n — 1. Since it is not torsion free, the smallest number
of generators is n. Hence §) is contained in g ¢ as required.

We apply Lemma 3.3.5 by taking E — (X xg X)~ « Al;g as V= X <~ W.
Then, the localized intersection product (( , A;‘;g))(XXSX)w is equal to the usual intersec-
tion product (, ((E, Algég))(Xx «x)~)E- By the excess intersection formula (3.3.5.1), we have
(B, AZ)) xxsxr~ = oMy xxexy~.r) N [Xil. By Lemma 4.2.7.1, the right hand side is
equal to Ix,. Hence, the assertion follows. U

Proposition 4.3.5. —  Let X be a regular flat separated scheme of finite type over S and
D C X be a divisor with simple normal crossings. We put U = X\ D. Let A be a closed subscheme of
(X xs X)™ satisfying the condition (A') after Definition 4.3.2 and the following condition:

(B) For each wrreducible component D; of D, we regard G,,p, as a closed subscheme of
(X x5 X)™ as i (4.3.4.1). Then, there exists an integer [; > 1 such that the intersec-
tion AN G, p, is supported on the subscheme w;, n, C G, p,.

We put A° = AN (U x5 U). Then, there exists a unique map GrfG(AO) — Grf_ﬂG((S*1 AN
Xx/s), also denoted by ((, Al;zg)), that makes the diagram

log

(A7)

(4.3.5.1) Grl'G(A) Gr,_,G(87'(A) N Zxs)
restriction \L /
GriG(A°)
commutative.

Progf: — For each irreducible component D; of D, let E; be its inverse image by
either of the two projections (X xg X)” — X and we put A, = AN E,. By the exact
sequence P, GrfG(Al-) — Grf GA) —> Grf G(A°) — 0, it suffices to show that the com-
position of

((,A%%))

(4.3.5.2) GriG(A) —— GriG(A) —— Gl G(57'(A) N Zxys)

o—n

is the zero map for each .
First, we consider the case where D; is flat over S. By Lemma 4.3.4.1, the compo-
sition of (4.3.5.2) 1s induced by the composition of

log
(( ,A])I.))(DiXSDi)N ’le) m,D;

( G
GA) ——— G(Aime,ZDi/s) EEEE— G((S_I(Ai)mED,/S)-
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Hence, it suffices to show the second map is the zero-map. By the assumption (B), the
intersection A; N G, p, 1s a closed subscheme of 1, p,. Hence, if the characteristic of K is
p > 0, the assertion follows from Lemma 4.3.6 below. If the characteristic of K 1s 0, the
generic fiber Xp, 5 X5 Spec K is empty. Hence it also follows from Lemma 4.3.6 below.
Next, we consider the case where D; is a subscheme of the closed fiber Xp. In this
case, by Lemma 4.3.4.2, the composition of (4.3.5.2) is induced by the composition of

log
~A1)I-)(DZ-XFD,-)“ 1p;) mD;

(,1p;)G
GA) —— GANG,p) —— G(AiﬂAlDof).

Hence, it suffices to show the second map is the zero-map. By the assumption (B), the
assertion in this case is also reduced to the following Lemma 4.3.6.

Lemma 4.3.6. — Let D be a noetherian scheme over ¥, and | > 1 be an integer. Let A be a
closed subscheme of 1, C G,,.p. Then, the intersection product

(» Ip)e,p: GA) > G(AN1p)
with the unit section 1y C . p s the zero map.

Proof: — By replacing [ by its p-part /', we may assume that / is a power of the
characteristic p > 0 of I since uy p is a closed and open subscheme of @, p and has the
same intersection with the l-section. Further, since the closed immersion A N Ip — A
defined by a nilpotent ideal induces an isomorphism G(AN 1p) = G(A), we may assume
A is a closed subscheme of 1p. For a coherent O, ,-module F, we have

(IF) 1o)g, , = [Tor,  (F. O] = [Tor, > (F. O,,)]
=[F]1-[F]=0.

Hence the assertion follows. ]

The following Lemma, analogous to Lemma 4.3.4, will be used in the proof of
Proposition 6.1.1, which in turn will be used in the proof of a blow-up formula Proposi-
tion 6.2.1.

Lemma 4.3.7. — Let X be a regular divisor of X such that Dy = X, N D is a divisor of X4
with sumple normal crossings. Let (X xg X)™ denote the log product with respect to D and let 3x /s be
the closed subscheme of X defined by the annilulator ideal Ann 2% ;s (log D). We regard (X xs X;)™
as a closed subscheme of (X xg X)™ as i (4.3.4.1).

Let A be a closed subscheme of (X, x5 X1)™ satisfying the condition (A') after Definition 4.3.2
and let 12 (X; x5 X)” — (X xgX)™ be the closed immersion. Then, the map on the graded pieces



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 97

(4.3.7.1) ((, A : GriG(A) — Grl_ G(87'(A) N Sxys)

o—n

))(XXSX)N

induced by the intersection product with the log diagonal s computed as_follows.
1. Assume X, s flat over S. Then, we have ¥x, ;s = Xx;s N X and the map (4.3.7.1) s the
composition of

(AT ) xgX )™
F 1 F _
(4.3.7.2) Gr,GA) ——— Gro—(n—l)G(S 1(A)mle/s)

—ixoc1 (NX /x)
—_—

o—n

Gr._,G(87'(A) N =y, s).

2. Assume that X, s a subscheme of the closed fiber Xy. Then, the map on the graded pieces
induced by (4.3.7.1) s the composition of

( sAl;()g)(xl xpX1)™
F 1 F —1
4.3.7.3  CLO®W — Grl_,_,G(657'(W)

—a1(INys®O0x; > Nx; /xDx;nzy s

Gr,_,G(871(A) N Zxs).

Proof. — 1. We have shown the equality Xx, ;s = Xx/s N X at the beginning
of the proof of Lemma 4.3.4.1. By Lemma 4.1.6.1, the immersion (X; xg X;)” —
(X xg X)™ 1s a regular immersion of codimension 2. Since the excess conormal sheaf
Ker((priNx,,x ® priNx,,x)|x, = Nx,/x) 18 isomorphic to Nx, x, we have ((X; Xg
X7 A e = —a (Nx, x) N A, We apply Lemma 3.3.4 by taking (X x X)™ D
X xs X7, X DX as XDX,W>DW. Then, the map (4.3.7.1) is induced by
((, —a(Nx, ,x)N A;ﬁ?))(XIXSXW :GA) = GO '(A)N Yx,,s)- Further, it is equal to the
composition of (4.3.7.2).

2. We apply Lemma 3.3.5 by taking (X; xs X|)” = (X xs X)™ « Al;;g as V—
X <= W. Then, the map (4.3.7.1) is equal to the usual intersection product

( ’ (((X1 xs X1)7, Al;()g))(XxsX)’v)(Xlxle)”

with (X x5 X;)7, Al)’zg))(XxsX)“‘ = —q (M/X/(XXSX)”,(X1><5X1)”) N [X]. BY Lemma
4.2.7.2, the right hand side is equal to —¢; ([N,;s ® Ox, = Nx, xDxinzys N Al;f. Hence,
the assertion follows. UJ

If (X \ D)r =@, we have an alternative construction. Let A C (X xg X)~ C
(X x5 X)™ be a closed subscheme satisfying the condition (A). Then, a localized intersec-
tion product

4.3.7.4) (L AY)) et G = G(571(A) N Byys).

is defined similarly as (4.3.2.1), by Lemma 4.2.9. We show that it gives the same invariants.
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Proposition 4.3.8. — Let X be a regular flat separated scheme of finite type over S and D C X
be a divisor with simple normal crossings. We assume (X \ D)y = 0.
Then, for a closed subscheme A of (X X X)™ satisfying the condition (A), we have an equality

(( ) AI}Eg))(XxsX)” = (( ) Al;()g))(XxsX)”

of maps GriG(A) — Grk_ G(871(A) N Tx/s).

Progf: — Let W C A be an integral closed subscheme. If W is a subscheme of Al)zg,
let w: W' — W denote the identity of W. If not, let 7: W — W be the blow-up at
w'nN Al)zg. Since G(A) is generated by the classes 7, [W'] for integral closed subschemes
W of A, it suffices to show the equality (W', A%%) xxxex = (W, A%)) xxex0~-

We put T = W X xxgx~ AY,Z = Tx)s, d = dimWg + 1 and let ¢: T — X
denote the canonical map. Then, by the excess intersection formula [26, Theorem 3.4.3],
we have

4

(W' AY)) gy = Tl (=D ez, (Mg ) N [T]).

(W, Alggg))(XxsX)” = ”*((_l)d‘d;w (M/X/(XXSXV,W/) n[T]).
By the distinguished triangles

— Ox; = Ly/s(logD) — Ly/s(logD/logF) — 0,

—> M/X/(XXsX)N,\V’ e L(p*LX/S (IOgD) — NT//\V’ -,

= My xxgxy-w = Lo Lxs(logD/logF) — Ny —,

and by ¢(Ox,) N [1T'] =0, we obtain an equality cd;w (M%/(XXSX)~’W,) N1 =
cd;T, (M) xxgx)~.w) N [T']. Thus the assertion follows. U

The following Proposition shows that the localized intersection product does not
depend on the choice of the base S.

Proposition 4.3.9. — Let X be a regular flat separated scheme of finate type over S and D C X
be a divisor with normal crossings. Assume that K is a finite extension of a complete discrete valuation
Sield K and put Oxr = K' N Ox. Let A be a closed subscheme of (X xs X)™ satisfying the condition
(A) after Definition 4.3.2 with respect to S’ = Spec Ox:. Namely, we assume that 5 (A) N Tx/s
s contained in Xy.

Then, we have an inclusion Xx;s C Xx/s and an equality

(( ) Al}Eg))(XXS/X)N = (( ) Al)zg))(XXsX)N

of maps GriG(A) — Grl_ G(871(A) N Bx/s).
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Proof. — The proof is similar to that of Proposition 4.3.8. Let W C A be an integral
closed subscheme and let 7: W' — W be as in the proof of Proposition 4.3.8. We put
T =W’ X (xxsx)~ Al;;g, 7! = ¥xy, and d = dim Wy + 1. Then, by the excess intersection
formula [26, Theorem 3.4.3], we have

(W2 A%)) g = (D67, (Mg awr) N [T])

((W/, A;?g))(XXS,X)N = ﬂ*((—l)dC;;/ZT, (M;(/(XXS/X)”,W’) N [T/])'

Using the distinguished triangle Q. /s ®"Ox — Ly/s (logD) — Ly/s(logD) —, we com-
plete the proof similarly as in the proof of Proposition 4.3.8. UJ

5. Invariants of wild ramification

We keep fixing a complete discrete valuation field K with perfect residue field F of
characteristic > 0 and S = Spec Ok.

In Section 5.3, we define invariants of wild ramification for a finite étale morphism
S+ V= U of regular flat separated schemes of finite type over S, such that the generic
fiber Vx — Uk is tamely ramified with respect to K (Definition 2.4.1). The definition
uses the localized intersection product with the log diagonal constructed in Section 4.3.
The definition is extended to cover the case where U and V are not assumed regular at
the end of Section 6.2 as a consequence of the excision formula, Theorem 6.2.2. On the
counterpart for a finite étale morphism /: V — U of smooth separated schemes of finite
type over I defined in [27], we also state some complements. In Section 5.4, we establish
elementary properties of the invariants of wild ramification defined in Section 5.3. We
define the logarithmic different and the Lefschetz classes and derive their basic properties
analogous to the classical ones.

Before defining the invariants in the general case, we define and compute the loga-
rithmic different and the Lefschetz class using regular schemes containing U and V as the
complements of divisors with simple normal crossings in Section 5.1. We introduce the
target groups where the invariants of wild ramification take values as certain projective
limits with respect to the system of compactifications in Section 5.2. We also introduce in
Theorem 5.3.9 a variant that will be used in the case where K is of characteristic 0, in
Section 7.5.

5.1. Logarithmic different and the Lefschetz class. — Let Y be a regular flat separated
scheme of finite type over S = Spec Ok and V C Y be the complement of a divisor E with
simple normal crossings. Let /: V — U be a finite étale morphism of separated schemes
of finite type over S. We consider the family £ = (E;) ;| of irreducible components of E
and we assume that the closed subscheme ©¢& uY CY (Definition 2.1.2.1) is supported
on the closed fiber.
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By the assumption that V — U is finite étale, the diagonal Ay is an open and closed
subscheme of V x V. The closure A of (V xy V) \ Ay in the log product (Y XsY)™ =
(Y x5 Y)z satisfies the condition (A') after Definition 4.3.2 since £ Ju 1s the Inverse image
87'(A) by the log diagonal §: Y — (Y x5 Y)™.

We also assume that there exists a separated scheme X of finite type over S con-
taining U as the complement of a Cartier divisor and that /: V — U is extended to a
morphism f: Y — X over S satisfying /= (U) = V. Then, by Lemma 1.3.2.2, the same
A satisfies the condition (B) in Proposition 4.3.5. Thus, by applying the map (4.3.5.1), we
obtain

(((Vxu W)\ Ay, A € FoG(ZE L Y).

))(Yx sY)™

Defination 3.1.1. — Let Y be a regular flat separated scheme of finite type over S and V.C'Y
be the complement of a divisor E of Y with simple normal crossings. Let f: V — U be a finite étale
morphism of separated schemes of finite type over S.

We assume that the closed subset £ Y (Definition 2.1.2.1) defined for the family € = (Ex)jer
of wrreducible component of ¥ is supported on the closed fiber. We also assume that there exists a separated
scheme X of finite type over S containing U as the complement of a Cartier divisor and that f : V — U
is extended to a morphism [ = Y — X over S satisfying £~ (U) = V.

Then, we define the the logarithmic different Dl\?‘fU,Y e F,G(=¢ uY) by

Dl\(;?U’Y = ((V xuV \ Ay, Al{f)g))(Yst)N'

We compute the logarithmic different explicitly using regular models. It will imply
in particular (Corollary 5.1.3) that if U = Spec L and V = SpecM for finite separable
extensions L. C M of K, we have

(5.1.1.1) DlvofU’Y = lengthOMQéOM/OL(log/log) = lengthol\lﬂbm/oh —(emy,— 1)

in Z = FyG(Spec Oy/myy). Recall that lengthOMQbM ey 1s the classical different.
We consider a Cartesian diagram

V— Y

(5.1.1.2) fl lj

U — X

of regular flat separated schemes of finite type over S. Suppose that /: V — U is finite
étale and that U= X\ D and V=Y \ E are the complements of divisors D and E
with simple normal crossings respectively. Using the diagram (5.1.1.2), the logarithmic
different Dl\‘ifU’Y can be computed as follows.

We put n =dimXg + 1 =dimYg + 1. We consider the map f*Qég/S(logD) —
Q%(/S(logE) of coherent Oy-modules. Let ¥ = Xy x C Y be the closed subscheme
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defined by the annihilator Zy = Ann(Coker(J_‘*Qgi/S(logD) — Q%{/S(logE))) C Oy.
Since Y is regular, there exist a locally free Oy-module V and a surjection V —
?é/s(log E) by [15, Corollaire 2.2.7.1]. Hence, the localized Chern class C,Z(Q%(/S(log E)—
f*Q;(/S(logD))E N[Y] € FyG(Xy/x) is defined in [27, (3.24)] (cf. (3.2.3.2)).

The image of the logarithmic different D viuy € FOG(E /UY) in FoG(Xy/x) is
computed using the localized Chern class c,,(QIY/S(logE) f*Q;i/S(logD))EY/X N [Y] as
follows.

Proposition 3.1.2. — Let X and Y be regular flat separated schemes of finite type over S and
let U=X\D and V=Y \ E be the complements of divisors D C X and E. C'Y with simple
normal crossings. Let [ Y — X be a morphism over S such that f~"(U) =V and the restriction
f=flv: V= Uis finite étale.

We assume that the support T = Tyx CY of the cokernel Qi (logE)/ /'f *Q1 (logD) is
supported on the closed fiber Yy. We also assume that there exists a dense open subscheme of X smooth
over S.

Then, we have 25 uY C Zy/x and, forn=dimXx + 1,

(5.1.2.1) Dl\?fUY_( 1)"671(Q§/s(10gE) f Q; /S(IOgD)) ([Y])
n FoG(Xy/x).

Progf: — We consider the log products (X xg X)™ and (Y xg Y)™ with respect to
D and E respectively and will apply Proposition 3.4.3 to the commutative diagram

Y — Y

l l

(5.1.2.2) Y 2 (Y xsY)~

fl lgxfr
X X, X xsX)™

where the upper square and the tall rectangle are Cartesian. We put (Y xx Y)™ =
(Y xsY)™ X xxsx)~ Ay Since the cokernel Coker@r* Qé{/% (logD)) — QY/§ (logE)) is the
conormal sheaf NY/(YXXY)~ the restriction of the log diagonal map dy: Y — (Y xx Y)~
to the complement V= Y \ ¥ is an open immersion. Hence the complement A =
Y xxY)™\ A~ is a closed subset of (Y x5 Y)™ such that §7'(A) = Yy/x. Since A
contains (V Xy V) \ Ay as a subset, we have an inclusion Ef; Y C Xyx.

We define a bounded complex C of Oy y)~-modules fitting in the distinguished
triangle — C — L(f Xf)N*O log —> @ abs = as in (3.4.0.3). We have AN (V x5 V) =
(V xy V) \ Ay and the restrlctlon map F,G(A) — F,G((V xy V) \ Ay) sends [C]
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to [(V xu V) \ Ay]. Hence, by Proposition 4.3.5, the image of the logarithmic differ-
ent DlVoy‘fU,Y by the map F OG(Eé /UY) — FyG(Zy/x) is the localized intersection product

(([C1. AV (vxsvy-

In order to apply Proposition 3.4.3 to the diagram (5.1.2.2), we check that its as-
sumption is satisfied. For a point y of the closed fiber of Y, we have an open neighborhood
V' of y, an open neighborhood U’ of £(») and a Cartesian diagram

V — Q

Lo

U —— P
as in Lemma 4.1.3. Then, in the diagram

V —— (V' x5Y)" —> (QxsY)~

! ! l

U —— (U xsX)” —— (PxsX)™,

the right square is Cartesian and the horizontal arrows in the right square are regular
immersions of codimension 1. The compositions of the horizontal arrows are both sec-
tions of smooth morphisms of relative dimension n and hence are regular immersions of
codimension n. Thus the condition (3.4.3.3) is satisfied.

By the assumption that there exists a dense open subscheme of X smooth
over S, the excess conormal complexes My v, v~y = My/wxsv)~ = Ly/s(logE) and
MY xxex~y = L™ Mxjxxsx)~ = Lf "L /s(log D) are quasi-isomorphic to Q%(/S(logE)
and f* Q3 ss(log D) respectively. Applying Proposition 3.4.3.3 to the diagram

Y —> (YxsY)™
X — X xgX)™
and to T =W =Y, we obtain
(((F x N A = [AV], AFH)) 4oy
= [LA"f*Qy s(logD) = LA"Qy <(logE)]

in FyG(Xy/x). The right hand side is equal to the image of the localized Chern class
cn(Qﬁl{/S(log E) —f*Q;i/S(logD)))j N ([Y]) in FyG(Zy,x) by Proposition 3.2.4. ]

Corollary 5.1.3. — Let . C M be finite separable extensions of K and put U = Spec L.
and V = Spec M. Let X and Y be the normalizations of S in U and V respectively. Then, we have
lo
DV?U,Y = lengthOI\IQbM/OL (log/log) € Z (5.1.1.1).
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For an automorphism of a scheme over S, we define the Lefschetz class as the
intersection product of the graph with the log diagonal as follows.

Defination 5.1.4. — Let X be a regular flat separated scheme of finite type over S and U =
X\ D be the complement of a divisor D with simple normal crossings. Let o be an automorphism of X
over S such that o (U) = U and U° = ().

1. Let Ty C (X x5 X)™ be the schematic closure of the graph Iy C U X U of the restriction
of 0. We define the logarithmic fixed part X{ C X by

log

XO'

_ log ~
og = Ax X xxsx~ Lo

We assume that the intersection Xy, N Xx s with the support Xx s of $2% ;s (logD) s supported in

the closed fiber set-theoretically. We call the logarithmic intersection product

((Tor AY)) s~ € FoG (X7, N Tss)

the logarithmic Lefschetz class.

2. We say o s admissible if the following condition is satisfied: For each irreducible component
D; of D, we have either o (D;) = D; or o (D;) N D; = 0.

We compute the logarithmic Lefschetz class using the Segre classes [10, 4.2], under
a slightly weaker assumption than in [26, Lemma 5.4.8].

Lemma 5.1.5. — Let X be a regular flat separated scheme of finite type over S and U = X\ D
be the complement of a divisor D with sumple normal crossings. Let o be an automorphism of X over S
such that o (U) = U and U° = @. We assume o is admissible. Let Dy, ..., D,, be the trreducible
components of D and we put U=X \U i (D D,p Di- Assume further that there exists a dense open
scheme of X smooth over S. Then,

L. Let v : U — X xg X be the restriction of y = (1, 0) : X — X x5 X. Then it induces
a closed immersion y : U — (X x X)~. The image ﬁ, = )7(6) C (X xg X))~ 15 the schematic
closure of T'y C U xg U.

2. Assume that the generic fiber X7,  is emply and let s(XY,,, X) denote the Segre class of

C X. We putn = dim X 4 1. Then the log Lefschetz class (T, A®)) xxex~ € FoG(X,)

log

XO'

log

is equal to the image of
{e(@x)s (logD))* n S(Xﬁ)g’ X)} i
=Y (=165 (ogD))s,—i(X7,. X).
i=0

In particular, of the loganithmuc fixed part X3, us a Cartier divisor of X, we have

((FU’ Al;i)g))(Xxsxr = {C(Q;(/S(logD))* N (1 + Xﬁ)g)_l N [Xﬁ)g]}dimo‘
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Proof.: — 1. We set (X xsX)! =X xg X — U(U)DOD _yD; x D;. By the definition of

(X xsX)™, we have pr| "D, = pry "D, in (X xsX)~ for every irreducible Component
D, of D. Hence (X x5 X)™ is a scheme over (X xg X)". By the definition of U it is the
mverse image of (X Xg X)? € X x5 X by the map y : X = X x5 X. Hence its restriction
vi: U— (X x5 X)%is a closed immersion.

By the assumption that o is admissible, the map yg: U — (X x5 X)° induces a
map y: U— (X x5 X)™. Since yg: U— (X x5 X)"is a closed immersion, the induced
map y : U— (X x5 X)™ is also a closed immersion.

2. By the assumption that X7,  is empty, the underlying set of X{  is a sub-
set of the closed fiber Xy. We apply [26, Corollary 3.4.6], by taking X — (X X5
X)~ —>XtobeV—>X—>SanXmog—>I‘ - X xsX)"tobe T—-W— X in

[26, Corollary 3.4.6]. Since Mx/xxsx)~ = QX/B(logD), we obtain ((X, r o)) (XxsX)~ =
{e(Q2% g(logD))* N s(Xlog, r o) }aimo. Since the open immersion F — X induces the

identity on X8, we have S(Xlog, I, = s(XIOg, Ap) = S(Xlog, X). Thus the assertion is
proved. U

Corollary 5.1.6. — Assume further that o is of finite order and let i be an integer prime to the
order of o Then, we have (Ty, AOE)) = ((Tyi, ALE)).
XO'

og? the assertion follows from Lemma 5.1.5.2. (l

Proof: — Since XY

log =

For 1solated singular points, we have the following formula similarly as [27,
Lemma 3.4.14].

Proposition 3.1.7. — Let X be a regular flat separated scheme of finite type over S and o be
an automorphism of X over S. Assume that there exists a dense open subscheme of X smooth over S. Let
x € X be a closed point in the closed fiber and assume that the fixed part X° s set-theoretically equal to
the set {x}.

Let f: X' — X be the blow-up at x and D be the exceptional divisor. Let (X' x5 X')~
denote the log product with respect to D and T, C (X x5 X))~ be the proper transform of the graph
'y C X xs X of 0. Then, we have

(6.1.7.1)  £((Tor Ax)) sorerr- = [Oxe]1 =[]
where [Oxo ] = length Oxo - [x].

Proof. — We apply Lemma 5.1.5 to the automorphism o of X’ admissible with
respect to the exceptional divisor D. By the exact sequence 0 — €], e Q4 xs(logD) ®

res

Op — Op — 0, the total Chern class satisfies c(QX, J(logD)) = c(QD/F) =c(O(-1)" =
(1 — H)" on D where H denote the class of the hyperplane of the projective space D.
Hence, by Lemma 5.1.5, we obtain

((FJ, AX,))(X/XSX’)” = {(1 +H)"s (X{gg’ X/)}dimO'
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Let 7 C Ox and J C Ox denote the ideal sheaf of X° and the ideal sheaf of
Xz Tespectively. Then, since Z is generated by o' (4) — 4 for a minimal system (%) of
generators of the maximal ideal m,, we compute /*Z = J - Ip. This means that X[ is
the residual scheme [10, Definition 9.2.1] to the Cartier divisor D in the inverse image
S*(X?). Hence by [10, Proposition 9.2], it implies that the Segre class satisfies

s(f* (Xg)’ X/)dimO =H""+ {(1 + H)"s(X{gg, X/) }dimO
since the self intersection D - D 1s —H. Thus, we obtain
ﬂ((ﬁ” AX’))(X'XSX'r :ﬂs(f* (XG)’ X/)dimO _f*Hn_l'

By fis(F*(X?), X dimo = $(X7, X)aimo = [X] [10, Proposition 4.2(2)] and £LH"' = [«],
the assertion follows. 0

In the case X = Spec Oy, for a finite separable extension L of K, we obtain the
following.

Corollary 5.1.8. — Let L be a finite separable extension of K and o be a non-trivial automor-
phism of L over K. We put X = Spec Oy, and let ], C Oy, be the ideal generated by o (a) — a_for
a€Opando(b)/b—1 forbe O and b # 0. Then, we have

(T Al;i)g))o(xsxr = lengthp, O /J,-

5.2. The target groups. — Let f: V — U be a finite étale morphism of separated
schemes of finite type over S = Spec Ok. In this subsection, we define an abelian group
FoG(dy,uW) and a Q-vector space FyG(dy,uyW)q for a separated scheme W of finite type
over V. Assuming U and V are regular, for a finite étale scheme V' over V, invariants of
wild ramification of V' — U will be defined as elements of the group FyG(dyv,uV')q in
Section 5.4. Without assuming the regularity of U and V, the definition is extended at
the end of Section 6.2 as a consequence of the excision formula, Theorem 6.2.2.

Let f: V — U be a morphism of separated schemes of finite type over S. Recall
that an open immersion j: V — Y is schematically dense if the canonical map Oy —
J«Oy is an injection. We define a category Cy_,y of compactifications of /: V — U as
follows:

e An object is a morphism f: Y — X of proper schemes over S such that X and Y
contain U and V respectively as schematically dense open subschemes and that
the diagram

V— Y

(5.2.0.1) fl l;

U —— X

1S commutative.
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e A morphism (g,4): (/1 Y — X)) = (f: Y = X) is a pair of morphisms
g: X' = Xand #: Y — Y of schemes over S extending the identities of U and
of V such that the diagram

Y’%X’

(5.2.0.2) ’ll l
y L

1S commutative.

Lemma 5.2.1. — Let f: V — U be a morphism of separated schemes of finite type over S.

1. The category Cy . s cofiltered and in particular non-empty.

2. If f: V — U is finite flat, then the objects [ : Y — X such that the diagram (5.2.0.1) is
Cartesian and that | are finite flat are cofinal in the category Cy_ .

3. If'V is a G-torsor over U for a finite group G, the objects f : X — X such that the diagram
(5.2.0.1) is Cartesian, that [ are finite flat and that the action of G is extended to an action on'Y over
X are cofinal in the category Cy_y.

Proof. — 1. By Nagata’s embedding theorem [31], there exists a proper scheme X
over S containing U as an open subscheme. After replacing X by the schematic closure of
U, the open subscheme U is schematically dense in X. Further by Nagata’s embedding
theorem [31], there exists a proper scheme Y over X containing V as an open subscheme.
After replacing Y by the schematic closure of V as above, we obtain an object Y — X of
CV—>U-

Let Y - X and Y — X’ be objects of Cy_ . If there exists a map (Y — X) —
(Y — X) of Cy_vy, it is unique since V is assumed schematically dense. Let X” be the
schematic closure of U in X xg X" and Y” be the schematic closure of V in X" Xxy.x
(Y X5 Y'). Then Y’ — X" is an object of Cy_,y and there exist unique maps (Y —
XY= (Y —->X)and (Y - X") = (Y - X)).

2. Let Y — X be an object of Cy_y. Since V is schematically dense in Y, the
diagram (5.2.0.1) is Cartesian. Then it follows from [36, 5.7.10] that there exists a blow-
up X’ — X inducing an isomorphism U xx X’ — U such that the proper transform Y’
of Y is finite flat over X'. After replacing X by the schematic closure of U, the immersion
U — X is schematically dense. Since Y is flat over X, the immersion V — Y is also
schematically dense.

3. Let Y — X be an object of Cy_.y. By replacing Y by the schematic closure of
the diagonal image of V in the fibered product [] ., Y over X, we may assume that
Y carries an action of G. Then Y’ constructed in the proof of 2 also carries an action
of G. O

Recall that for an object Y of the category Cy/s of compactifications of V over
S, the wild ramification locus ¥y,uY C Y is defined as a closed subscheme in Definition



RAMIFICATION THEORY FOR VARIETIES OVER A LOCAL FIELD 107

2.4.1. Further, if V is schematically dense in Y, the closed subsets Xy,u'Y form a projective
system by Lemma 2.1.3.

Definition 3.2.2. — Let f: V — U be a finile étale morphism of separated schemes of finite
lype over S.
1. We define an abelian group ¥oG(dv,uU) and a Q-vector space FoG(dy,uU)q as the

nverse limats:

FGOyuU) =  lim  FG(/(SyuY)
(f: Y—>X)eCy—u
FG@vule= lim  (FG(/(ZyuY))®2Q)

(f: Y=>X)eCy_u

with respect to the proper push-forward maps.
2. Let W be a separated scheme of finile type over V. We define an abelian group ¥oG(dy,uW)
and a Q-vector space FoG(dv,uW)q as the inverse limats:

FoG(0y,uW) = 1<1r_n FoG(ZyuY xy Z)
(Z—=Y)eCw_v
FoG(0yv,uW)g = l(lr_n (FOG(EV/UY Xy 7Z) @z Q,)

(Z—=Y)eCwv

with respect to the proper push-forward maps.

In the rest of this subsection, we will establish properties for FyG(dy,uW). The
same proof also works for FoG(dyv,uW)g.
For an object Z — Y of Cy_,v, we have a canonical map

pry: FOG(B\//UW) — FQG(ZV/UY Xy Z)

Since we will assume that the covering of the generic fibers Vg — Uk i1s tamely
ramified with respect to K in the definition of the invariants in the next subsection, the
group FyG(dy,uW) is generated by the classes supported on the closed fibers, in practice.
The assumption is always satisfied if K is of characteristic 0, by Corollary 2.4.5.

Lemma 5.2.3. — Let

U A% w

(5.2.3.1) l l lg

U A% A
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be a commultative diagram of separated schemes of finite type over S such that the left square is Cartesian
and that the map N — U s finite étale. Then, the push-forward maps induce

g FoG(av//U/W/) - FOG(E)V/UW)a

(5.2.3.2) ,
F4 FOG(BV//U/W )Q — FoG(aV/UW)Q.

If g 1s proper, we write g, = g in (5.2.3.2).
Proof: — We define a category Cyw_v//w—v consisting of commutative diagrams

Y «—— 7/

1

Y «— 7

of schemes over S compatible with the right square of (5.2.3.1) such that Z — Y
and Z' — Y’ are objects of Cyw_v and of Cy . respectively. By Lemma 2.1.3, for
an object of Cyw_v w—v we have /_Z(EV//UrY/ ) C Xy,uY and the push-forward map
& FoG(ZvuY xy Z') = FoG(Zy,uY Xy Z) is defined. Similarly as in Lemma 5.2.1,
the image of Cw_v/ w-v in Cyw_yv is cofinal. Hence the map g: F,G(dyv,uW') —
FoG(0y,uW) is defined as the limit. The map g: FoG(3yv,uW)g — FoG(dy,uW)q is
defined similarly. ]

Lemma 3.2.4. — Let [ : V — U be a finile élale morphism of separated schemes of finite type
over S and let g: W' — W be a finite flat morphism of separated schemes of finite type over V.
1. The pull-back maps induce a map

& FoG(0v,uW) = FoG(dv,uW').

2. Assume that g: W' — W is of degree d. Then, the composition g, o g*: FoG(dy,uW) —
FoG(0v,uW) is multiplication by d.

3. Assume that W' s a G-torsor over W jfor a finite group G. Then, the composition g* o
gt FoG(ay,uW') — FoG(3y,uW') isequal to ) 0*. Consequently, g*: FoG(0y,uW)q —
FoG(0v,uW')q is an isomorphism to the G-fixed pan.

Progf. — 1. By Lemma 5.2.1.2, it suffices to show the following: Let (%, %) :
((@,dy): (Zy = Y)—> (Z; = Y)) = ((g,idy): (Z—Y) = (Z—Y)) be a morphism
in the category Cw_v,w—v defined in the proof of Lemma 5.2.3 such that g,: Z| — Z,
and g: Z' — Z are finite flat and that the maps W — W x, Z| and W' — W x, Z' are
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isomorphisms. Then, the diagram

FoG(EV/UY Xy Zl) L) FoG(EV/UY Xy Z/l)

h*l lh;
FoG(SyuY xyZ) ——s FyG(SyuY xy Z)

1s commutative.

Since the diagram is commutative if Z| =7’ x, Z,, we may assume £ is the iden-
tity. Let z € Xy,uY Xy Z be a closed point. Then since the base changes of the finite
flat morphisms Z' — Z and Z| — Z, = Z to the henselization are decomposed into
the disjoint unions of the spectra of local rings, the class g*[z] = [g7'(2)] is equal to
K (gf[z]) = h;([gl_l(z)]). Hence the assertion follows.

2. By Lemma 5.2.1.2, it suffices to consider objects g: Z' — Z of Cyy_\ such that g
is finite flat of degree d. Then, for a closed point z € Xy,uY Xy Z, we have g,g*[z] = d[z]
and the assertion follows.

3. Similarly as in the proof of 2, by Lemma 5.2.1.3, it suffices to consider finite flat
objects Z/ — Z of Cyy_.w such that the G-action is extended. Then, for a closed point
z€ ZyuY xy Z', we have g*g.[z] = ) ;[0 2] and the assertion follows. O

Similarly, the push-forward map
e FOG(3V/UV) - FOG(aV/UU)
and, if V is a G-torsor over U, the pull-back map
ST FoG(0y,uU) = FoG(dy,uV)

are defined. The following Lemma is proved in the same way as Lemma 5.2.4.

Lemma 5.2.5. — Letf: V — U be a finite étale morphism of separated schemes of finite type
over S and assume that V s a G-torsor over U _for a finite group G of order d.

The composition f, o [*: FoG(dv,uU) — FoG(0v,uU) is multiplication by d and
the composition f* o fi.: FoG(dy,uV) = FoG@v,uV) is equal to ) _,0*. Consequently,
S FoG(oy,uU)g — FoG(0v,uV)g is an isomorphism to the G-fixed part.

Let V' — V — U be finite étale morphisms of separated schemes of finite type
over S. Then, for an object g: Y — Y of Cy_y, we have an inclusion Xy Y C
gt (2v,uY) by Lemma 2.1.3. Hence, for a separated scheme W of finite type over V', a

canonical map
(5.2.5.1> FoG(aV/UW) — FOG(BV//UW)
1s defined.
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Similarly, let V.— U — U’ be finite étale morphisms of separated schemes of finite
type over S. Then, for an object Y of Cy/s, we have an inclusion Zv,uY C Zy,iY by
Lemma 2.1.3. Hence, for a separated scheme W of finite type over V, a canonical map

(5.2.5.2) FoG(3y,uW) = FoG(3y,0W)

1s defined.
We introduce a variant.

Defination 5.2.6. — Let U be a separated scheme of finite type over S and Cy s be the category
of compactifications defined in the beginning of Section 2.3.

1. We define an abelian group ¥oG(9pU) and a Q-vector space ¥oG(0gU)q as the inverse
limats:

FG@3U) = lim FyG(X x5 F),
XECU/5

FoG@0rU)g = lim (FiG(X xsF) ®2 Q)

XECU/S

with respect to the proper push-forward maps.
2. For a morphism f : NV — U of separated schemes of finite type over S, we define a map

St FoG(0rV) — FyG(0rU)

to be the limit of the push-forward maps.
If [ s proper, we wnite f, = f.

Let f: V— U be a finite étale morphism of separated schemes of finite type over
S such that the generic fiber fk: Vk — Uk is tamely ramified with respect to K. Then,
the objects Y of the category Cy,s of compactifications of V satisfying set-theoretical
inclusions Xyv,uY C Yy are cofinal in Cy/s. Hence, we have a canonical map

(5.2.6.1)  F,G(yuV) — FoG(@V).

5.3. Definition of mvariants of wild ramification. — In this subsection, we define invari-
ants of wild ramification without assuming the regularity of compactification.
First, we recall the existence of an alteration.

Lemma 5.3.1 ([6, Theorem 6.5]). — Let X be a flat separated scheme of finite type over
S = Spec Ok and U C X be a dense open subscheme. Then, there exist a scheme Z. over S and a
morphism h: 7. — X over S satisfying the _following conditions:

(5.3.1.1) The scheme Z. is regular flat separated of finite type over S and W = h~"(U) is the
complement of a divisor D with simple normal crossings.
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(5.3.1.2) The morphism h : 7. — X is proper, surjective and generically finile.

We give some sufficient conditions for simultaneous good alterations for a scheme
Y and for a weakly semi-stable scheme Y" over Y. This will be used in Proposition 6.3.2.

Corollary 5.3.2. — Let' Y be a flat separated scheme of finite type over S and V- C 'Y be a dense
open subscheme. Let Y' — Y be a weakly semi-stable scheme such that the base change Y\, =Y’ Xy 'V
us smooth over V. We assume that either of the following conditions s satisfied:

(5.3.2.1a) Y — Y s a curve.

(5.3.2.1b) There exist a morphism go: Zo — Y of schemes over S satisfying the conditions
(5.3.1.1) and (5.3.1.2) with X and h replaced by Y and gy and a log blow-up
2y — Y' Xy Zy inducing an 1somorphism 2, Xz, Wy — Y' xy W where
Wo =g, ' (V). Further, 7}, — 7., is weakly strictly semi-stable and satisfies the
condition (1.2.3.1) with X — S replaced by Z;; — Z,.

Then, there exist a regular flat scheme Z. over S, a proper surjective and generically finite mor-
phismg: Z.— Y and a log blow-up 7/ — Y' xy Z satisfying the following conditions: The inverse
image W = g~ (V) is the complement of a divisor Dy with simple normal crossings, the induced map
7! x; W — Y’ xy W is an isomorphism, the map 7 — 7. is weakly strictly semi-stable, the scheme
7! s regular and the divisor 7! x 7 Dy, has simple normal crossings.

Only the case (5.3.2.1a) will be used in the proof of the conductor formula.

Progf. — First, we consider the case where Y’ is a curve over Y. By replacing Y
by a finite covering obtained by adjoining some square roots, we may assume that Y
satisfies the condition (1.1.4.1) in Lemma 1.1.4. By Lemma 5.3.1, there exist a regular
flat scheme Z over S, a proper surjective and generically finite morphism g: Z — Y such
that inverse image W = g~ ' (V) is the complement of a divisor Dy with simple normal
crossings. Then, it suffices to apply Lemmas 1.1.4 and 1.2.2.

If (5.3.2.1b) is satisfied, it suffices to apply Lemma 1.2.3. U

Proposition 3.3.3. — Let f: V — U be a finite étale morphism of regular flat separated
schemes of finite type over S. Let Y be a flat separated scheme of finite type over S containing V' as an open
subscheme and let D = (D;);e1 be a finite family of Cartier divisors of Y satisfying V.= \ |, D;
and E%UYK =0. Let Ap C (Y xsY)p denote the closure (V Xy V' \ Ay).

Let
y <&z 1L x
(5.3.3.1) UT UT T“
V<< w-svu

be a Cartesian diagram of separated scheme of finite type over S satisfying the following conditions:
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(5.3.3.1a) The scheme Z. 1s regular and flat over S and W is the complement of a divisor D
with sitmple normal crossings.
(5.3.3.1b) The scheme X contains U as the complement of a Cartier divisor B and we have

h=fog.

Let (Z xx 2)~ C (L x5 Z)" be the log products defined by the family (D)); of irreducible
components of the complement 7.\ W and by B C X (5.3.3.1b). Let A C (Z xXg 7))~ denote the
intersection (g X g)~ "' (Ap) N (Z xx Z)™.

We put n = dimZ. Then, there exists a unique map

((,A%)): GrIG(W xu WA W xy W) — Grl_ G(ZD,,Y xv Z)
that makes the diagram
(A7)
GriG(W xy W\ W xy W) L GESLY xy 2Z)
<5.3.3.2> restriction T
(( ,A!/(jg))axszv

GriG(A)
commulative.

In the characterization of the map (( ,Al;g)): GrfG(W Xy WAW xy W) -

G(EWUY XyZ)1in (5.3.3.2), we may replace A by the closure of W xy W\ W xy W.

Since the definition of the log product (Z xx Z)~ involves also the Cartier divisor
B C X it could be better denoted by (Z xx 7). However, since we always consider the
log product with B as long as the base is X, we will use the notation (Z xx Z)".

Proof. — We show that the condition (A') after Definition 4.3.2 and (B) in Propo-
sition 4.3.5 are satisfied. By the assumption that the generic fiber of E%?/UY =Ap N
Alé’g is empty, the intersection A N A;Og CExo '"(ApnN Alyog) is supported on the
closed fiber. Hence, the condition (A’) after Definition 4.3.2 is satisfied and the map
((, Alnq))uxsl)w' G(A) — G(EWUY Xy Z) is defined.

Let (D)); be the irreducible components of Z \ W and we put B = Z 4D'. Since
W = A~ (U), we have > 0 for each irreducible component D!. By Lemma 1 3.2.2,
the intersection AN G, o C (Zxx7)"NG,, D! is a closed subscheme of Mo, for each
irreducible component D’ Hence the condltlon (B) in Proposition 4.3.5 1s also satisfied.
Since the intersection A° ANW xy W) is equal to W xy W\ W xy W, there exists
a unique map ((, Alog)) GrFG(W Xy WAW xy W) - Gr._nG(ZV/UY Xy 7)) making
the diagram (5.3.3.2) commutative by Proposition 4.3.5. 0J

The map ((, AIZOg)) is compatible with the pull-back as follows.
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Corollary 5.3.4. — We keep the notation in Proposition 5.3.3. Further, let 7" be a regular
separated scheme of finite type over S and 7t = 7! — 7. be a morphism over S such that W' = 7t~ (W)
is the complement of a divisor with simple normal crossings.

We assume dim Zi, + 1 = dim Zg + 1 = n. Then, we have a commutative diagram

¥ A% g >
GrIGW xu WA\W xy W) —~5 Grf_ G(SD,Y xy 2)
<5.3.4.1) (ﬂxn)*l ln*
(.AD%)

Gr,G(W' xy WAW xy W) —— Gr,_ G(Z7,Y xy Z)).
Progf: — It suffices to apply Lemma 4.3.3.1. UJ

We introduce a category of alterations. Let /: V — U be a proper morphism of
separated reduced schemes of finite type over S. We define a category Ay _,y of alterations
as follows:

e An object is a proper, surjective and generically finite morphism g: Z — Y of
proper schemes over S such that Y contains V as a schematically dense open
subscheme satisfying the following conditions:

(5.3.5.1a) The scheme Z is regular and flat over S and W = g~ (V) is the com-
plement of a divisor D with simple normal crossings. There exists a
dense open subscheme V of V such that 7' (V) — V, is finite flat
of constant rank.

(5.3.5.1b) There exists a proper scheme X over S containing U as the comple-
ment of a Cartier divisor B and a Cartesian diagram

W — Z
(5.3.5.1) fogl l;,
U — X
of schemes over S where g: W — V is the restriction of g: Z — Y.
e A morphism (7,¢): (¢: Z' = Y') = (g: Z — Y) is a pair of a proper, sur-

jective and generically finite morphism 7: Z' — Z over S and a morphism
®: Y — Y of schemes over S such that the diagram

=/

D

7 Y \Y%
(5.3.5.2) ﬁl l(p H
7 Loy <2 v

1s commutative and that there exists a dense open subscheme Z; of Z such that
7~ (Zy) = 7, is finite flat of constant rank.
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Lemma 5.3.5. — Let f: V — U be a proper, surjective and generically finite morphism of
separated schemes of finite type over S.

1. For an object X of the category Cv s of compactifications containing V as a schematically dense
open subscheme, there exists an object g: 7. — Y of the category Ay _.v of alterations.

2. The category Av_.v is cofiltered.

Progf- — 1. By Nagata’s embedding theorem [31], there exists a proper scheme X
over S containing U as an open subscheme. By replacing X by a blow-up at the comple-
ment X \ U if necessary, we may assume U C X is the complement of a Cartier divisor B.
By replacing Y by the closure of the graph I'r C X X5 Y, we may assume there exists
a morphism f: Y — X such that f/~'(U) =V and f|y = /. Then, it suffices to apply
Lemma 5.3.1 to the open immersion V — Y and to take some disjoint union of con-
nected component.

2. It suffices to apply Lemma 5.3.1 to the open immersion W xy W' —
W xy W' CZ xg 7' and to take some disjoint union of connected component. 0J

Note that the condition (5.3.5.1b) is satisfied if we have an object f: Y — X of
Cv_u such that X contains U as the complement of a Cartier divisor B. If V— U is a
Galois covering, such an object may be constructed as follows.

Lemma 5.3.6. — Let f: NV — U be a finite étale morphism of regular separated scheme of
finite type over S and NV — Y be an open ummersion of separated schemes of finite type over S. Let
D = (D))ic1 be a finite famuly of Cartier divisors of Y such that V is the complement of the union
U1 Di. Assume that V is a G-torsor over U and that the action of G is extended to Y and on D.
Assume further that the action of G on'Y s admussible in the sense that the quotient X =Y /G 1s defined
as a scheme.

Then, the canonical map [ : Y — X is finile, the quotient X is separated of finite type over S
and there exists a Cartier divisor B of X such that the complement is U.

Progf- — It suffices to show the existence of B. By the assumption the sum D =
> . D;is stable by the action of G and V=Y \ D. The norm B of D is defined as a Cartier
divisor of X since Ox — f,Oy is injective. Since the inverse image of the complement
X\ BisV, we obtain U=X\ B. 0]

Let f: V— U be a finite étale morphism of regular separated schemes of finite
type over S. For a morphism g': W — V' of regular schemes of finite type over V, the
pull-back map

(¢ x &) GFG(V xu V\ V xy V') = G GW xy W\ W xy W)

by g x g': W xsW— V' x5 V' is defined by Corollary 4.1.5 and Lemma 3.1.4.
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Theorem 5.3.7. — Let f: V — U be a finite étale morphism of regular separated schemes
of finite type over S = Spec O such that Ux — Vi is tamely ramified with respect to K. Let V' be
a regular flat scheme of finite type over S and N' — NV be a proper morphism over S. We assume that
dim Vg = dim Vi and put n = dim Vg + 1.

Then, there exists a unique map

(5.3.7.1> (( s AV/))IOgZ GI‘SG(V/ Xyu vV \ Vv Xy V/) — FQG(EJV/UV’)Q_

satisfying the following property:

For an object Y of Cy s, a finite family D of Cartier divisors of Y such that Xy ,vY = E\?/UY
(Definition 2.4.1.1), an object Y — Y of Cyr—v and an object g : 7. — Y' of Avr_v such that g
is generically of constant degree [W : V'], the diagram

(.AV)

GI' GV xy V\ V' xy V) FoG(3vu Vg
(¢ xg)* \L Pry’
<5.3.7.2> GriG(W XUW\W Xy W) FoG(Zv/UY Xy Y/)Q

1 =/
\ W:v778%
((,A®)

FoG(ZvuY xy Z)

is commutative, where g : W =g~ (V') — V' is the restriction of g : 7. — Y.

Progf. — By the remark after Definition 2.4.1, there exist an object Y of Cy/s and
a finite family D of Cartier divisors of Y such that Xy,uY = Z\?/UY. Further since Cy/_v
is non-empty, there exist an object Y — Y of Cy»—yv and an object g': Z — Y’ of Ay'_y
by Lemma 5.3.5.1. By the definition of FyG(dy,;V')g as the projective limit, it suffices to
show that the composition of the lower maps in the diagram (5.3.7.2) is independent of
the choice of an object g': Z — Y’ of Ay .y and that the compositions form an inverse
system with respect to objects Y — Y of Cy/_,v.

The categories Cy_yv and Ay _y are cofiltered by Lemmas 5.2.1.1 and 5.3.5.2.
Hence, it suffices to show that the diagram

(rxm)*

GI‘SG(W XUW\W XV’W) E— GI‘}:G(Wl Xyu W] \W1 ><VW1)

« ,A‘Z"g»l l(( AF)

(5.3.7.3) FoG(ZvuY xy Z) FoG(ZvuYr Xy, Zy)

1 - N
Wg’*l l W, :\;/]gl*

FoG(ZyvuY xyY)q <o FoG(ZvuY) Xy, Yo
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is commutative for morphisms (¢, ¥): (Y), = Y;) = (Y = Y) of Cyv and (77, ¢) :
@:72, - Y) > (@ 7Z—->Y) of Ay_uy where 7: W; — W denotes the restric-
tion of m: Z; — Z on the inverse image of V'. By Corollary 5.3.4, the pull-back
7 FoG(ZyuY xy Z) — FyG(Zvy,uY) Xy, Z1) makes the upper half of (5.3.7.3) into a
commutative square. On the other hand, the push-forward 7,.: FoG(Xv,0Y, Xy, Z1) =
FoG(Zv,uY xy Z) divided by the degree [Z; : Z] makes the lower half into a commu-
tative square. The composition 77, o 7* is equal to the multiplication by [R7,0, ] and
induces the multiplication by [Z, : Z] = rank(R7,O7,) on FiG(Zv,uY Xy Z). Hence,
the assertion is proved. 0J

Defination 5.3.8. — Let the notation be as in Theorem 5.3.7. We call the map
(6.3.8.1)  ((.A): Gr,G(V xu V\ V' xy V) = FyG (v V),

the logarithmic localized intersection product with the diagonal. For an object Y — Y of
Cviv, we define

(5.3.8.2) (L A5 GGV xu VAV %y V') = FoG(ZvuY xy Y'),
as the composition of (5.3.8.1) with the projection FoG(dy,u V') g — FoG(Zy,uY Xy Y')g and call
it also the logarithmic localized intersection product with the diagonal.

Since we assume that Vg — Uy is tamely ramified with respect to SpecK, the
target group FoG(dy,uV')g is generated by the classes supported on the closed fibers.
The assumption is always satisfied if K is of characteristic 0, by Corollary 2.4.5.

If V is finite étale over V, the graded piece GrfG(V’ xu V'\ V' xy V') is iden-
tified with the free abelian group Z°(V' xy V' \ V' xy V') generated by the irreducible
components of V' xy V' \ V' xy V'. Thus, in this case, the maps (5.3.8.1) and (5.3.8.2)
define

(5.3.8.3) (C, Ay)E: Z9(V xuy VAV xy V) — F()G(aV/UV/)Q,

(5.3.8.4) ((, Ay Z0(V xy VAV xy V') = FyG(SvuY xy Y/)Q-

Theorem 5.3.7 implies that, for an open and closed subscheme I of V' x V' \ V' xy V',
the logarithmic localized intersection products ((I", Ay))8 for objects Y — Y of
Cv_v such that ¢ juYk = ¥ form a projective system and defines an element of
FoG(av/UV/)Q = 1<i1’_1’lY,_>Y FOG(EV/UY Xy Y/)Q

Keep assuming V' — V is finite étale and let Y — Y be an object of Cy_,y. As-
sume that Y’ is regular and V' C Y’ is the complement of a divisor with simple normal
crossings. Assume further that there exist a proper scheme X over S containing U as the
complement of a Cartier divisor and a morphism Y’ — X extending V' — U. Then, the
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identity Y’ — Y’ is an object of Ay and, for a finite family D of Cartier divisors of Y
such that £ v Yk =Y, the diagram

70 (V’ xu V' \V xy V/) Lv))l; FoG(awUV/)

(5.3.8.5) (.AY) l l}w

FG(Z0Y xYY/)Q «—— F,G(ZyuY xYY/)Q

1s commutative. Consequently, if we assume resolution of singularities or if we assume
dim Yk < I, we do not need to introduce denominator and an integral version

(5.3.8.6) (A Z0(V xu VAV xy V') = F,G(3y,0V))

is defined as the limit of ((, A5)).

Let f: V — U be a finite étale morphism of smooth separated schemes of finite
type over I and V' be a finite étale scheme over V. Then, similarly as above, slightly
refining [27, Theorem 3.2.3], we define a map

(5.3.8.7) (2 Av)%: Z(V xu VAV xu V) = CHy (Bv/u V') o

We introduce a variant of the map (5.3.8.3) assuming K is of characteristic 0. This
variant is defined without removing the diagonal Ay C V xy V.

Theorem 5.3.9. — Assume K s of characteristic 0. Let V — U be a finite étale morphism of
smooth separated schemes of finite type over S and let Y be an object of Cys. Then, there exists a unique
map

(5.3.9.1) ((, Ay)e: Z°(V xy V) = FG(8rV) g

satisfying the following property:

For an object Y of Cy s, a finite family D of Cartier divisors of Y such that Z\%UYK =0 and
an object g: 7. — Y of Ay such that g is generically of constant degree [W : V1, there exists a map
(, Al;g)) : GrgG(W Xy W) = FoG(Z xgs Speck) that makes the diagram

log

(A7)

Gr'G(V xy V) FoG(0rV)g
(gx9* pry
(5.3.9.2) GIFG(W xu W) FoG(Y s Spec F)g

log

((,A77)
restriction ﬁf;’*

G G((Z xx 2)") FoG(Z x5 SpecF)

log
(( sAy“)%))(ZXSz)N

commutative.
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By the assumption that K is of characteristic 0, in the notation of the proof of
Proposition 5.3.3, the generic fiber Zg is smooth over K and the log product (Z xx 7)™ C
(Z x5 7))~ satisfies the condition (A') after Definition 4.3.2 with X replaced by Z. Except
this remark, the proofis the same as that of Theorem 5.3.7.

We keep assuming that K is of characteristic 0 and let f: V — U be a finite étale
morphism of regular flat separated schemes of finite type over S. Then, the maps (5.3.8.3)
and (5.3.9.1) are compatible in the sense that the diagram

hlog
200V xy V\ Ay) 225 FiG(ayuV)g

(5.3.9.3) nl lm.@l)

))leg
20V xp V) LN G0 V)e

1S commutative.

5.4. Llementary properties of the invariants of wild ramification. — The map (5.3.8.3) has
the following compatibility.

Proposition 5.4.1. — Let f: V — U be a finite étale morphism of regular schemes over S
such that the generic fiber Vx — Uk s tamely ramified with respect to K. Let V' be a finite étale scheme
over V.

1. For a finite étale morphism g: N — V', the diagram

20V xu VAV xy V)2 B G ayoV) N
(5.4.1.1) o | l¢
(C,Aym)'8
ZO(V" xu VAV 5y V') ——— FG(dvuV'),

2. Assume that the generic fiber Vi, — Ux s tamely ramified with respect to K. Then,

(L Ayr))les
_—

Z°(V" xu V' \ V" xy V) FoG(dv/uV") o

5.4.1.2) canl l(5.2.5.1)

(L, Aym)s
L

ZO (V// Xy A% \ A% Xy V//) FoG(avf/UV//)Q

s commutative.
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3. For a finite étale morphism U — U’ such that the generic fiber Vx — Uy is tamely ramified
with respect to K, the diagram

2OV xu VAV xy V) S0 |G (a0 V) N

(5.4.1.3) l l(5.2.5.2)

(. Ay))os
_

Z°(V' xu VAV xy V') FoG (v V')

15 commulalive.

Proof. — 1. By Lemma 5.2.4.2, the map g* is injective. Hence, by replacing V" if
necessary, we may assume V" is a G-torsor over V' for a finite group G. Since an object of
Ay define an object of Ay, the square with the arrow g* replaced by |G|~ g, going
the other way is commutative by the definition of the map (5.3.8.3). Since the images are
in the G-fixed part, the assertion follows from Lemma 5.2.4.3.

The rest is clear from the definition and the remark after Proposition 5.3.3. UJ

We show a compatibility with tame base change.

Corollary 5.4.2. — Let f: NV — U be a finite étale morphism of regular schemes over S
such that the generic fiber Vx — Ux s tamely ramified with respect to K. Let g: U — U be a finite
étale morphism of regular schemes over S. Let V' C'V Xy U’ be an open and closed subscheme and
g+ V' — V denote the projection.

Then, if g: U — U is tamely ramified with respect lo S, the diagram

((,Ay))8
Z°(VxyV\Ay)  ———  F,G@yvuV)g

(5.4.2.1) @xg»*l lgf*

cano(( ,Ayr))'°8

ZO(V/ X vV’ \ AV/) _— FOG(E)V/UV’)Q

s commutative.

Proof: — By Lemma 2.1.3, the canonical map FyG(dy,;/V") = FyG(dy,u V') is
defined. By Proposition 5.4.1.1 applied to V' — V =V — U, the diagram (5.4.2.1) with
Z°(V' x V'\ Ay) replaced by Z°(V' xy V' \ V' xy V') is commutative.

By the assumption that g: U — U is tamely ramified with respect to S, there
exists an object X' of the category Cy//s of compactifications of U’ and a finite family D’
of Cartier divisors X’ such that Eg//UX’ is empty. For an object Y — X' of Cy_,, the
closure of the inverse image V' xy V'\ V' xv V' of U x U\ Ay does not meet with
the log diagonal Ay in the log product (Y’ xgs Y')5, for the pull-back D’ of D. Hence,
we have ((T', Ay))*¢ = 0 in FoG (v, V) if T isin V! xy V' \ V/ x iy V.
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By the assumption V' C 'V xy U’ we have (V' x V) N (V' xy V') = Ay.. Hence

the assertion follows. 0

In the case where K is of characteristic 0, the variant defined in Theorem 5.3.9
satisfies properties analogous to Proposition 5.4.1 and Corollary 5.4.2, by the same proof.

The logarithmic different and the logarithmic Lefschetz class defined in Sec-
tion 5.1 are defined without assuming the existence of a regular model.

Definition 5.4.3. — Letf: NV — U be a finite étale morphism of regular flat separated schemes
of finute type over S such that the generic fiber Vx — Uk s tamely ramified with respect to K.
1. We call

(5.4.3.1) Dl\c,’% = ((Vxy V\ Ay, Ay)8 € FoG(yv,uV)g
the logarithmic different of V over U. We call
5.4.3.2) le?}gU :ﬂDl\cﬁfU € FyG(dy,uU)g

the logarithmic discriminant of'V over U.
2. Let o be an automorphism of V over U such that the fixed part V° is empty and let T, C
V xu 'V be the graph of o. We call

(5.4.3.3) ((Tq, Av))¢ € FyG(dvuV)g
the logarithmic Lefschetz class.

We show that the log different satisfies a chain rule and that, for a Galois covering,
the logarithmic different is the sum of Lefschetz classes.

Lemma 5.4.4. — Letf: V — U be a fimite étale morphism of regular flat separated schemes
of finte type over S such that the generic fiber Vx — Uk s tamely ramified with respect to K.

1. Let U’ be a finute étale scheme over U such that the generic fiber Uy — Ux s tamely ramified
with respect to K and let g: N — U’ be a finite étale morphism over U. Then, we have

log lo *10
(5.4..4:-].) DV/U = DV?L" +g DL"g/U

n FUG(BV/UV)Q.
2. Assume that V is a G-torsor over U for a finite group G. Then we have

(5.4.4.2) DUu= Y (Mo A

oeG, o#l

m FoG(aV/UV) Q-
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3. Assume that V 1s a G-torsor for a finite group G. Let N C G be a normal subgroup of G
and let g: N — ' be the corresponding N-torsor. Then, for an element 0’ € G' = G/N, # 1, we

have

ST Ay == Y ((Ty, Ay))"s

oeG,o>0’

wm FoG(a\//UV)Q

Proof: — 1. Tt follows from V xy VN Ay = (V x» VN Ay) L (g x 9) ' (U xy U\
Ay) and Proposition 5.4.1.1 applied to U’ xy U\ Ay

2. Clear from V xy VN Ay =[], o1 Lo

3. It follows from (g x g) "' (Ty) =] I', and Proposition 5.4.1.1. ]

oo’

Corollary 5.4.5. — Let the notation be as in Lemma 5.4.4.1. Let f: U — U denote
the morphism and assume that the map g: NV — U’ is of constant degree [V : U']. Then, for the
discriminants defined in Definition 5.4.3.1, we have

lo; s 4lo ’ lo;
(5.4.5.1) dyfo =fldyf + [V U] 45
n F()G(av/UU)Q.

Progf: — We take the push-forward of (5.4.4.1). Then, similarly as Lemma 5.2.4.2,
we obtain (5.4.5.1). U

Conjecture 3.4.6. — Let [ : N — U be a finite étale morphism of regular flat separated schemes
of finate type over S such that the generic fiber Vx — Uk s tamely ramified with respect to K. Let o be
an automorphism of 'V over U such that the fixed part V° 1s empty.

Then, for an integer @ prime to the order of o, we have

((Tq, AV = ((Tgi, Ay))*%,
Proposition 5.4.7. — Comjecture 5.4.6 s true if dim Vg < 1.

Progf: — By the resolution of singularity for two dimensional schemes, regular ob-
jects Y of the category Cy/s are cofinal in Cy/s. Further, the regular objects Y such that
the action of o is extended to an admissible action on Y are cofinal in Cy/s. Hence, the
assertion of Conjecture 5.4.6 follows from Corollary 5.1.6. O

6. Formulas for invariants of wild ramification

In this section, we establish formulas for the invariants of wild ramification defined
in the previous section. We state and prove the results for the map (5.3.8.3). However,
they also hold for the map (5.3.8.7) by the same argument.
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We prove an excision formula Theorem 6.2.2 and a blow-up formula Proposi-
tion 6.2.1 in Section 6.2. We establish some preliminary formulas in Section 6.1. In Sec-
tion 6.3, we prove a formula Proposition 6.3.2 for some semi-stable families applying the
log Lefschetz trace formula Theorem 1.4.7, which will play a crucial role in the proof of
the conductor formula.

6.1. Duvisors and projective space bundles. — The results in this subsection will be used
in the proof of the blow-up formula and of the excision formula in the next subsection. In
Propositions 6.1.1 and 6.1.2, we compute the log localized intersection product of some
classes supported on the inverse image of a divisor. In Proposition 6.1.3 and Lemma 6.1.4,
we give formulas for a projective space bundle.

We keep the notation that /: V — U denotes a finite étale morphism of regular
flat separated schemes of finite type over S and n = dim Vg + 1 and the assumption
that the generic fiber Vg — Uk is tamely ramified with respect to K (Definition 2.4.1).
Although we also state corresponding formulas for finite étale morphism f: V — U of
smooth separated schemes of finite type over F, the proof is similar and easier and will be
omitted.

We prepare to state Proposition 6.1.1. We consider a Cartesian diagram

v /5 U

6.1.0.1) gl l

VO i) UO
of regular flat separated schemes of finite type over S where f; is finite étale and the
vertical arrows are proper. We assume that the generic fiber fj x : Vox — Upk is tamely
ramified with respect to K. If the map g: V — V| is birational, the diagram

((,Ay))le
Gr'G(V xy, VAV xy, V) ———  F;G(v,u,V)g

(6.1.0.2) @xgﬁ lg*

. ((.Avy)8
Gr'G(Vo xu, Vo \ Ay,)  ——— FyG(dv, /1, Voo

1S commutative.

Proposition 6.1.1. — Let f: NV — U be a fimite étale morphism of regular flat separated
schemes of finite type over S and n = dim Vi + 1. Suppose that we have a Cartesian diagram (6.1.0.1)
such that Vo x — U s tamely ramified with respect to K.

Let Uy C U be a regular divisor and © denote the immersion Uy — U and its base changes.
Assume that either U, is a scheme over K or a scheme over ¥. We put Vi =V xy U,. Then, for
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I e GriG(Vl Xy, Vi \V1 XV, Vl), we have

— 5. ((C'y - ¢ (pr;NUl/U)’ Avl))log 2f V)= VI,K

(6.1.1.1) (T, AY))E=1 i
by — (L - e (prsNu,0), Av)® i Vi=Vip

iﬂ F()G(a\/()/U()V)Q.'

Proof- — Let Y — Y be an object of Cy_,y, and let Dy be a finite family of Cartier
divisors such that Za O/UOYO = Yy,/u, Yo- Let Y, C Y be the closure of V. By replacing Y
by the blow-up at Y, if necessary, we may assume Y is a divisor of Y. We take an object
Z — Y of Ay_y. Let g*V, = Zj ¢fW; be the decomposition by irreducible components
and let Z; denote the closure of W;. Replacing Z if necessary, we may assume that Zj Z,
has simple normal crossings and meets D = Z \ W transversely.

Let (Y x5 Y)™ be the log product with respect to the pull-back D of D, and
(Z x5 Z)~ be the log product with respect to the divisor D with simple normal cross-
ings. We consider the map (g X g)7: (Z xXs Z)” — (Y Xs Y)” and its restriction
gxg: WxsW — V xg V. For an irreducible component Z;, let ;: Z; — Z be the closed
immersion and g;: Z; — Y, be the restrictions of g: Z — Y. Let g: W,;=WNZ; -V,
be the restriction of g. The intersection D; =Z; N D is a divisor with simple normal
crossings.

Let (Z; xs Z;)~ denote the fiber product (Z; Xs Z;) X7z (Z Xs Z)~. Define
(@ % g)*: GrG(V| xy, Vi \ Vi Xy, V1) = Grl G(W; xy, W; \ W, xy, W) as the pull-
back by g; x gi: W; xg W; — V| x5 V. Then, by Corollary 4.1.8.1, we obtain

6.1.1.2)  (gx9"TD=) ag-(gxg) T

i,

in Grr G(W; xu, Wi \ W) xy, W)).

Let Ay C (Y X5 YO)BU be the closure of Vy xy, Vo \ Ay, and let A C (Z xsZ)~
be the intersection of the pull-back of Ay with (Z xx Z)~. For each 1,j, we put A; =
AN (Z; xsZ;)” C(Z xxZ)". We have AN (W xg W) = (W xy, W) \ (W xy, W)
and A; N (W; xs W) = (W; xy, W) \ (W; xy, W;). We take T'; € Gr. G(A;) lifting
(g x g)*(I'1). Then, by (6.1.1.2), we have

o 1 - 0
6.1.1.3) (I, A%)) = WV Y a2 ((T5 AY)) ey

i

We continue the proof assuming U; = U, k. The proof of the other case U; = U,
1s similar and omitted. Let Izj. C Oy be the invertible ideal defining 7, C Z. For each ¢, j,
we show

(6.1.1.4) é*((rﬁ’ Alzog))(mszr = _é*ii*(((rii’ Alzof))(zixszir " (IZJ'))
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in FoG(XZv,u, Yo Xy, Y)q. If 1 =7, the equality (6.1.1.4) follows from Lemma 4.3.7.1. (In
the case U; = U, y, we apply Lemma 4.3.7.2.)

We assume Z; £ Z; Weput Z; =72; X7 2;, Wy = W; xywW;, A; j = AN(Z; X5 Z;)~
and let g;: W; — V| be the restriction of g. Then, the immersions (Z; xXs Z;)~ —
(Z x5 72)” and y;: Z; — 7 are regular immersions of codimension 2. Hence by
Lemma 3.3.4, we obtain

((Ty, Alzog))axszr =i (T AIZOj))(ZiXsZﬂ“'

Further, the immersion (Z; xsZ;)™ — (Z; XsZ;)™ is a regular immersion of codimension
1. Hence by Lemma 3.3.4, we obtain

((Fﬁ’ Al;f))(zlxszjr = (((Fy" (Zi Xs Zﬁ)w)(z,xszj)“ A;)f))(ZiXSZi)'V'

Since both (Fy, (Zl Xg Zg’)w)(ZixSZj)” and (Fiia (ZZ Xy Zg’]’)w)(ZixSZi)” S Gri—lG(Al,y) are
liftings of (g; x g;)*(I'1), we have

(((FU’ (Zl X3 Zg)w)(ZiXst‘)N’ Alzolf))(zixszy‘)w
= (((Fii’ (Z;i Xs Zﬁ)w)(zixszi)” Alch))(zixszijf

similarly as Proposition 4.3.5. By applying the associativity Lemmas 3.3.6 and 3.3.7 to
the diagram

(Zi X ZU)N D — Zg‘
(Zi X ZZ)N D — Zi’
we obtain
((Tits Zi XS Zi)™) e Alﬁf))(zixszw = (((rs, AIZO?))M,-XSZW’ Zj)y
Thus, we obtain
((Fﬁ’ AIZ@%))(ZXSZ)“ = Zy"‘(((lﬁ”’ Alzozg))(ZiXsZi)N’ Zi}l)zi
= —in(((Ts, Alzo,g))(zixszy c01(Iz))

and the equality (6.1.1.4) is proved.
Therefore, the sum in the right hand side of (6.1.1.3) 1s equal to

6.1.1.5) =) ¢- z'*gi*<((rﬁ, AT vy D66 (Izj))-

J
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Sin_ce gV, = Zj W, as a div.is'or of W, the restriction Zj ¢l (IZJ.)|WZ. is equal to
¢1(g' Ny, ;v) lw;. Hence by Proposition 4.3.5, we have

((Fii’ AIZOIS))(ZMSZ[)N ) Z g (17::)

J

= ((Fﬁ D40 (), Alé’f))
(ZixsZi)™~

J
= ((T - pryer (& Ny, ), Alzoz-g))a,-xszzvr'

If Z; — Y, is surjective, it defines an object of Ay, i, and we have

& (T - prya (§ Ny, v), Al;?;g))(z,-xszm
= [W;: ViT- (T - pric Ny, ), AYS)).

We show that, if Z, — Y is not surjective, the left hand side is 0. By replacing Z; by an
alteration, we may assume that there is an object Zg — Y, of Ay, _y, and that Z; —
Y, factors through 7 : Z; — Z,. Since m,7* is multiplication by rank RO, = 0 on
FoG(Xv,u,Y Xy Zy), the assertion follows from Corollary 5.3.4. Thus, by Zi ¢[W; -
V] =[W:V], (6.1.1.5) is equal to the right hand side of (6.1.1.1). 0

We consider a regular divisor U; C U as in Proposition 6.1.1. Let (U xy U)™
denote the log product with respect to the Cartier divisor U, . It is the union of U with E =
G, u, meeting at U,. It is canonically identified with the fiber product (U xs U)™ Xyxcu
Ay. The closed subscheme E = G, y, C (U Xy U)™ is the inverse image of U; C U =
Ay by the canonical map (U xy U)™ — U, as in Lemma 1.3.2.1. Let (V xy V)™ =
(V xy V) xy (U xy U)™ denote the log product with respect to V; =V Xy U,. Then,
we define the localized log intersection product

(6.1.2.1) ((, Ay))'s: GrfG((V Xy V)7\ (Ay xy (U xy U)7)) = FoG(0y,uV)g

similarly as follows, in order to state Proposition 6.1.2.

We consider an object Y of Cy/s and a finite family D of Cartier divisors of Y such
that Xy, vY = 25 /VY. Let Y, C Y denote the closure of V, and D, denote the restriction
of D. By replacing Y by the blow-up at Y, if necessary, we assume Y is a divisor of Y.
We also consider an object g: Z — Y of Ay_.u. We assume that it also define an object
of Ax\vy)—@\uy)- In particular, Wy =g~ (V' \ V) is the complement of a divisor D’ > D
of Z with simple normal crossings. Let Z — X be a proper morphism of schemes over S
such that X contains U as the complement of a Cartier divisor B.

We define the log products (Y x5 Y)™ and (Y x5 Y)™ with respect to D and to the
union D’ of D with Y| respectively. Similarly, we define the log products (Z xs 7)™~ and
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(Z x5 7)~ with respect to D and to D’. They form commutative diagrams

¥ xsY)® E2 2% 7  (VxsV)™ <9 (W xg W)~
| | | |
Y xsY)” «—— (Z xsZ)~ VxgV «— WxgW

where the right square is obtained by taking the base change to V xg V.

We define a closed subset A C (Y X5 Y)™ to be the closure of (V xy V)™ \ (Ay Xy
(U xyU)™) C (Vxs V) and put Ay = (g X 2~ '(A) N (Z xx Z)~. Here (Z xx Z)~
denote the log product defined with respect to D' and B. For I" € GrfG((V Xy V)7\
(Ay xy(UxyU)7)), we take an element I" € GrSG(AZ) lifting the pull-back (g x g)~*(I")
by (gxg)”: (WxsW)™ — (VxgV)". Then, ((T', Al;)g)) is defined as g, (T, Alzog))(szz)z
divided by [Z : Y]. The map (6.1.2.1) is defined as the projective limit.

By the associativity Lemma 3.3.7 applied to (Z xs Z)~ < (Z x5 2)~ < 7, we

obtain a commutative diagram

7))108
GGV xu V\ Ay) L2, FoGvauVg

(6.1.2.2) q*l ‘

: - oy (CAY)S
GrEG((V xy V)7\ (Ay xy (U xy U)™)) S FOG(aV/UV)Q
for the pull-back ¢* by the projection ¢: (V xg V)™ = V xg V.
We put Uy =U\ U}, Vo =V \ V, and we consider the diagram

Gr'G(V xy V\ Ay)

(( L Ay))ls

(6.1.2.3) GriG((V xu V)™ \ (Ay xy (U xyp U)Y)) ——— F,G@v,uV)g

! !

F (CAvp)*®
GI‘”G(VQ XU0 VQ \ AVO) —_— FOG(BV/UVQ)Q_

where the upper left vertical arrow is induced by the immersion V xy V — (V xy V)™
and the lower left vertical arrow is the restriction. Since the log product (Z xx Z)™ is
defined with respect to B whose complement is U, the closed subset Ay need not satisty the
condition (B) in Proposition 4.3.5 with respect to the components of D"\ D. Consequently,
the square is not necessarily commutative. However, the compositions with the upper
vertical arrow form a commutative diagram since the image of the composition V xy
V= (Vxy V)" = (X' xx X')™ lies in the image of the log diagonal X' — (X' xx X')™
for a compactification X’ of U containing Uy as the complement of a Cartier divisor B’
extending U, and the log product (X' xx X')™ defined with respect to B'.
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Proposition 6.1.2. — Let [: V — U be a finite étale morphism of regular flat separated
schemes of finite type over S and n = dim Vg + 1. We assume that Vx — Uk s tamely ramified with
respect to K.

Let Uy C U be a regular divisor and 1: Uy — U denote the immersion. Assume either U, is a
scheme over K or a scheme over F. Let (V x5 V)™ be the log product with respect to the Cartier divisor
Vi=VxyU, of V. Let g, : E =G, u, = Uy be the projection and ¢, : E xy, (V| Xy, Vi) =
V| Xu, Vi also denote the base change. We regard E xy, (V| Xy, V1) as a closed subscheme of
(V x5 V)™ as above.

Then, for Ty € Grt_ G(V| xu, Vi \ Av,), the product (6.1.2.1) satisfies

g Jul((@T, Ay V=V
(6.1.2.4) (41T A))™ = (T vll)o)g i 1= Vix
l*(rl’ AV]) © #‘Vl = VI,F

n F()G(BV/UV) Q-

Progf: — We keep the notation in the definition of (6.1.2.1) above. We put g*V, =
ZJEJ ¢W,. For each irreducible component W, let Z; be the closure, i: Z; — Z be the
closed immersion and g: Z; — Y, be the restrictions of g: Z — Y. Let gi: W; — V, be
the restriction of g. Let D; = (Dy)er and D), = (Dy)ser be the families of irreducible
components of D=7\ W C D' =7\ W indexed by I C I' =111 ] respectively.

Forj €], let (Z; xs Z;)~ and (Z; x5 Z;)~ be the log product with respect to the
families D; = (D; N Z;)er and 'Djf = (Dy NZ))ter p,7; Tespectively. Let E; C (Z X 7))~
denote the inverse image of Z; C Z by either of the projections (Z xsZ)~ — Z. Then, the
canonical map (Z; xsZ;)~ — (Z; xsZ;)™ is of finite tor-dimension by Corollary 4.1.5 and
E; is flat over (Z; xsZ;)~ by Lemma 1.3.2. Hence, the canonical map g;: E; — (Z; xsZ;)”~
is of finite tor-dimension. Let ¢;: E? — W; xg W; be the base change of g;. We consider
the commutative diagram

Ei=(Vxs V) xvsgy (Vi xs Vi) «—— B2 ——

qll q.zl ﬁ/’

e
Vixs Vi T Wixs Wy —— (Zxs 7))

where the right horizontal arrows are open immersions.
Let (g xg)*: Grf_lG(Vl xu, Vi\Ay,) = Gr;‘_IG(WJ- xu, Wi\ W, xy, W) denote
the pull-back by g x gi: W; xg W; — V| x5 V. Then, by Corollary 4.1.8.2, we obtain

(6.1.2.5) @xQ (@) =) ¢ g xg) @)

J

in GI‘SG((Wl XU[) \/Vl)fv \ (W1 XV() Wl)w).
Let Ap C (Y x5 Y)5 be the closure of V xy V\ Ay and let A C (Z x5 Z)~ be
the intersection of the pull-back of Ap with (Z xx Z)~ = (Z X5 Z)~ X (xxsx)~ X. For
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each Z;, let A; C (Z; X5 Z;)~ be the intersection of the pull-back of A with (Z; xx Z;)” =
(Z; X5 7)™ X xxsx)~ X. We have AN (W xg W)™ = (W xy W)™\ (W xy W)~ and AjN
(W; xs W)) = (W; xy, W) \ (W; xy, W)). We take T'; € GrSG(Aj) lifting (g x g)*(I'}).
Then, by (6.1.2.5), we have

o 1 - (= o
(6.1.2.6) ((qTTH, Ay))l = WV Zej ‘é’*((% I, Alzg))@xm”
J

We continue the proof assuming U, = U, x. The proof of the other case U, =
U, r 1s similar using Lemma 4.3.4.2. By Lemma 4.3.4.1, we have ((Z]J’-‘Fj, Alz()g))(Zst)m =
i/*((((_szj-, Alzig))(zjxszjy, 1 Zj)Gm‘Zl-‘ Since ¢;: E; — (Z; xs Z;)™ is of finite tor-dimension,
we have ((é}’Tj, A%g))(ZjXSZj)~ = @;‘((Fj, Alz()jg))(Z_jXSZ,-)” by the associativity Lemmas 3.3.6
and 3.3.7 where ¢;: G,, 7, — Z; in the right hand side denotes the restriction of ¢;: E; —

(Z; x5 Z;)™. Thus we obtain (T}, A7)z = 15 (T, A7) 57~ and

é*((‘_ifrj’ Alzog))(zmzﬁ = gix ((FJ’ AIZ(;g))(Zj’stj’)N

for the right hand side of (6.1.2.6). The right hand side is equal to [W;: V] -
pry, ((Ty, Ay)))°s if Z; — Y, is generically finite and is 0 if otherwise similarly as at
the end of the proof of Proposition 6.1.1. Therefore, the sum of the right hand side of
(6.1.2.6) 1s equal to

D 6IW; s Vil pry, (T, Ay, )%

J

Since Zjej[\/\/j : V] =[W: V], the assertion follows. ]

Proposition 6.1.3. — 1. Let f : V — U be a finite étale morphism of regular flat separated
schemes of finite type over S and n = dim Vg + 1. We assume that Vx — Ux s tamely ramified
with respect o K. Let € be a locally free Ov-module of rank ¢, p: P =P(E) — U be the associated
P bundle and Py = P x V be the base change. Let T C 'V xy V' \ Ay be an open and closed
subscheme and we regard I'p = I Xy P as an open and closed subscheme of Py Xp Py \ Ap, =
(Vxy V\ Ay) xy P.

Then, we have

6.1.3.1)  p.((Tp, Apy) ¥ =c¢- (T, Ay))"®

mn FOG(BV/UV)Q.

2. Let the assumption be the same as in 1. except that we assume f: V — U s a finite étale
morphism of smooth separated schemes of finite type over ¥ and n = dim V.

Then, we have

(6.1.3.2)  pu(Tp, Ap) s =c- (I, Ay)"®
in CHO (8V/UV) Q-
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Proof. — 1. By the flattening theorem [36], there exist a proper scheme X over
S containing U as a dense open subscheme and a locally free Ox-module Ex of rank
¢ extending &. Replacing X by a blow-up, we may assume U is the complement of a
Cartier divisor B.

Let Y be an object of Cy and D be a finite family of Cartier divisors of Y such
that Yy vY = Zg/vY. Let Z — Y be an object of Ay_y. Let P, =Z xx Px denote the
base change of the projective space bundle Px = P(Ex). Let Ap C (Y x5 Y)5 be the
closure of V xyy V'\ Ay and let A C (Z x5 Z)"~ denote the intersection (g x 2)~ "' (Ap) N
(Z xx 7)™ as in Proposition 5.3.3. We regard Ap = A xx Px as a closed subscheme of
Pz Xs P2)™ = (Z X5 Z)” Xxxsx (Px Xs Px) by the diagonal maps X — X xg X and
Px — Py xs Pyx. Then, (T, Ay))" is defined using the image of (T, A7)z« by
taking a lifting I' € F,G(A) of (g x g)*T". The product ((I'p, Ap,))'® is defined using the
image of (5T, Ap)) b, wsp,y~ where p*: F,G(A) — F,;,_1G(Ap) denotes the pull-back.

We apply the associativity formula, Lemma 3.3.6, to Ap = (Pz xs Pz)™ <= Pz %
P, < P;. Since a projective space bundle Py is smooth over Z, the diagonal P, — P, x,
Py is a regular immersion and hence is of finite tor-dimension. By applying Lemma 3.3.6,
we obtain

lo, log
(6.1.3.3) ((FP’ APZg))(szSPZ)” = (((FP’ AZQ))(ZXsZ)N’ APZ)PZXZPZ'
Since the projection pz: P; — Z is smooth, we have
log % log
((FP’ AZ%))(ZXSZ)“ _pZ((F’ AZ%))(ZXsZ)N'
Since (Ap,, Ap,)p,x,p, = (—1)5_106.,1(521%[/2), the right hand side of (6.1.3.3) 1s equal to

p;((r’ A!Zg))(ZXSZ)~ : (_1)(._165—1(911&/2)

by the excess intersection formula for the usual intersection product. Since deg(—1)"" -
Col (521137 /z) = ¢, by the projection formula, we obtain

/)Z*((FP’ Alf?zg))(PngPx)“ = ((F’ A!Log))axszr

and the assertion follows.
We also omit the similar and easier proof of 2. 0J

Lemma6.1.4. — 1. Let f: V—> U, E, p: P=PE)—> U, T CV xyV\ Ay e be
the same as in Proposition 6.1.3. We consider the pull-back (p x p)*T" as an open and closed subscheme
of Py xu Py \ Py xv Py. For an integer m, we put ¢, ,, = degc,, (5211,H (m)).

Then, we have

(6.1.4.1) pe(((0 % p)*T - et (pri€p  (m) @ prO(m')), Apy))
= Ce,m+m’ * ((F’ AV))log

log

m FO G(av/UV) Q-
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2. Let the assumption be the same as mn 1. except that [ : NV — U is a finile étale morphism of
separated smooth schemes of finite type over F.
Then, we have

(6.1.4.2) pe((p % p)*T - ey (pr 2y, (m) @ prsO(nd)), AP\,)“)g = Coppnr - (T, Ay)'®
mn CHo(av/UV)Q.

An elementary calculation shows

1
—((m— 1= (=1)) form#0

m
(=D le form=0.

6.1.4.3) ¢, =

Progf. — 1. We keep the notation X, &x, Pz, etc. in the proof of Proposition 6.1.3
above. Since Pz is smooth over Z, similarly as above, we obtain

(((p > pT - cr (pri 2,0 m) @ pr;O (), ApE)) o -
= (((/7 xp)'T, Allszg))(pxxspx)~ ’ cf—l(Q%’Z/z(m + m/))

:p;((r’ AZ))(ZXSZ)~ "l (Qll’y,/z(m + m’))

By applying the projection formula, we obtain (6.1.4.1).
We also omit the similar and easier proof of 2. 0

6.2. FExcision formula. — We keep the notation f: V — U etc. as in the previous
subsection. We prove the excision formula, Theorem 6.2.2. We begin with the following
blow-up formula.

Proposition 6.2.1. — Let [: V — U be a finite étale morphism of regular flat separated
schemes of finite type over S such that Vg — Ux s tamely ramafied with respect to Spec K. We put
n=dim Uk + 1. Let U; C U be a regular closed subscheme of codimension ¢ and p: U — U be
the blow-up at U, . Assume either U, ts a scheme over K or a scheme over ¥. We consider the Cartesian
diagram

\% V o«—— V,
SEESI § RPELENN § )

where we use the same letters to denote the base change.

Let ' CV xy V\ Ay be an open and closed subscheme and we regard I =T xy U’
and I'y =T xu Uy as open and closed subschemes of V' x V' \ Ay and of Vi Xy, Vi \ Ay,
respectively.
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Then, we have

i*((F17 Avl))log ‘Z][ U] = Ul,K
i*(rlv Avl)log ‘Zf U] = Ul,F

log

6.2.1.1) (T, A =p, (I, Av))* + (c— 1)

m FO G(BV/UV) Q.

Progf- — We consider the pull-back (p x p)*I" by p x p: V' xg V' — V x5 V. We
have

<6.2.1.2> ((F’ AV))log :lb*(((p X p)*l—" A\”))log,

by the commutative diagram (6.1.0.2). We compute (p x p)*I". Note that p;: V| = V,
is a P~ !-bundle. The morphism U’ — U of regular scheme is locally of complete inter-
section. Since (p X p)*[Ay] = [Ov ®%9U Oy ®%9U Oul= 2:1-(—1)1'[’]'0710U (Ov, Ou)], by
applying Corollary 3.1.6 to the blow-up U" — U, we obtain

c—1 i
(6.2.1.3) (px p[Av] = [Av]=) (=D Z[prj‘szg,l o, () ® perQS,l_/jU,]

i=1 j=1

in Grl G(U’ x U'), where pr,: U} xy, U, — U/ denote the projections. Let £ denote
the right hand side of (6.2.1.3). We will use the computation

c—1

6.2.1.4) T (priNuu) =Y (=Dpriy v, O] @ ([priN ]

=0
— [Ou;xp,u}1)

= (=D" (e (priQuy; i, (D) @ pr;O(=1))
- CC*I(PYTQ%J’]/Ul(l)))

in Gr!_ G(U/ xy, U)) that follows from Ny v = O(1).
By (5 x p)*[Av] — [Au] =, we have (5 x p)*T =" + (5 x p)*T, - S since T
is flat over U. Thus, by (6.2.1.2), we obtain
(T, A = 5, (T, Av)) =+ 2 (01 X p)'T1 - B, Av))™.

Let /1 V| — V' denote the immersion. If U; = U, g, then Proposition 6.1.1 gives us

6.2.1.5)  (((0r xp)*T1- 2, Av))™ = =2 (((r x p)*T1 - - e (priNu 1), Av,)) ™.

If U, = U, y, we replace the double parentheses in the right hand side by a single paren-
theses. By substituting (6.2.1.4) in (6.2.1.5) and applying Lemma 6.1.4.1 to the projective
space bundle p,: V| — V|, we obtain

6.2.1.6) (0 x p)' T -2, Av)) " == D) (erp — e) (T, Ay))™
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in FoG(2Zv,uV)g. Thus, the assertion follows from ¢, o —¢..1 = (— D e—1) (6.1.4.3). 0
We state and prove an excision formula.

Theorem 6.2.2. — Let [ : N — U be a finute étale morphism of regular flat separated schemes
of finate type over S such that Vx — Uk is tamely ramified with respect to Spec K. Let Uy C U be a
regular closed subscheme and we consider the Cartesian diagram

V, L vV v=V\V,
U —15 U «— U=U\1,

For an open and closed subscheme T of V Xy V, we put Ty =T xy Uy and ') =T xy Uj.
T hen, we have

(T, Ay, of Uy is flat over S

6.2.2.1 T, Av)'8 = ((Ty, Ay, )
( ) (( v) J((To, Ayy))® + {i*(l"l, Av])k’g U =Uss

n FoG(aV/UV)Q

In the right hand side, j((Ty, Ay,)'® and 7, ((T'}, Ay,))'*¢ are clements of
FyG(0y,uV)q defined as the image of the map (5.2.3.2).

Progf: — By a standard devissage, we may assume either U; = U, x or U; = U y.
By Propositions 6.1.3 and 6.2.1, it suffices to prove the case where U, is a divisor of U.

We put Vi =V xy Uj. Let (V X5 V)™ denote the log product (V xs V)y;, . We consider
the pull-back ¢*I" by the projection ¢: (V xs V)™ — V x¢ V. In the notation of (6.1.2.1),
we have

6.2.2.2) (I, AW = ((¢T. Av))"™,

by the commutative diagram (6.1.2.2). Let ' C (V x5 V)™ denote the proper transform
of I' and we put I'y =T" xy V. We also have

6.2.2.3) (T, Ay = ((T. Ay))™

by the commutative part of the diagram (6.1.2.3).

Let ¢;: E— V| xg V; be the base change of ¢ and ¢{I"; be the pull-back. Since
¢: (U xgU)™ = U xg U is locally of complete intersection by Corollary 4.1.5 and since
I' 1s flat over U, we have an equality

(6.2.2.4) ¢T =T +4(gT))
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i G((V xy V)7 \ (U xy U)™) by Corollary 3.1.7. By Proposition 6.1.2, we have
((QTrl, Av))log = ((I'y, Avl))bg if U; = UI,K and ((QTFI, AV))IOg = (I"y, Avl)log if U, =
U, r. Thus the assertion is proved. 0

Similarly and more easily, we have the following analogue of Theorem 6.2.2.

Proposition 6.2.3. — Let f: NV — U be a finute étale morphism of smooth separated schemes
of finate type over ¥. Let Uy C U be a smooth closed subscheme and Uy = U \ U, be the complement.
For an open and closed subscheme I of V- xy V, we put Ty =T xy Uy and I') =T xy Uj.

Then, we have
(6.2.3.1) (T, Ay = (Tg, Ay,) % + (T, Ay,)'*
i CHy(dv,uV)q.
We generalize the definition of the map (5.3.8.3) for not necessarily regular U.

For a noetherian scheme X, let I'(X, Z) be the Z-module of Z-valued locally constant
functions on X.

Corollary 6.2.4. — For every finite étale morphism f: N — U of separated schemes of finite
type over S such that Vi — Uk s tamely ramified with respect to K, there exists a unique way to attach
a morphism

(C, AV))logi I'(V xu V\ Ay, Z) = FoG(dv,uV)g

satisfying the following properties:
(1) If U s regular and flat of dimension n over S, it is the composition

((,Ay))s

T(VxyV\Ay,Z) —— GriG(V xy V\ Ay) ——— F,GO0yv,uV)g

where the first arrow s the natural isomorphism.
If U s smooth of dimension n over ¥, it is the composition

Ay

TV xyV\ Ay, Z) —— CH,(V xy V\ Ay) =255 FG(dyuV)g

where the first arrow s the natural isomorphism.
(2) Assume U = | [, U; is a finite decomposition by regular subschemes. Let j;: U; — U denote
the immersion and put V; =V xy U; for each i. Then, the diagram

))log
F(VxyV\ARZ) 2% FGOyuVe
(6.2.4.1) (]z*)ll TZ]Z'

@,(( ,A\,*Z.))lOg
D, < Vi\ Av, 2) S RGOy Vg

15 commutative.
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Proof. — The uniqueness is a consequence of the existence of a finite partition by
regular subschemes. To show the existence, it suffices to compare the maps defined by
taking partitions by regular subschemes. By taking a common refinement, it is reduced
to verify the following. Let U be a regular scheme and U = [ [. U; be a finite stratification
by regular subschemes. Then, the maps defined in (1) make the diagram (6.2.4.1) com-
mutative. It follows from Theorem 6.2.2 and Proposition 6.2.3 by the induction on the
maximum of the codimensions of U; in U. ]

By the same argument, we have the following variant.

Corollary 6.2.5. — Assume K s of characteristic 0. For every finite étale morphism f: V —
U of separated schemes of finite type over K, there exists a unique way to attach a morphism

((, AV)E: T(V xu V, Z) = FyG(3rV)g

satisfying the following properties:
(1) If U s regular and flat of dimension n over S, it is the composition

))log
IV xyV.Z) — Gr'G(V xy V) 225 FG(3V)g

where the first arrow s the natural isomorphism.
(2) Assume U = | [, U; is a finite decomposition by smooth subschemes. Let J;: U; — U denote
the immersion and put V; =V Xy U; for each 1. Then, the diagram

((,Ay))s

T(VxuV.Z) 22 FG@iV)g

(6.2.5.1) o ”l Tm

(CLAv))e
Brv xe viz) 22 AFGONVI

s commulalive.

6.3. A semi-stable case. — In this subsection, we establish a crucial step in the proof
of the conductor formula. Namely, in Proposition 6.3.2, we compare the log localized
intersection products ((T, Ay))"*¢ and ((T', Ay»))"°8 for a morphism f: V' — V using the
Lefschetz trace formula Theorem 1.4.7, assuming among other things that f is extended
to a weakly semi-stable morphism of compactifications.

We consider a commutative diagram

U «—V
(6.3.1.1) l lf

U «— V
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of separated schemes of finite type over S where the horizontal arrows are finite étale and
the vertical arrows are smooth. We further consider a commutative diagram

r —V XU/V/

6.3.1.2) l l

T —— VXUV

where T CV xy Vand I' C V' X V' are open and closed subschemes.

Let Vv/fl) and V&(?) denote the base change V' xy T with respect to the first and the
second projections respectively. We identify the fiber product V?l) X1 Vg) with an open
and closed subscheme (V' xy V') Xy v T of V' xy V'. Then, (6.3.1.2) implies that I" is
a closed subscheme of V/\" x¢ V%Q).

We compare the elements ((T, Ay))"°8 and (T, Ay))"¢ of FoG(0rV)q, assuming
that we have a commutative diagram

184 —C> X 5B

[

(6.3.1.3) V —5 Y oD

fl ‘Lf
V —C> Y DE;’

of separated schemes of finite type over S satisfying the following conditions:

(6.3.1.4) The schemes Y, Y and X’ are proper over S and Y is the disjoint union
of irreducible components. The scheme V is the complement in Y of a
finite family & = (E;) ¢j of Cartier divisors and U’ is the complement of a
Cartier divisor B’ of X'. The morphism /: Y’ — Y is proper weakly semi-
stable of relative dimension 4 such that Y{, =Y’ xy V — V is smooth.
The subscheme D is a divisor of Y’ over Y with simple normal crossings
relatively to Y and V' =Y, \ Dy.

LetD,, ..., D, be the irreducible components of D. Let Y%l), D§”, e Dfnl) denote
the base change of Y', Dy, ..., D,, over Y by the compositon T - V xy V—-V =Y
of the first projection. Similarly, we define Y¥2), DEQ), ..., D@ as the base change using
the second projections. Let (Y%l) X7 Y%Q))” denote the log product with respect to the
families of Cartier divisors (D&l), e, Dfnl)) and (D&Q), e Df?).

Let K’ be a finite extension of K and y’: Spec K" — T be a morphism over K. By
the valuative criterion, the compositions Spec K" — T — Y with the two projections are
extended to §" = Spec Ogs — Y. Let Y/S,l) and Y’S(,Q) denote the base change with respect

to the two morphisms respectively.
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We regard Y as a log scheme with the log structure defined by the finite family
of Cartier divisors £ = (E;);;. We assume that the restrictions of 8" — Y to the closed
point 5 € S define the same log point s — Y. Then, we have a canonical isomorphism
YW - YZSQ). Hence, if the second projection I' — V%Q) 1s proper, the alternating sum

S

Tr((y™I)*: H*(V%,, Qy)) (1.4.2.3) is defined for a prime number £ invertible on S.

K

Proposition 6.3.2. —  Let the notations be as in (6.3.1.1)-(6.3.1.4) and assume either of
(5.3.2.1a) or (5.3.2.1D) s satusfied. Let'T C'V Xy V \ Ay be an open and closed subscheme and let
T be a closed subscheme of (Y s+ Y'Y~ flat over T such that T =T N (VY x¢ Vi) is an
open subscheme of V' x v V'. We regard Y as a log scheme with the log structure defined by € = (E,) e
Let E' be the finite family of Cartier divisors of Y' consisting of the pull-back of € and the irreducible
components of D. We assume that the generic fibers £5 v Yk and ¢, o Y are emply.

Then, there exist a finite famuly (K,)ie1 of finite extensiwons of K, a_family (y;: SpecK; —
T)ic1 of morphisms over S and rational numbers (;)c1 satisfying the following properties:

Let s; € S; = Spec Ok, denote the closed point for i € 1. Then, for each i € 1, the log points
Vi i = Y defined by the unique maps S; — Y extending the composition Spec K; — T — Y with
the furst and the second projections are equal to each other. Further, for a prime number £ invertible on S,

we have Tr((y;T)*: H (V% , Qy)) € Q and, for the logarithmic product (5.3.8.4),

(6.3.2.1) ((T. AY%) =D n[76)].

1

6.3.2.2)  L((MAV) =D nTr((7T) " HI (Vi Q) - [7:)]

1

n FoG( ZV/UY) Q-

Proof. — We take an object g: Z — Y of the category Ay_,y of alterations. Since
the conditions (5.3.2.1a) and (5.3.2.1b) are stable by the base change, we may assume
that we have a log blow-up Z' — Z Xy Y’ as in the conclusion of Lemma 5.3.2. Hence,
the inverse image W' =V’ xy Z' is the complement D’ of a divisor with simple normal
crossings. By the assumption on the upper square in (6.3.1.3), g': Z' — Y’ defines an
object of Ay .

Let g: W — V be the restriction of g: Z — Y. We put (g x g)*(T) = Z}- m1; €
F,G((W xs W) Xvyy.v T) and, for each j, let Tj C (Z x5 7)™ be the schematic closure.
Then, we have

1

(6.3.2.3) ((T, Al\(()g)) = Wv] ij é*((TJ A?g))(zmzr'
J

We define the log products (Y x5 Y)™ and (Y’ x5 Y’)™ with respect to £ and
&'. The log product (Y?l) X7 Y%Q))N defined with respect to the pull-backs of the irre-
ducible components of D is canonically identified with (Y’ XsY")™ X yxgy)~ T. We define
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(Z' xsZ")~ to be the log product with respect to the irreducible components of a divi-
sor Z/'\ (Z' xz W) with simple normal crossings and the pull-backs of the irreducible
components of D C Y’. The inverse image of W xg W by (Z' xs Z")™ = (Z xsZ)™ 1is
canonically identified with (Y’ X5 Y")™ X yxsv)~ (W xg W).

For T; as above, both (Y%l) X Y%Q))N x1 T; and (%’ Xs 2" X(zxszy~ 1 are
identified with (Y' x5 Y')™ Xyxgy)~ T;. We regard I'; =T x1 T, as a closed sub-
scheme of (Y1 x1 YY)~ x1 T; = (Z x5 Z')~ X @zxszy~ Tj. By the assumption that
T c (Y#l) Xt Y /(2))~ is flat over T' and by the flattening theorem [36], there exists a
proper modification g;: T — T for each 'T; satisfying the following conditions: The map
g T’ — T induces the 1dent1ty on the dense open subscheme T; and the schematic
closure F’ of F C (Y xe Y)Y x0T, = (Z' xs Z))™ Xzszy~ T; in the base change
(7 xs 7/ ) X (ZxsZ)™ TJ is flat over Tj’. Then, similarly as (6.3.2.3), we have

0! 1 - = —~/ [o}
6324 (("A7) =5 V]Z m; 835 (T A7) sz

For each j, we put

6.3.25) (T AY),. 0= D 5]

in FOG(TJ{ X (ZxsZ)~ Al;g). Since s} € TJ/ is a closed point and T is dense in TJ/», there exist
a discrete valuation field K; and a map y;: S; = Spec Ok, — Tj extending Spec K; — T
such that s’ is the image of the closed point S; of S,. Since the image of s; in (Y xg Y)™
is in the log diagonal, the log points 5, — Y defined by the two projections are equal to
each other. Thus, by (6.3.2.3), we obtain (6.3.2.1).

We prove the equality (6.3.2.2). We fixj and let p;: f‘J’ — TJ’ denote the projection.
First we show

(6.3.2.6) pj*(( I log))(z/XSZ/)~ = Zni deg(Fj/J ’ Alog)(Z/ g2l [5;]

in FOG(T X (ZxsZ)~ A ®). Since Z' — Z is log smooth, the morphism (Z’ x5 Z')~ —

(Z x57)~ is smooth and the log diagonal map Z' — (Z' x;Z2")" = (L' XsZ')™ X (zxsz2~ Z
is a regular immersion. By applying the associativity Lemma 3.3.6 to (Z' xs Z')™ <«
(72! x;7))~ <7/, we obtain

((f‘j/’ A?’g))(z’xsz’r = (((f;’ (Z/ Xz Z,)N))(z'xsz'r’ A?’g)(z’xzz')“

Since (Z' xg Z')~ is smooth over (Z xg7Z)~, it is tor-independent with Z. Hence by
applying the associativity Lemma 3.3.7 to (Z X5 Z)~ < (£ xsZ)~ < ij as X <« X' «—
W, we obtain

((f;’ (Z/ X7 Z/)N))(Z/XSZ/)N = ((Alzog’ f;))(ZXsZ)N.
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Since pj: I_'j’ —> Tj’ _is flat, by further applying the associativity Lemma 3.3.6 to
(Z xs7)™ <« T]/, <« ij, we obtain

((Alzog’ F ))(7X57)” :p]*((T]/’ Alzog))(mszr'

Thus, we obtain

((f;’ A;)/g))(zlxsz’r = (@*((TJ/’ AlZO%))(ZXsZ)N’ Ai)’g)(z'xzz')“

Substituting (6.3.2.5), we see that the right hand side is equal to

log _ ( ’ log)
§ :”l(p (L'X7L/)~ = Z e AZ@i 2200~

i

in FOG(I:]f X (ZxsZ)~ Alzog). Thus the equality (6.3.2.6) is proved.
For the right hand side of (6.3.2.6), we show

(6.3.2.7) deg(T", . Al;jf) ity = Te((y/T)": HI (Vi . Q)

by applying Theorem 1.4.7 to the base changes Z’ x, S; — S; = Spec Ok,. To apply it,

we verify that the assumptions are satisfied. The log blow-up of the product (Y%l) X

Y/(Q))’ with respect to the families of Cartier divisors (D&l), e, (1)) and (D(Q) D®)

contains the log product (Y} x1 Y{?)™ as the complement of the proper transforms

(D(l) Y(Z))’ and (Y(l) X D(l))’ Let I'" be the closure of I' in the product (Y(l) X
/(2))/ . We show

(6.3.2.8) r'n (D(TU XTYSFQ))/ TN (Y(Tl) o DSFI))/'

Let (Y xvu Y{J)’ denote the log product with respect to the families of Cartier
divisors (D u, ..., D,.u). We have an open immersion (Y%l) X Y'(Q))/ — (Y, xu Y/U)’
as the base change of T — V xy V. Since I' € V' xv V', the image of I by (Y} x

/(2))’ C (Y, xu YY) — X, xu X{; is in the diagonal X{;. Since U’ C X' is assumed to
be the complement of a Cartler divisor B/, we have I''N (DU xuYyp) =T"NY, xyDy)
by [27, Proposition 1.1.6.2]. Thus, we obtam (6.3.2.8). Consequently, the base change to
K, satisfies the inclusion (1.4.7.1).

We construct a commutative diagram (1.4.2.4) of monoids for the two base changes
7' x; S; = S; = Spec Ok, satistying the condition (P) loc. cit. Since the log structures of
Z and Z' are defined by divisors with simple normal crossings, we have a commutative
diagram

/

N —_— N”"

(6.3.2.9) l l

I(Z,My) — T(Z', My)
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of morphisms of monoids, locally lifted to charts. Since the image of the closed point by
the composition S; = Spec Ok, — Tj — (Z xs7)" lies in the log diagonal, the composi-
tions with the two propositions define the same log points s; — Z. Hence there exists one
morphism N” — N of monoids that makes the diagram

N <« N”

(6.3.2.10) l l

'S, Ms) <—— T'(Z, My).
commutative for the compositions with the two projections. We define a monoid P to be
the saturated sum N 432 N Then, the commutative diagrams (6.3.2.9) and (6.3.2.10)
induces a morphism P — I'(Z' x; S;, Mz,s,), locally lifted to charts. It defines a com-
mutative diagram (1.4.2.4) of monoids satisfying the condition (P). Thus we may apply
Theorem 1.4.7 and we obtain (6.3.2.7).
Therefore the equality (6.3.2.2) follows from (6.3.2.4), (6.3.2.6) and (6.3.2.7). U

By the same argument, in the case where K is of characteristic 0, we have the
following.

Proposition 6.3.3. —  Assume that K s of characteristic O and let the notations be as in
(6.3.1.1)+(6.3.1.4). We assume that either (5.3.2.1a) or (3.3.2.1b) s satisfied. Let'T C'V Xy V
be an open and closed subscheme and let T be a closed subscheme of the log product (Y 1" x1 Y )~
Sflat over T such that T' = rn (VI s VI s an open subscheme of V' x o V'. We regard Y as
a log scheme with the log structure deﬁned by a finite family of Cartier divisors € = (E;);ej satisfying
V=Y \ U_]G_] y

Then, there exist a finite family (K;)ier of finite extensions of K, a_family (y;: SpecK; —
T)ic1 of morphisms over S and rational numbers (1;);c1 satisfying the following properties:

Let s; € S; = Spec Ok, denote the closed point for © € 1. Then, for each i € 1, the log points
Vi i = Y defined by the unique maps S; — Y extending the composition Spec K; — T — Y with
the furst and the second projections are equal to each other. Further for a prime number £ invertible on S,
we have

(6.3.3.1) ((T. AV9) =D " w[ 7).

)

6.3.3.2)  L((I,Ay) = ZnTr(()/i*F)*: H (Vi Q) - [7()]

in FoG(Y x5 Fg.

7. The Swan class and a conductor formula

We keep the notation that K is a complete discrete valuation ring and S = Spec Og
as in the previous sections. We fix a prime number £ different from the characteristic p of
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the residue field I of K. First, we define the Swan character classes for Galois coverings
in Section 7.1. We define the Swan class of a locally constant F,-sheaf in Section 7.2.
We extend the definition of the Swan class to a constructible sheaf in Section 7.4 using
the excision formula Proposition 7.2.5.2, assuming K is of characteristic 0. We prove a
conductor formula for some relative curves in Section 7.3 and derive the general case
in Section 7.5. In an equal characteristic case, more elementary proof is found in [42,
Corollaries 5.12, 5.13].

In this paper, we state and prove results for Fy-sheaves. The corresponding results
for Q,-sheaves are obtained simply by taking reduction modulo .

7.1. Swan character classes. — We define the Swan character class for a Galois cov-
ering.

Defination 7.1.1. — Let U be a separated regular flat scheme of finite type over S and f: V —
U be a finite étale G-torsor for a finite group G such that the generic fiber Vx — Uk s tamely ramified
with respect to K. Then, for an element o € G, we define the Swan character class sy,u(o) €
FoG(v,uV)g by

DY Joro =1

(7.1.1.1) svpu(o) = {—((Fg, AV foro # 1.

By Corollaries 5.1.3 and 5.1.8, for a finite Galois extension L of K of Galois group
G and U = SpecK, V = Spec L, we have

lengthOLQ}QL/OK (log/log) foro =1

7.1.1.2 7 U =
( ) v7u(©) {—lengthOLOL/Jg for o # 1

in FyG(dv,uV) = Z, where J,; is the ideal of Oy, generated by o (a) — a for a € Oy, and
o(b)/b—1for be L.

Lemma 7.1.2. — Let the notation be as in Definition 7.1.1. Then, the following hold:
1. We have

ZS\//U(O’) =0.

oeG

2. Let H be a subgroup of G and g: N — U’ be the corresponding H-torsor. Then, for o € H,
we have

s (D) +¢ Dy ifo=1
S\I/U/(U) y‘a ;ﬁ l.

5V'/U(U) =
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3. Let N be a normal subgroup of G and G' = G /N be the quotient. Let g: N — V' be the
corresponding N-torsor. Then, for o' € G', we have

g*SV//U(O“/)= Z svyu(o).

oeG,6=0’

Progf: — 1. Clear from Lemma 5.4.4.2.

2. For o = 1, it follows from Lemma 5.4.4.1. For o # 1, it is clear from the defini-
tion.

3. Clear from Lemma 5.4.4.3. U

Corollary 7.1.3. — If the order of 0 € G s not a power of p, we have
Sv/u (O') =0.

Progf: — By Lemma 7.1.2.2, we may assume that G is the cyclic group generated
by 0. Assume the order of o is not a power of p. Let N C G be the p-Sylow subgroup and
U’ — U be the corresponding G’ = G/N-torsor. Then, since the order of G’ is prime to p,
the finite étale morphism U" — U is tamely ramified with respect to S by Corollary 2.4.5.
Hence, it follows from Corollary 5.4.2 applied to V' = V. 0J

For an element o € G of order a power of p and an integer ¢ prime to p, Conjec-
ture 5.4.6 predicts

Sv/u (0) = Sv/u (0 i).

Corollary 7.1.4. — Let the notation be as in Definition 7.1.1. Let X be a normal proper scheme
over S contarning U as a dense open subscheme and let Y be the normalization of X in V. Let 0 € G
be an element not contained in any conjugate of a p-Sylow group of the mertia group Iy C G for any
geometric point y of Y. Then, we have

syyu(o) =0.

Proof. — By Corollary 7.1.3, it suffices to consider the case where the order of o
is a power of p. As in the proof of Corollary 7.1.3, we may assume that G is the cyclic
group generated by o. Let N C G be the unique maximal proper subgroup generated by
o?. Let V' — U be the corresponding G’ = G/N-torsor and let Y’ be normalization of X
in V'. Then, by the assumption, the inertia group at every geometric point is a subgroup
of N and hence Y’ — X is étale. Hence the assertion follows from Corollary 5.4.2.  [J

7.2. Swan class of a locally constant sheaf. — We briefly recall the Brauer trace of an
£-regular element [18]. Let G be a finite group and £ be a prime number. An element
o € G is called an £-regular element if the order of o is prime to £. Let G® denote the
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subset of G consisting of £-regular elements. For an element o of a pro-finite group, we
say that o is £-regular if it is a projective limit of £-regular elements.

Let M be an Fy-vector space of finite dimension 7 and o be an automorphism of
M of order prime to £. Then the Brauer trace T’ (o : M) e Z" is defined as follows. Let
oy, ...,0, € l_;'éX be the eigenvalues of 0 on M counted with multiplicities and &, ..., &, €
Z,* be the liftings of finite orders prime to £. Then the Brauer trace is defined by
T (o : M) =YY" a.

Let f: V— U be a finite étale G-torsor for a finite group G such that the
generic fiber Vg — Uy is tamely ramified with respect to K. By Corollary 7.1.3, we
have sy,y(0) = 0, if the order of o is not a power of p. In the following, let G, de-
note the subset of G consisting of elements of order a power of p. For £ # p, we have
G(/,) C G(E). We put FQG(aV/UV)Q@/}&) = FoG(aV/UV)Q ®Q, Q'(é‘poc), FOG(BV/UV)Z[;[,oo] =
FoG(0v,uV) ®z Z[{)~] etc.

Definition 7.2.1. — Let U be a regular flat separated scheme of finite type over S = Spec O
and let F be a locally constant constructible Fy-sheaf on U. Let f : N — U be a finite étale G-torsor
Jor a finite group G such that f*F is a constant sheaf on V. We assume that the generic fiber Vx — Uxk
is tamely ramified with respect to K. Let M be the Fy-representation of G corresponding to JF.

Then, we define the Swan class Swy,yF € FOG(E)V/UV)Q(;/)&) by

(7.2.1.1) SwyuF =Y Ti"(0 : M) - sy (o).

UEG@)

By Lemma 7.1.2.1 and Tr* (1 : M) = dimM, the defining equality (7.2.1.1) is
equivalent to the following:

(7.2.1.2) SwyuF = ) (dmM—T" (o : M) - (T, Ay)"™.

O’EG(p),;ﬁl

Recall that in [27], the Swan class is defined similarly for a locally constant sheaf on a
smooth scheme over a perfect field and is called the naive Swan class and is denoted
by Sw’. Modifying the notation, we remove “’”. If we assume Conjecture 5.4.6 asserting
that sy,u(o) = S\r/U(Gi) for an integer 7 prime to p, the Swan class Swy,yF is in fact
defined in the subspace FyG(dv,uV)g C FOG(&)V/UV)Q@/?M).

If we assume a strong form of resolution of singularity, the Swan character class is
defined integrally (5.3.8.6) and hence the Swan class Swy,uF is defined as an element
of F 0G(8V/UV)Z[;ﬁOO]. Further, if we assume Conjecture 5.4.6, the Swan class Swy,uF is
in fact defined integrally in the subgroup FyG(dy,uV) C FOG(GV/UV)Z[;/]OO]. When, we
emphasize that it is defined integrally, we write SwZ s and call it the integral Swan
class. Note that Conjecture 5.4.6 itself is a consequence of a strong form of equivariant
resolution of singularities.

Similarly as [27, Lemma 4.3.10], we have the following analogue of [18, Théo-
reme 2.1].
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Proposition 7.2.2. — (cf. [43, Corollaire 3.4]) Let U be a regular flat separated scheme of
Sfinite type over S = Spec Ok and F and Fy be locally constant constructible sheaves of Fo-modules on
U. Let f: V — U be a finite étale G-torsor for a finite group G such that f*F, and f*Fy are constant
on 'V and that the generic fiber Vx — Uk s tamely ramified with respect to K.

Let X be a proper normal scheme over S contaiming U as a dense open subscheme. Assume
that, for every geometric point x of X, the restriction to a p-Sylow subgroup of the inertia group Iy of
the representations My and My of G corresponding to Fy and Fy are isomorphic. Then, we have
SWV/Ufl == SWV/U.;CQ.

Progf: — It follows from (7.2.1.1) and Corollary 7.1.4. UJ

Lemma 7.2.3. — Let U, V, G and F be as in Definition 7.2.1. Let f": V' — U be a finite
étale G'-torsor for a finite group G' such that f™* F is a constant sheaf on V'. We assume that Vi, — Ug
is tamely ramified with respect to Spec K. Let g: V' — V be a morphism over U compatible with a
group homomorphism G" — G. Then, we have

SWV//UJT = g*SWV/UJT
wm F()G(av/UV/)Q@-poo).
Progf. — It follows from the definition and Lemma 7.1.2.3. 0

By Lemma 7.2.3, the Swan class Swy,yF is G-invariant and hence l%ﬁSwV uF €
FOG(BV/UU)Q({/]DO) is independent of the choice of a Galois covering V trivializing F.
Thus the following definition makes sense.

Definition 7.2.4. — Let U be a regular flat separated scheme of finite type over S = Spec O
and F be a locally constant constructible sheaf of Fy-modules on U.

1. We say that F is tamely ramified on the generic fiber if there exists a finite étale
surjectve morphism f: NV — U such that f*F s constant on 'V and that the generic fiber Vx — Uxg
us tamely ramafied with respect to K.

2. Assume that F is tamely ramafied on the generic fiber and that U is connected. Let f : V — U
be a finute étale G-torsor for a finite group G such that f*F s constant on NV and that F corresponds to
a faithful ¥ y-representation of G.

Then, we put

FOG(BJ:U)Q(;})OQ) = FOG(BV/UU)Q({,,OO)

and define the Swan class

1
SWUf = @ﬂSWV/UF
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to be the vmage by the isomorphism_from the G-fixed part

1
@ﬂl F()G(av/UV)a(Cpm) d FOG(aV/UU)Q({pOO) = FoG(an)Q(;poo).
1f'U 15 not connected, we define the Swan class componentwise.

For the G-torsor V in Definition 7.2.4.2, we have Swy,uF = f*SwyF by Lemma
5.2.5.2. If K is of characteristic 0, every locally constant sheaf on U is tamely ramified on
the generic fiber. In the case where U = Spec K and F is wildly ramified, the Swan class
SwyF € F OG(an)Q@pm) = Q(¢y~) is nothing but the Swan conductor

1
SWKF: @ Z TI‘Br(O': M) 'j:kSL/K(O‘)
(TEG@)
by (7.1.1.2), known to be an integer > 1.
The Swan classes satisfy the following additivity and the excision formula.

Proposition 71.2.5. — Let U be a regular flat separated scheme of finite type over S = Spec O
and F be a locally constant constructible sheaf of Fy-modules on U. We assume that F is tamely
ramified on the generic fiber.

1. For an exact sequence 0 — F' — F — F" — 0 of locally constant constructible sheaves
of Fy-modules on U, we have

(7.2.5.1) SwyF = SwyF' 4+ SwyF”

n FOG(B;U)Q@W).
2. Let Uy C U be a regular closed subscheme and Uy = U \ U, be the complement. For the
tmmersions 12 Uy — U and j: Uy — U, we have

(7.2.5.2) SWUJT :].!SWU()ch() +i*SWU1F|U1
n F()G(aj:U)Q(;poo).

Proof: — 1. Clear from (7.2.1.1).
2. It follows from (7.2.1.1) and the excision formula Theorem 6.2.2. (Il

For a smooth Qy-sheaf F on U, its Swan class Swy.F is defined as the Swan class
SwuF of the reduction F = Fo/AFy modulo £. Though thC_Fg -sheaf F itself depend on
the choice of a lattice Fy, 1s defined as the Swan class SwyF is well-defined by Proposi-
tion 7.2.5.1.

We prove an induction formula for the Swan classes. The following results are
regarded as the relative conductor formula in the case of relative dimension 0.
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Proposition 7.2.6. — Let U be a regular flat separated scheme of finite type over S and f: V —
U be a finite étale G-torsor for a finite group G such that the generic fiber Vx — Uk s tamely ramafied
with respect to K. Let H C G be a subgroup and g: N — U’ be the corresponding H-torsor. Let F be
a locally constant constructible sheaf of Fy-modules on U’ such that g* F is a constant sheaf on N and
let h: U" — U denote the canonical map.

Let T C G be a complete set of representatives of G /H. Then, we have

(7.2.6.1) SwyuhF =) T (SwyjurF + rank F - g*D% ;)

el
n F()G(aV/UV) Q(gy00) -

Proof. — Let M be the representation of H corresponding to F. Then, we have
T (o IndgM) = ZreT,flmeH TP (r~'ot : M). Hence, by the definition of the Swan
class, the left hand side of (7.2.6.1) is equal to

(7.2.6.2) Z TrBr(G :IndgM) -syyu(o)

O’EG(/))

= Z Z TrBr(t_IO“TIM) syyu(o)

0€Gy) teT,rloteH

= Z‘L’*< Z T (p : M) - SV/U(P))-

tel peHp)

Thus, it follows from Lemma 7.1.2.2. [

Corollary 71.2.7. — Let f : U — V be a finite étale morphism of regular flat schemes of finite
type over S such that the generic fiber Ux — Vx s tamely ramified with respect to K. Let F be a locally
constant constructible sheaf of Fy-modules on U such that there exists a finite étale morphism g: U’ — U
over S such that g* F s constant on U" and that Uy, — Vi is tamely ramified with respect to K.

Then, we have

(7.2.7.1) SwyfiF = £iSwuF + rank F - dfy.
In particular; for F = Fy, we obtain
(7.2.7.2) SwifiFe = 4.

Progf: — It follows immediately from (7.2.1.1), (5.4.3.2), Proposition 7.2.6 and the
remark on the Galois closure after Definition 2.4.1. ]

We expect the following generalization of the Hasse-Arf theorem to hold.
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Conjecture 7.2.8. — The Swan class SwyF s in the image of the map ¥yG(dy,uU) —
FoG(0vuU)qem)-

Note that Conjecture 7.2.8 is much stronger than the statement that the Swan class
Swy,uF is in the image of the map FyG(dy,uV) — FOG(BV/UV)Q@/]OO), which is, as we
have seen above, a consequence of a strong form of equivariant resolution of singularities.
We will prove Conjecture 7.2.8 in the case dim Uk < 1 later at Corollary 8.3.8.

Conjecture 7.2.8 is related to the following conjecture of Serre.

Comgecture 7.2.9 ([41, Section 6]). — Let A be a regular local noetherian ring and G be
a_finite group of automorphisms of A. Assume that the fixed part AC is noetherian and that for every
o € G,0 # 1, the quotient A/1, by the ideal 1, = (0 (a) — a; a € A) s of finte length. Then the
Z-valued function ac of G defined by

length A/, ifo #1
o ZreG,r;&l ag(t) fo=1

ag (o) =

is a character of G.
We prove Conjecture 7.2.9 in the case where dim A = 2 at the end of Section 8.3.

Lemma 7.2.10. — Assume that the fraction field of A is of characteristic O and that the residue
Sield ¥ of A s of characteristic p > 0. Then, Conjecture 7.2.8 for U such that n = dim Ux + 1 implies
Compecture 7.2.9 for A of dimension n.

Progf: — First, we consider the following special case. Let Y be a regular flat sep-
arated scheme of finite type over S = Spec Ok and y € Y be a closed point in the closed
fiber as in Proposition 5.1.7. Let G be a finite group of automorphisms of Y over S such
that, for every o € G, o # 1, the fixed part Y is equal to {y} set-theoretically. We assume
that the quotient X =Y/G exists as a scheme of finite type over S. We put V=Y \ {y}
and/: V—->U=V/GCX.

We show that Conjecture 7.2.8 for f: V — U and G implies Conjecture 7.2.8
for A = Oy, and G. We consider the image sg(0) € Q of sy,u(0) € FoG(dyv,uV)g by
FoG(0v,uV)g = FoG(Zv,uY)g — FoG({»}))g = Q, Conjecture 7.2.8 implies that the
function sg(o) is a character of G. By Proposition 5.1.7, we have ag = r¢ — ug + s¢
where 7 and ug denote the characters of the regular and the unit representations of G
respectively. Hence, the assertion is proved in this case.

We reduce the general case to the special case above similarly as in the proof of [28,
Lemma (5.3)]. By replacing A by the completion, we may assume A and hence A® are
complete. Let C be a complete valuation ring such that p is a prime of C and the residue
field £ is the same as that of A®. Then, by [12, Chapitre 0, Théoréme 19.8.8 (ii)] there
exists a finite injection C[[#, ..., #,_1]] = A°. Let W(k) be the ring of Witt vectors and
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we take a local homomorphism C — W. By replacing A by a factor of the completion
A®cW, we may assume £ is algebraically closed and C = W. Then, the rest of the argu-
ment is the same as that in the proof of [28, Lemma (5.3)] by replacing £[[#, ..., 4,—1]1]
by WI[t, ..., t,—1]] and k{#, ..., t,_1} by the strict localization W{t, ..., t,1}. ]

Conjecture 5.4.6 implies the weaker statement that the Swan class SwyF is in
the image of the map FyG(dy,uU)g — FOG(av/UU)Q@/)m). Since we do not know the
proof of Conjecture 5.4.6 in general, we make the following definition. Let Pro)/Q

FOG(SV/UU)Q@/)OO) — FyG(dy,uU)q be the projection induced by h_r)nn mﬂ%”) /Q-
Definition 7.2.11. — The rationalized Swan class Swgf € FoG(dy,uU)q is the image of
the Swan class SwyF by the projection Proc0)/Q - FyG(oy /UU)Q@poo) — FyG(9y,uU)g.

In [27], the rationalized Swan class is called the Swan class and is denoted by Sw.
By modifying the notation there we write the Swan class by Sw and the rationalized Swan
class by Sw2.

7.3. Conductor formula_for a relative curve. — Let f: U" — U be a smooth morphism
of separated regular flat schemes of finite type over S and F be a locally constant con-
structible sheaf of Fy-modules on U’. Let 7': V' — U’ be a finite étale morphism such
that the pull-back 7" F is a constant sheaf on V'. We assume that the following conditions
are satisfied:

(7.3.0.1) There exists a proper smooth scheme X’ over U containing U’ as the
complement U = X"\ D of a divisor D with simple normal crossing rel-
atively to U. The finite étale morphism 7’: V' — U’ is tamely ramified
with respect to X'.

Then, by [17], the higher direct images R?/F, and R?F are locally constant sheaves
on U. Further, for the alternating sum of ranks, we have

(7.3.0.2) rank RAF = rank F - rank R/F,.

We assume that the locally constant sheaves R/ F on U are tamely ramified on
the generic fiber and that F on U’ is tamely ramified on the generic fiber. Then the Swan
class

SwuRAF = (= 1)'SwyRLF

q

€ FOG(an)Q@pOo ) is also defined as the alternating sum and the Swan class SwiF is de-
fined. A conductor formula should express the Swan class SwyR/F in terms of the class
SwyrF. We prove a conductor formula for a relative curve under a certain assumption in
Corollary 7.3.6 and in general in Section 7.5, assuming K is of characteristic 0.



148 KAZUYA KATO, TAKESHI SAITO

First, we give a general formalism Proposition 7.3.3 to prove a conductor formula.
We consider a commutative diagram

U v
(7.3.0.3) fl lg
U <&— V
of regular flat separated schemes of finite type over S satisfying the following condition:

(7.3.0.4) The horizontal arrows are finite étale, V is a G-torsor over U and V' is a
G’-torsor over U’ for finite groups G and G’. The arrow g is compatible
with a morphism ¢ : G" — G of finite groups in the sense that, for o € G’
and T =¢(0) € G,we have goo =71 0g.

Lemma 7.3.1. — We consider a commutative diagram (7.3.0.3) of separated regular flat
schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that the higher
direct image R1a\F is a constant sheaf on 'V for every ¢ > 0.

Let o € G’ be an element and we put T = @(0) € G. Let 1] be a geometric point of V and T be
an automorphism of 1) compatible with T. Let 0™ o T denote the automorphisms of HI(V7, Qy) and
HI(V%, Fy) defined by the pull-back by o x T on V; =V’ Xy 1.

1. The automorphism o o T of HI(V, ¥,) is independent of the choice of T.

2. Assume that o and T are £-regular. Let o* denote the automorphism o o T* of H*(V7, Fy)
independent of T. Then, the alternating sum Tr(o™ o T*: H(V7, Qy)) is independent of T and is
equal to the alternating sum TP (o, H*(V%,¥,)) of Brauer traces.

Proof: — 1. By the assumption that R/%gF, is constant, the action of o0 o T on
H! (V;-], F,) is independent of the lifting T of 7.

2. Since o and 7 are assumed {-regular, the actions of 0* o T on H*(V%, Q) and
on H* (V%, F,) are of finite order prime-to-£. Hence the assertion follows. ]

Lemma 7.3.2. — We consider a commutative diagram (7.3.0.3) of separated regular flat
schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Let F be a locally constant
constructible sheaf of F y-modules on U' such that the pull-back 7w"* JF is a constant sheaf on N'. Assume
that the higher direct image Rig¥, and the pull-back w*RIfF are constant sheaves on 'V for every
q=>0.

Let T € G be an L-regular element. Let & be a geometric point of U and Lifi it lo a geomelric
point i of V. Let M. be the Fy-representation of G corresponding to . Then, we have

(7.3.2.1) TrBr(r,Hf(U’é,}"))zlé/l > T¥(orH (V. Fy)) - T (0" : M),
0eGO | peG;

p(0)=ptp~!
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Progf. — By the assumption that 7*R7%F are constant on V, we may regard
H/(U,, F) as an F,-representation of G and the Brauer trace TeP (, H*(U,, F)) is de-
fined.

We consider Hf(V%, F,) as an F,-representation of G’ by the pull-back action of
G’ on V;: =V’ xy&. By [18, Lemma 2.2], the alternating sum H*(VZ%, F,) defines an
element [H*(VZ, F,)] of the Grothendieck group P,(G’) of the exact category of finitely

generated projective Fy[G']-modules ([40, Partie III 1.3]).
Since 7 1s assumed £-regular, we have a decomposition

HY (VL. F) = @ HI(V
xe(®

by characters of the cyclic subgroup (t) C G and an equality

[ (Ve F)] = D _[H:(VE Fo), ]

xe(®
in P,(G’). Similarly as [18, Lemma 2.2], we obtain
(7.3.2.2) dimH} (U, F)  =dim([H! (V. Fo) |- i)
Thus, we have
(7.3.23)  TU(H(ULF)) = Y x (o) dim([H: (V. Fo) ] 1M])°
xefD)

Similarly as [18, Lemma 2.3], the right hand side of (7.3.2.3) is equal to

Zx() |G'|<Z T (" H(VL R ) TrBr(a*;M))

oeG/®O
1 _
=G > (Z x(r)-TrBr(o*:Hj(Vé,FZ)X)) ST (0™ 2 M)
| |0’€G,(l) xelt)

=5 Z T (0" x °: H (V5 Fr)) - T (0% : M).
I et
For p € G, let V/ - denote the geometric fiber of V' — V by the composition of
n — V with p: V— V. Then, the geometric fiber V/g =V’ xy £ is the disjoint union
[,cc V) and we have

T (o x T HI (VL. F))= Y. T(c" ot : HI(V,;). Fu)).

peG; p(o)=ptp~!
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We have Tr¥ (o* o 7* : H*(V .., F,)) = Tt (6* : H*(V, F,)) since R/gF, are assumed
. . g

p@m)°
constant on V. O

Proposition 7.3.3. — We consider a commutative diagram (7.3.0.3) of separated regular flat
schemes of finite type over S satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that U, U’, V
and V' are irreducible and that Vx — Uy and Vi, — Uy are tamely ramified with respect to K.

Let € be a prime number invertible on'S and F be a locally constant constructible sheaf of F -
modules on U'. Assume further that the pull-backs w*RIfimw ¥y and w*RIfF are constant on V. Let
E be a geometric point of U and 1) be a geometric point of N above & . For an £-regular element o € G/,

define Tr™ (o H*(V., F,)) as in Lemma 7.3.1. Then, we have the following.
1. Assume that, for each non-trivial £-regular element o € G' and v = ¢(0) € G, we have

(7.3.3.1) Te" (o : HY (V5. Fe)) - (Try Av)' 8 = @((Ty, Ayr))®
in oGy vV)q. Then, we have
(7.3.3.2) SwuRAF — rank F - SwyRAF, = gSwyr F
n FoG(3v/uU) g )-
2. Assume K s of characteristic O and suppose U and hence V, U', V" are schemes over K.
Assume that, for each £-regular element o € G’ and T = @(0) € G, we have
(7.3.3.3) Te* (0" : HY (V. Fe)) - (Try Av)) = g(To, Ay))'™®
in FoG(0rV)q. Then, we have
(7.3.3.4) SwuRAF, = —f((Au, Au)) + x(Uf) - ((Au, Ap))*®
n FoG(0rU) g -
Progf- — 1. Let M denote the representation of G" corresponding to the locally

constant Fy-sheaf F on U’. By (7.3.0.2) and by the definition of the Swan class (7.2.1.2),
the equality (7.3.3.2) is equivalent to the following:

1 % !/ T * !/
(7.3.3.5) Gl > (T"(e, H (U, F)) — rank F - T (z, HY (U}, Fy)))
1€GO, 11
X 7((Tey Av))'
1

Y (T (e M) — dimM) - /(D Ay))".

0eGO, g£]

G|
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Substituting (7.3.2.1), we see that the left hand side of (7.3.3.5) is

1 1 * * /
(7.3.3.6) Gl > & > T(or:HI(V,.F))
1eG®) 1#£1 €GO, g£1, peG;
p(0)=ptp~!
x (Tr™ (o, M) — dim M) - 7, ((T';, Ay))"*®
_ 1 Br 1
=G > (1" (0. M) — dim M)

0eG'O,0#1

|G| ZTrB‘ o H* Ff)) 'n*((rp‘lf/)(a)p’ AV))log'

peG

By the assumption (7.3.3.1), each term in the second summation in the second line of
(7.3.3.6) 1s

7048 (Do, Ay) 8 = firr (Ty, Ayr))%.

Thus the equality (7.3.3.5) follows.
2. Similarly as above, the left hand side of the equality (7.3.3.4) is equal to

(7.3.3.7) S Z T (2, HY (U;, o)) - (e, Ay))*®
1eG®
+ @ dim H; (Ug, Fr) - 7.((Te, Av)",
7eGO

Substituting (7.3.2.1), we see that the first term in (7.3.3.7) is equal to

PR CEIVE |G|ZTrBra L HY (VS Fy))

oeG'O peG

X n*((rpfl(p((r)p’ AV)) og.

IG’I

Hence, similarly as above, by the assumption (7.3.3.3), it is further equal to

" (Au, Ap))**

D Sy, Av)E =1

/ ’
|G | oeG'O |G

=A((Au, Ap)™.

Similarly, the second term in (7.3.3.7) is equal to Xf(Ué)times ﬁ Y e T (T, Ay))s =
((Au, Ayp))™¢ and the equality (7.3.3.4) follows. [
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We derive from the crucial step Proposition 6.3.2 a sufficient condition on a relative
curve for the assumptions (7.3.3.1) and (7.3.3.3) of Proposition 7.3.3 to be satisfied.

Proposition 7.3.4. — Let f: U — U be a smooth morphism of relative dimension 1 of
separated regular flat schemes of finite type over S. Let £ be a prime number invertible on S and F be a
locally constant constructible sheaf of ¥ y-modules on U'. We consider a commutative diagram (7.3.0.3)
satisfying the conditions (7.3.0.1) and (7.3.0.4). Assume that the pull-back 7w'™* F is constant on V' and
that w*RIfTT[F, s constant on 'V for every ¢ > 0.

We assume that V and V" are integral. Let n denote the generic point of V and let 0 be a geometric
pownt above 1. Let 0 € G" and t = (o) € G be non-trivial £-regular elements.

We also consider a commutative diagram

V —=5 Y>D
(7.3.4.1) lg F
vV <5 Y

of separated schemes of finite type over S and a finite famuly € of Cartier divisors Y satisfying the following
condition:

(7.3.4.2) The schemes Y and Y' are proper over S. There exist d sections (42 Y — Y');
such that the pair (X', () is a d pointed stable curve of genus g over Y and that
D C Y is the disjoint union of the sections 4,(Y). The open subscheme V C Y s
the complement of the union of €. The restriction Yy, =Y' Xy V — V is smooth
and V' C Y, 15 the complement of Dv.. The action of G on 'V s extended to an
admissible action on'Y and on &, in the sense that the quotient X =Y /G exists as
a scheme.
Let &' denote the family of Cartier divisors of Y' defined as the union of the pull-
back of € and the sections (4,(Y))y. Then, 25 juYk and Z\g,: /U,Yi{ are empty.

Then, we have
343 BT AF) =T(0" H (V) - (0, AF)
n FOG(EV/UY)Q;

Progf. — Since the smooth compactification Y, D V is unique, the action of G’ on
V' is extended uniquely to that on Y}, compatible with the action of G on V. Further,
since an extension Y’ D Yy, is unique, the action of G’ on Yy, is extended uniquely to that
on Y’ compatible with the admissible action of G on Y. Since Y’ — Y is projective and
G’ acts on the relatively ample sheaf €3, ,y(logD), the action of G’ on Y' is admissible in
the sense that the quotient X' =Y’/G’ exists as a scheme. Hence, by Lemma 5.3.6, the
quotients X =Y/G and X' =Y'/G’ contains U and U’ as the complements of Cartier
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divisors respectively. In particular, we have a commutative diagram (6.3.1.3) satisfying
(6.3.1.4).

Let T C V' xy V' be the graph T'; of 7. The base changes Y/ and Y. defined as
in Proposition 6.3.2 are isomorphic to Y{,. We define the log product and the log blow-up
(Y/(l) X1 Y/(z)) - (Y/(l) X Y/(Q))’ with respect to the log structure defined by the sections
(4:(T));. Since the automorphism o of Yy, = YT(I) permutes the sections (4(T)); of Y/(I)
the intersection #(T) No (#(T)) is either empty or equal to a divisor 4(T) of Y 'D Hence
by the universality of blow-up, the closed immersion y = (1, 0): Y, — Y%l) X1 Y2 is
uniquely lifted to a closed immersion y: Y/(l) — (Y/(l) X Y/(Z))’ LetI C (Y/(l) X Y/(Z))’
denote the image of ' and Fr=r'n (Y/(l) X1 Y’(Z)) be the intersection. Then, I'' and
hence T are flat over T.

We regard Y as a log scheme with the log structure defined by £ and define the
log product (Y xs Y)™. By applying Proposition 6.3.2 to Y’ — Y, we obtain a finite
family (K;);er of finite extensions of K, a family (y;: SpecK; = T),e of morphisms over
S extended to (y;: Spec Ok, — (Y Xs Y) 7). such that the image of the closed points
¥;(5;) are in the log diagonal Al\?g C (Y x5 Y)™ and a family (7;),e; of rational numbers
satisfying ((T, AY%) = ", 7[7:(s)] and

(7.3.4.4)  f((T.AF) = nTe((T)": H (Vi . Q) - [7:()].

7

Thus, it suffices to show
(7.3.4.5) T (0", Hi (V. Fe)) = Tr((y'T) " HY (Vi Q)

for each 1.

We regard the composition s; = (Y X5 Y)™ — Y as a morphism of log scheme.
Since y;(s;) € (Y X5 Y)™ are in the log diagonal, the composition 5, = Y 5 Y of the
morphisms of log schemes is the same as the original morphism s; = Y of log schemes.
Let 5; be a log geometric point above s; and let ?;[. be the log strict localization. Let T
be the automorphism of Y; induced by 7. We lift the generic geometric point 7 — Y
to a geometric point 7 — Y5 dominating the generic point 7 € Y5,. Let £y be the fixed
subfield of k (77) by an automorphism 7 of order prime to £. We take an £-regular lifting
T € Gal(n/ky) of T € Gal(n/k)) = (T). By applying Lemma 7.3.1.2., we obtain

™ (0%, Hj(V}), F;))=Tr(c* o 7%, Hj(V%, Q)).

We deduce (7.3.4.5) from Proposition 1.6.2. We show that the assumption of
Proposition 1.6.2 is satisfied. The intersection rn (VY s Vi) is the graph T, of
o . Hence, the second projection rn (V%l) X V%Q)) =T, — V¥ is proper and T, is flat
over T. Thus I', satisfies the conditions in Proposition 1.6.2. We define a map Y; — Sy
to a regular noetherian scheme satisfying the condition (1.6.2.2) for Y; — S in the nota-
tion there. We consider the map Y — M, , to the moduli of d pointed stable curves of
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genus ¢ defined by the pointed stable curve (X, (4)). Let Sy be the strict localization of
M, ; at the geometric point 5;. Then, the map Y5, — Sy satisfies the condition (1.6.2.2).
Since T is compatible with T, we may apply Proposition 1.6.2 and we obtain

Tr(o* o 7%, H! (V;. Q) = Tr((»'T)": H;(Ug . Q))).
Thus, the equality (7.3.4.5) 1s proved. 0J

Similarly, if K is of characteristic 0, the same argument gives us the following vari-
ant.

Proposition 7.3.5. — We assume K s of characteristic 0. Let the assumption be the same as

in Proposition 7.3.4 except that U s a scheme over K and that we do not assume o or T be non-trival.
Then, the equality (7.3.4.3) holds in FyG(Yr)q.

We derive a conductor formula for relative curves from Proposition 7.3.3 assuming
char K =0.

Corollary 7.3.6. — Assume that K is of characteristic 0. Let f: U — U be a smooth
morphism or relative dimension 1 of separated regular flat schemes of finite type over S and let £ be a
prime number invertible on S. We assume that U and U' are connected. Let [+ X' — U be a proper
smooth curve with geometrically connected fibers of genus g and let D be a divisor of X' finite étale of
degree d over U such that U' =X\ D and 2g — 2+ d > 0.

1. Let F be a locally constant constructible sheaf of Fy-modules on U'. Then, there exists a finite
étale covering v : V' — U such that we have an equality

(7.3.6.1) SwuRAF — rank F - SwuRfF, = fiSwy F

m FOG(BV/UU)Q(;W).
2. Assume that the schemes U and U’ are schemes over K. Then, we have

(7.3.6.2) SwuRAF, = —f((Au, Au)) + x.(Uz) - ((Au, Ap))*®
n FoG(0rU)qe ) Sor a geometric point & of U.

Proof: — By the assumption char K = 0, the locally constant sheaf 7 on U" and
the locally constant sheaves R?fF and R?4F, on U are tamely ramified on the generic
fiber.

We define a commutative diagram (7.3.0.3) satisfying the condition (7.3.0.4). Since
we assume K is of characteristic 0, the sheaf F is tamely ramified along D by Abhyankar’s
lemma [37, Proposition 5.5]. Hence, we may take a G'-torsor 7w : V' — U’ for a finite
group G’ that is tamely ramified along D such that the pull-back 7*F is a constant sheaf
on U'. Let Y’ be the normalization of X" in U". Then, since V' — U’ is tamely ramified
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along D, the proper curve Y’ is smooth over U and V' C Y" is the complement of a divisor
D’ finite étale over U by Lemma 7.3.7 below.

Since Y — U is proper smooth, its Stein factorization D” — U is finite étale [11,
Remarque (7.8.10)]. Let 7': V — U be a finite étale G-torsor trivializing the Stein factor-
1ization of the finite étale coverings D" and D”. Replacing V' by a connected component
of U xy V and G’ by the stabilizer in G’ x H, we obtain a commutative diagram (7.3.0.3)
satisfying the condition (7.3.0.4).

The proper smooth curve Y’ — V has geometrically connected fibers of genus g
and D, is the union of ¢’ disjoint sections. By the assumption that 2¢ —2+d > 0, we have
2¢' — 2+ d > 0. Hence, with an ordering of sections V — D', the pair (Y, D) defines
a d' pointed smooth stable curve of genus g'. Further replacing V if necessary, we may
assume that 7" RIfF,, 7*RIF and n"*RIfZ/nZ are constant on V for some integer
n > 3 invertible on S.

Let Y be a proper scheme over S containing V as the complement of a family £
of Cartier divisors such that Zy,;Y = £¢ Y. Let V> M, », be the morphism to the
moduli space defined by the ¢’ pointed smooth curve Y’ of genus ¢’ over V. By replacing
Y by the schematic closure of the graph of the map V— M, , ,in Y xz M &.d' iy WE May
assume that V— M, ,, is extended to a morphism Y — M ¢.4 .- Further by replacing
Y if necessary, we may and do assume that the action of G on Y is admissible in the
sense that the quotient Y/G exists as a scheme and that £ carries an action of G. The
pull-back of the universal family by the map Y — M ¢4 18 a pointed stable curve over
Y and satisfies the condition (7.3.4.2).

Thus, the assumptions in Propositions 7.3.4 and 7.3.5 are satisfied. By Proposi-
tions 7.3.4 and 7.3.5, the assumptions (7.3.3.1) and (7.3.3.3) in Proposition 7.3.3 are
satisfied respectively. Thus the assertion follows. 0J

Lemma 7.3.7. — Let S be a normal scheme and X be a smooth curve over S. Let D be a
divisor of X étale over S and U = X\ D be the complement. Let V- — U be a finite étale morphism
tamely ramified along D and Y be the normalization of X in V. Then, Y is smooth over S and V s the
complement of a divisor E of Y étale over S.

Proof. — Let x be a geometric point of X and ¢ be a function on a neighborhood
defining D. Let » be a geometric point of Y above x. Then, by Abhyankar’s lemma [37,
Proposition 5.5], Y is étale locally isomorphic to X[T]/(1T" — ¢) for an integer n > 1
invertible at x on a neighborhood of . Hence the assertion follows. U

7.4. Swan class of a constructible sheaf: — In the rest of this section, we assume that
the characteristic of K is 0. We define the Swan class for a constructible sheaf on a scheme
over K.

For a separated scheme U of finite type over K, let K(U, F,) be the Grothendieck
group of constructible Fy-sheaves on the étale site of U. More precisely, it is the quotient
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of the free abelian group generated by the isomorphism classes [F] of constructible F,-
sheaves F on the étale site of U divided by the relations [F] = [F'] + [F"] for exact
sequences 0 > F' — F — F" — 0.

Lemma 7.4.1. — The abelian group K (U, F)) is generated by the classes [1F ] where 1
72— U s a locally closed immersion of smooth subscheme and F is a locally constant constructible

sheaf of Fy-modules on Z.. The relations are given by

(7.4.1.1) [0 F1=[aF]+ [2F"]

Jor exact sequences 0 — F' — F — F" — 0 of locally constant constructible F y-modules on 7. and
(7.4.1.2) [0 F ] = [0 Flz,] + [0 F |7, ]

Jfor smooth locally closed subschemes 7., C Z. where iy : Zoy =72\ 7, — U and 1, : Z, — U are the

UMMersions.

Proof. — We consider the free abelian group generated by the classes [4F] where
¢:Z — U are locally closed immersions of smooth subschemes and F are locally constant
constructible F,-modules on Z. Let K’ denote its quotient by the relations (7.4.1.1) and
(7.4.1.2). Clearly, we have a canonical map K’ — K(U, F;). The inverse is defined as
follows.

For a constructible sheaf F on U, there exists a finite partition U = [ [, U; by
smooth schemes such that F|y, are locally constant. It follows from (7.4.1.2) that the
sum ) _[F|y,] is independent of the partition. Thus, the class [F] =) [Fly,] € K’ is
well-defined. Further, the equalities (7.4.1.1) and (7.4.1.2) implies [F] = [F'] + [F"] for
exact sequences 0 — F' — F — F” — 0. Thus, the map K(U, F;) — K’ is well-defined
and 1s the inverse of the map K’ — K(U, F,) above. ]

Proposition 7.4.2. — For separated schemes U of finite type over K, there exists a unique way
lo attach morphisms

(7.4.2.1) Swy: K(U,F)) - FoG(0rU) e )
satisfying the following properties:
(1) If U is smooth over K and if F is a locally constant constructible sheaf of Fy-modules on

U, we have Swy([F]) = SwuF.
(2) For an immersion i: U — U, the diagram

Swy

K(U,F,) —— FoG(9rU) gz )

(7.4.2.2) J }!

W’U/

— S
KU, F) — FOG(aFU/)Q(g’/,oo)

s commutative.
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Progf. — By (1) and (2), the map Swy is characterized by Swy ([ F]) = 4Sw F for
a locally constant constructible sheaf F on a regular subscheme U" and the immersion
i: U — U. Hence the uniqueness follows from Lemma 7.4.1. Further by Lemma 7.4.1,
the existence follows from Proposition 7.2.5. U

We define a modification of the map Swy with stronger compatibility for push-
forward. Yor a separated scheme U of finite type over K, let Const(U) be the Z-module
of constructible Z-valued functions on U. For a constructible F,-sheaf F on U, let
rank F € Const(U) be the constructible function defined by rank F(x) = dim JF;. Let
rank: K(U, F,) — Const(U) be the homomorphism sending the class [F] to the func-
tion rank F.

Similarly as Proposition 7.4.2, we have a map Chy: Const(U) — FyG(9rU)g
characterized as follows.

Proposition 71.4.3. — For separated schemes U of finite type over K, there exists a unique way
to attach morphisms

(7.4.3.1) Chy: Const(U) — FyG(3rU)g
satisfying the following properties:

(1) If'U is smooth over K, for the constant function 1y, we have Chy (1y) = ((Ay, Ay))"s.
(2) For an immersion 12 U — U, the diagram

Const(U) —%> F,G(3:U)q
(7.4.3.2) J }-!
Const(U) —%s FyG(0:U)g
s commutative.

Progf: — It follows from the excision formula Theorem 6.2.2. U

_ Definition 7.4.4. — Let U be a separated scheme of finite type over K. For a constructible
F,-sheaf F on U, we define the total Swan class SwyF € FOG(E)FU)Q_(Q]OC) by

(7.4.4.1) SwuF = SwyuF — Chy(rank F).

Corollary 7.4.5. — 1. Assume U is smooth and F is a locally constant constructible Fy-sheaf
of constant rank on U. Let [ - NV — U be a finite étale G-torsor for a finite group G such that w*F s
a constant sheaf. T hen, we have

_— 1
T450) SweF == YO N (T, A
oeG
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9. For separated schemes U of finite type over K, the collection of the maps Swy : K(U, F,) —
FoG(0xU)q(r ) 15 characterized by the following properties:
(1) Under the assumption in 1, we have

7.4.5.2) %U(m):—é T (0 M) (T A%,

oeG

(2) For an tmmersion 1: U — U, the diagram

Swu

K(U,F) —— FG0rU)gen)
(7.4.5.3) J }!
K(U,F)) N FoG(3:U) g0
is commutative.
Progf: — 1. We have
(7.4.5.4) SwyF = SwuF —rank F - ((Au, Ay))™e.

Thus, the equality (7.4.5.1) follows from definition (7.2.1.2) of the Swan class and the
equality [G] - (Aus Au)™ = Y, o fi((Ta AV,

2. We define the map Swy by Swy = Swy — Chy o rank. Then, the commuta-
tive diagram (7.4.5.3) follows from (7.4.2.2) and (7.4.3.2). The uniqueness is clear from
Lemma 7.4.1. N

7.5. Conductor formula. — We keep the assumption that K is of characteristic 0.
We show that the diagram (7.4.5.3) is commutative for arbitrary morphisms over K.
Changing the notation, /: U — V denotes an arbitrary morphism over K of separated
schemes of finite type over K.

Theorem 7.5.1. — Let f: U — 'V be a morphism of separated schemes of finite type over K.
Then, the diagram

Swuy

K(U,F,) — FG0U)g)
(7.5.1.1) Al s
— Swy
K(V.F) —> FG(0rV)gex)

s commutative.
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Proof. — It suffices to show the equality
(7.5.1.2) SwyfilF] = fiSwulF]

for a constructible sheaf F on U. We prove this by induction on the dimensions of U and
V. By a standard devissage using the excision formula, it suffices to show that there exist
dense open subschemes U’ C U, V' C V such that f(U") C V' and that we have

Swyif lon[Flul =fiSwulFlul.
Hence, we may assume the following condition is satisfied.
e The sheaf F is locally constant and the scheme V is smooth.

The formula (7.5.1.2) is compatible with the composition of morphisms. Hence, by the
induction on relative dimension, we may further assume the following,

(7.5.1.3) The morphism f: U — V is smooth of relative dimension < I.

Since we are allowed to shrink V, we may assume that V is connected and that
there exists a proper smooth curve X over V containing U as the complement of a divisor
D finite étale over V. Since the formula (7.5.1.2) is proved for a finite étale morphism in
Corollary 7.2.7, by replacing V by the Stein factorization of X — V, we may assume that
the relative dimension is 1 and that the geometric fibers of X — V is connected. Further
shrinking U and V, we may replace the condition (7.5.1.3) by the following.

(7.5.1.4) There exist a proper smooth and geometrically connected curve f: X —
V of genus g and an open immersion U — X such that U is the com-
plement of a divisor D C X finite and étale over V of degree 4 such that

20—24d>0.
Then, applying Corollary 7.3.6, we obtain the equalities (7.3.6.1) and (7.3.6.2). The
equality (7.5.1.2) follows from them together with (7.4.5.4). UJ

We derive some consequences of Theorem 7.5.1.

Corollary 7.5.2. — Let f: U — V be a smooth morphism of smooth separated schemes of
Sinate type over K. Assume that RINF, s locally constant for every ¢ > 0.

1. Let F be a constructible sheaf of Fy-modules of constant rank on U. Assume that RIAF is
locally constant for every ¢ > 0. Then, we have

(7.5.2.1) SwyRAF = fiSwyF + rank F - SwyR/F,

mn FO (BFV)Q(Q)OO )
2. We have

(7.5.2.2) SwyRfF, = rank R/F, - ((Av, Av)'*® — f((Au, Ap))"®
m F0(8FV)Q(Q)OO).
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Progf. — 1. Since rankRfiF = rank F - rank RfF,, it suffices to apply Theo-
rem 7.5.1 to [F] — rank F - [F,].
2. It suffices to apply Theorem 7.5.1 to [F,]. 0J

If there exist a proper smooth scheme /1 X — V and a divisor D of X with nor-
mal crossings relatively to V such that U is the complement X \ D, the assumption of
Corollary 7.5.2 is satisfied. Further, if ¢ denotes the relative dimension of X over V we
have

rankRﬁFg = (—l)ddeg cd(Q;(/V(logD)).

In particular, for V= SpecK, we have the following

Corollary 7.5.3. — Let U be a smooth separated scheme of finite type over K and F be a
smooth ¥-sheaf of constant rank on U. Then, we have

(7.5.3.1) SwiRT,(Ug, F) = deg SwyF + rank F - SwgRT",(Ug, F),
(7.5.3.2) SwiRT . (Ug, Fy) = —deg((Au, Ap))".

The equality (7.5.3.2) implies the conductor formula of Bloch in the case proved
in [26] as follows. We assume that U is proper smooth over K and X is a proper regular
flat scheme over S = Spec Ok such that U = X and the reduced closed fiber Xy ,.q is
a divisor with simple normal crossings. Then, by Proposition 4.3.8 and [26, (5.4.2.6)],
we have ((Ay, AU))I(%gXSU)~ = ((Avy, AU))I(%’TXSU)N = (—l)dcd(Q}I,(/s(log/log))XF. Thus, in
this case, the equality (7.5.3.2) is equivalent to [26, Theorem 6.2.5] and hence to the
conductor formula of Bloch [3]. This proof of the conductor formula of Bloch uses the
same tools including the localized intersection product. However, the excision formula
allows us to reduce the proof to relative curves.

8. A computation in the rank 1 case

We state Conjecture 8.3.1 comparing the Swan class of a sheaf of rank 1 with
the cycle class defined in [24, Section 5.1] and prove it in Theorem 8.3.7 assuming
dim Uk < 1. Using it, we prove the integrality conjecture Conjecture 7.2.8 under the
assumption dim Uk < 1. In Section 8.2 and in the second half of Section 8.3, we will
assume that K is of characteristic 0.

8.1. Ramification of characters. — We briefly recall the theory of ramification of
characters of Galois groups in [21]. For a field K, let Xk denote the dual group
H'(K,Q/Z) = H*(K,Z) of the abelian quotient G¥* of the absolute Galois group
Gg = Gal(K/K). The cup-product defines a canonical pairing

(8.1.1.1) (, )k: Xg x K*=H*(K,Z) x H(K, G,) — Br(K) = H*(K, G,).
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Assume K is a henselian discrete valuation field and let F be the residue field of
characteristic p > 0. In this subsection, we drop the assumption that I is perfect. We
briefly recall the definition of the exact sequence

0 — Qp — Qp(log) > F — 0

of F-vector spaces. A canonical map dlog: O — Qp = Qpp is defined by a > @~ 'da.
The F-vector space Q2r(log) is defined as the amalgamate sum of 2y with F ®z K* over
F ®z Of with respect to the map dlog: Of — Qy and the inclusion Of — K*. The
valuation K* — Z induces the residue map res: Qp(log) — F. The map dlog: Of —
Qy 1s canonically extended to dlog: K* — Qp(log).

We identify a character x € Xy with the corresponding unramified character
x € Xk and regard Xy as a subgroup of Xk. For a € F, let x, € Xy be the character
defined by the Artin-Schreier equation T? — T = a. We define a map x: F — Xk by
sending a € F to x, € Xy C Xk. In [21, (1.4)], it is shown that there exists a unique map
Ak Qrp(log) — Br(K) that makes the diagram

F x K (a,b)—>a-dlogb QF(log)

(8.1.1.2) Xxll PK

X x K* 5 Br(K)

commutative.

The main construction in [21, Definition (2.1)] is the increasing filtration F, of
Xk indexed by r € N. We have Xg = |J,.,F,Xk. The subgroup FyXx consists of the
characters at most tamely ramified. For r > 1, we put Uy = 1 4+ mj C K*. Then, the
pairing (, )k: Xg X K* maps I,Xg x Uy for r > 1 and FyXg x K* to Im Ax C Br(K).
For an extension L of henselian discrete valuation field such that Ox = K N O}, and
mg Op, = m{, the canonical map Xx — X, sends F, Xk to F,X|.

For r > 1, we put GrrF Xk =F,Xk/F,-1Xk. A canonical injection

(8.1.1.3) rsw, i : Grl Xg — Homp(mj /mi", Qr(log))

is defined in [21, Corollary (5.2)]. It is characterized by the following properties:

(1) For x € F,Xx and ¢ € mj, we have

(8.1.1.4) (x5 1= Ok = Ak (rsw, k() @)

(2) Let L be an arbitrary extension of henselian discrete valuation field such that
Ok =K N O, and mxgO;, = m¢. Let F|, denote the residue field of L. Then,
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the diagram

ISW, K

Gr'Xx —— Homgp(m} /mi", Qr(log))

(8.1.1.5) l l

ISW I,

Grg,XL ——> Homy, (m{’/ m;’f“, Qy, (log))
1S commutative.

For an element x € F, Xk \ F,_1 Xk, the injection
(8.1.1.6) rsw, k() : m;{/mgl — Qr(log)

is called the refined Swan conductor of x and will be denoted by rsw .

We compute the refined Swan conductor of a Kummer character of degree p ex-
plicitly. Assume that K is of characteristic 0 and the residue field F is of characteristic p.
Assume further that K contains a primitive p-th root ¢, of 1. We identity Z/pZ = u, by
¢, and the p-torsion part Xk [p] = H'(K, Z/pZ) with K*/K* = H'(K, u,) by the iso-
morphism 0 : K*/K** — X[p] of Kummer theory. For a € K*, let 6, € Xk [p] denote
the corresponding character.

We put z = ¢, — 1. Then, we have  + pz = (z + 1) — 1 = 0 mod pz* and
ord 7 = ord pz > ord sz. Hence, for an element a € Ok, the reduction of the Kum-
mer equation (1 — z£)’ =1 — az’ gives the Artin-Schreier equation # — { = a and the
unramified character yx; € Xk[p] is identified with 1 — a2 € K*/K*/. In particular, we
have 1 + zZ’mg C K*/. Consequently, we have a commutative diagram

K*/K* —2 Xg[p]

ZlHl—asz T

F — Xl

Proposition 8.1.2. — Let K be a henselian discrete valuation field of mixed characteris-
tic (0, p) containing a primitive p-th root &, of 1. We put ¢ = p - ordx (g, — 1) = ordg’. We
define a decreasing filtration ¥* on K> /K*! by F"(K* /K*?) = Image Uy for m > 1 and by
FO(K*/K*P) = K* /K.

1. ([21, Proposition 4.1]) The isomorphism 0 : K* /K*? — X[p] induces an isomor-
phism

(8.1.2.1) F"(K*/K*") — F,Xkl[p]

Jor 0 <m=¢ —r <¢. Inparticular, we have ¥, Xx[p] = Xk [p].
2. For a € K* such that dlog a # 0 in Qp(log), the map

(8.1.2.2) rswy k (0,) : mf /mi — Qp(log)
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sends ¢ - 7 to —c - dloga for ¢ € Ok.
3. Frl<m=¢—r<danda=1—be Uy, ¢ U, the map

(8.1.2.3)  rsw,x(6,): mi/mi! — Qp(log)
sends ¢- 2 [b to ¢ - dlogb for c € Ok.

Progf: — We identify the p-torsion part Br(K)[p] = H*(K, u,) with H*(K, ,u,fg) by
¢y. Then, for a, b € K*, the cup-product (6,, b)x € Br(K) is identified with the Galois
symbol {a, b} defined as 6, U 6, € H*(K, /,L/Q?Q). Let a € K* and let L be an arbitrary
extension of henselian discrete valuation field. Then, for ¢ € O}, we have

(8.1.2.4) (00 1= 2¢), ={a, 1 =2c} =—{1 = Zc,a} = = (x5, 1 = —Av(e - dlog a).

By the characterization of rsw, g, the equality (8.1.2.4) implies that the map rsw, x is
the zero-map for 7 > ¢. Hence, by the injectivity of rsw,x, we have Gr' Xg[p] = 0 for
r>¢. Thus by Xg = ., F, Xk, we obtain F,Xx[p] = Xk[p]. Now, the equality (8.1.2.4)
implies the assertion 2.

To show the remaining assertions, we use the following elementary lemma on the
symbol map.

r>0

Lemma 8.1.3 ([20, Lemma 6]). — For b, ¢ € K* \ {1} such that bec # 1, we have
(8.1.3.1) {1=06,1=c}={1—be,=b}+{1 —bc,1 —c} — {1 —bc, 1 —b}.

Proof of Lemma. — Since {x, y} = 0 for x, y € K* satisfying x + y = 1, we have

1 —bc 1 —be
1—05,1— =11—be, 1— .
1—256 1—2b

Since 1 — llibb” = _}'1(:[), the right hand side is equal to that of (8.1.3.1). Further, since

%_b + 1;_517 = 1, the left hand side is equal to that of (8.1.3.1). 0

We go back to the proof of Proposition 8.1.2. Let | <m=¢ —r < ¢ be an integer,
bemg and put a =1 — b. Let L be an arbitrary extension of discrete valuation field

— . . 1+l
and ¢ € mg"Oy, be an arbitrary element. Since U™ C L* for ¢ = ordp.z*, we have

{U%, U!'} = 0 by Lemma 8.1.3. Hence, by b, 2/c € my, we have
(8.1.3.2) (0 1= 2¢), ={1=b, 1 —2c} = {1 — bee, —b}
= Xz, —0)1. = Ar(be - dlog(—b)) = Ay (be - dlog b)

further by Lemma 8.1.3.
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Similarly as above, the equality (8.1.3.2) together with the characterization and the
injectivity of rsw, x shows that 8 maps U} to F,Xk[p], by inductionon 1l <m=¢ —r <¢.
Further the equality (8.1.3.2) implies the assertion 3. Hence, the composition of the map

m /! if ptm

Gr;l(KX /KXﬁ) = m~+1 1fm — Ylp

my /(mi) myg
2% Gi"Xk 5 Homyp(ml /mi!, Q(log))
sends 1 — b to the map ¢+ be/7" - dlog b and is an injection. Since 0 : K* /KX — X[p]
is an isomorphism, we conclude 6 (Ug) = F,Xk[]. ]

8.2. Rummer covering of degree p. — We apply the theory recalled in the previous
section to the following geometric situation. Let K be a complete discrete valuation field
of characteristic 0 with perfect residue field F of characteristic p > 0. Let X be a regular
flat separated scheme of finite type over S = Spec Ok and D be a divisor with simple
normal crossings. Let Dy, ..., D, be the irreducible components of D. For an irreducible
component D;, let K; be the fraction field of the completion OX g of the local ring at
the generic point &; of D;. The residue field F; = « (§;) of the complete discrete valuation
field K is the function field of D;. The fiber Q5 ;s(dogD)g, ®oy . Fi is identified with the
Fi-vector space 2. (log) in the notation of the last subsection.

Let x € H' (U, Q/Z) be a character. Then, for each local field K;, the restriction
defines a character x; € Xk,. By the ramification theory recalled in Section 8.1, the Swan
conductor 7; = swg_.(x;) > 0 is defined for each K;. We define the Swan divisor of x by
D,=> " nDiLetE=)", ..~0 Di be the support of D,,.. For each irreducible component
D, such that r; > 0, the refined Swan conductor rswg_(x;) defines a non-zero map

Ox (=D, ®oy . Fi =mi /mit — Q) s(logD)g, ®oy .. Fi = 2, (log).

In [21, Theorem (7.1), Proposition (7.3)], it is shown that there exists an Og-linear injec-
tion

(8.2.0.1) rswx 1 Ox(=D,) ®oy Op — QL 5(logD) ®oy O

inducing rswg, (;) at each generic point.

Definition 8.2.1. — We say that x s clean with respect to X if the map
rsw x : Ox(=Dy) ®ox O = Q 5(logD) @0y Ok

is a locally splitting injection.
Assume x s clean with respect to X. Then, we say that x s s-clean with respect to X 1f; for
each irreducible component D; of K, the composition

rsw;i(x)

Ox(—D,) ®o, Op, — Q;i/s(logD) ®oy Ob, — Obp,
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is ether an 1somorphism or the zero-map, depending on D;.

It is conjectured in [24] that for any x, there exists a proper modification X' of X
such that x is clean with respect to X', see Lemma 8.2.6.3.

We compute the Swan divisor D, and the map rswy (8.2.0.1) for a Kummer
character x of order p explicitly.

Lemma 8.2.2. — Let A be a regular local ring such that the fraction field s of characteristic
0 and the residue field ts of characteristic p > 0. Let ¢y, ..., t, € A be a part of regular system of
parameters. Assume that A contains a primitive p-th root &, of 1 and that t,, . . ., 4, divide p. Let K; be
the fraction field of the completion Ok, of the discrete valuation ring A, for each 1.

Letm= (my, ..., m,) be a famuly of integers satisfying 0 < m; < ¢, = p - ordg,(§, — 1) and
let F"A* denole the subgroup 1 + " - - 1" A for m # 0 and F'A* = A*. Then, the inverse image
of @, F (K} /K" € @, K /K] by the canonical map A= JA*" — @, K /K7 is the image
of F"AX.

Progf. — First, we show the case where n = 1. We prove it by induction on m = m.
It is obvious for m = 0. Assume m = 1 and that the image of € A* in K;/K|” is in
F'(K)/ lep ). Let F; denote the residue field of K;. Then, we have a € lep . We put
a= ¥ for b € F{'. Since b is integral over the normal ring A/#/A, we have b € A/t A and
b e (A/t;A)*. Take a unit ¢ € A* lifting 4. Then, a/¢’ is in F'A* = 1 + ©A.

Assume m > 1 and that the image of ¢ € F"A* = 1 4+ £'A is in F"*' (K} /K, 7). If
pim,wehave ae 1+ Ok, . Since AN Ok, = /' A, we have a € F"*'A*. Assume
plm and we put =1+ £'6. Then, we have b € I¥|. Similarly as above, there is an element
¢ € A such that b= ¢ mod ¢,. Then, a/(1 + "’¢)? is in F"™ ' A* =1 + t{”J’lA.

We prove the general case. Assume that the image of a € A* is in @), F" (KX /K h.
Then, for each i, there exists ¢; € A* such that a/ af € I"AX. Let m; > 0 be the smallest

integer satisfying p - m. > m;. Then, since the p-th power map (A/ t;";)>< — (A/t")* is
injective, the class z; € (A/£")* is uniquely determined by the condition a/d, € F"A*.
Further, for i # j, the p-th power map (A/(¢", g’-"'))x — (A/(", £7))* is also injective.

Hence, there exists a unique element b € (A/t;" - - t,’l”/ﬂA)X satisfying b = ; mod £.". Let
¢ € A* be a unit lifting 4. Then, we have a/¢” is in F"A*. UJ

Corollary 8.2.3. — Let x € H' (U, Z/pZ) be a character of order p and x € D be a point. Let
Dy, ..., D, be the irreducible components of D containing x and put D, = .1;D; on a neighborhood
of x. We put A = Ox , and, for each irreducible component D;, we put ¢, = p - ordp, (¢, — 1) and
m; = ¢, — 1.

1. On a neighborhood of x, there exists an element a € I'(U, OF) such that x is defined by
" = a and satisfying one of the following conditions:

(8.2.3.1) ordp,a ts prime to p for at least one D,.
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(8.2.3.2) a s aunit at x and its image in A 15 in F"A* form = (my, ..., m,) in the notation

of Lemma 8.2.2.
2. Assume D, =" .¢D; and let a be as in 1. Then, the map

rsw x : Op(=Dy) = Qy s(logD) ® O,

sends 7' to —dlog a where 7z = ¢ — L.

3. Assume Dy, < ). éD;. Then, the condition (8.2.3.2) holds. Let b be a basts of the invertible
sheaf Ox(—Y_.mD;) on a neighborhood of x. We put a =1 — be € OF where ¢ € Ox on a
neghborhood of x as in (8.2.3.2). Then, the map

rsw x : Op(=D,) — Q;(/S(logD) ® O
sends a- 7' /b toc- dlogb+ de.

Progf. — 1. Let a be a rational function on X such that x is defined by # = a on
the generic point. The regular local ring A = Oy, is a UFD. Hence, we may assume
0 < ord,a < p for every discrete valuation defined by a point y € X of codimension 1,
after dividing a by the p-th power of a rational function and shrinking X if necessary. For
a point y € X of codimension 1, if the valuation of a at y is not divisible by p, then x is
ramified at y. Hence, a is a unit on U. Further, if the condition (8.2.3.1) is not satisfied,
then a is a unit at x. Then, by Lemma 8.2.2, after dividing « by the p-th power of a
rational function, the condition (8.2.3.2) is satisfied.

2. 3. Clear from Proposition 8.1.2 and the equality —da/b = ¢ - dlog b+ dc. U

We give a condition for character x of order p to be clean.

Proposition 8.2.4. — Let x € H'(U, Z/pZ) be a character of order p and x € D be a point.
Assume that x s not tamely ramified at x and that K s of characteristic O and contains a primitive
p-throot &, of 1. Let Dy, ..., D, be the irreducible components of D containing x and let C. denote the
intersection Dy N ---ND,. We put D, =Y .1 D; > 0 as in Corollary 8.2.3.

For each irreducible component D;, we put e; = p - ordp, (¢, — 1) and m; = ¢, — r;. Let
t; € T'(X, Ox) be an element defining D,.

1. Assume Dy =) . éD;. Then, x is clean at x if and only if on a neighborhood of x, there
exists an element a € T'(U, O) such that x is defined by ¢ = a and satisfying one of the following
conditions:

(8.2.4.1) ordp,a is prime to p for at least one D;.
(8.2.4.2) a1s aunit at x and da|c has no zero at x.

2. Assume D, < Y. ¢D;. Then, x is clean at x if and only if; on a neighborhood of x, there
exists an element a € T'(U, OF) such that x s defined by ¢ = a and satisfying one of the following
conditions:
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8.24.3) a=1—wu-4"---t" for a unit u at x and, for at least one D;, the integer m; is
prime to p.
8.244) a=1—c- 4" --- ™ for a regular function ¢ at x such that dc|c has no zero at .

Progf. — We have an exact sequence 0 — f, — Q;qs (logD) ®0p, Oc —
P, Oc — 0 and (dlogt); defines a splitting. Hence, if the condition (8.2.3.1) holds, then
x is clean and we have D, = ) . ¢/D;. Thus, it suffices to consider the case where (8.2.3.2)
holds.

1. Assume D, = ) .¢D, and hence m; = 0 for every i. Then, x is clean if and only
da|c has no zero at x.

2. Assume D, < ) .¢D; and hence m; > 0 for some . Then, by Corollary 8.2.3.1,
there exists a regular function ¢ at x such that x is defined by # = afora=1—c¢- " --- ™.
By Corollary 8.2.3.3 and by the local splitting above, x is clean if and only if either
¢-(m); € P, Oc¢ orde € Qé has no zero at x. The condition that ¢ - (m;); € @; O¢ has no
zero at x means that ¢ is a unit at x and one of m; is prime to p. The second condition is
equivalent to (8.2.4.4). 0

Corollary 8.2.5. — Let the assumption be as in Proposition 8.2.4.

1. Assume Dy =) . €D,. Then, x is clean at x if and only if x is s-clean at x.

2. Assume Dy < Y. ¢D;. Then, x is s-clean at x if and only if; on a neighborhood of x, there
exists an element a € T'(U, OF;) such that x is defined by a and satisfying either the condition (8.2.4.3)
or the following condition:

8.244) a=1—c- " ---t" for a regular function ¢ at x such that de|c has no zero at x
and,_for every D, the integer m; 1s divisible by p.

Progf: — 1. If the condition (8.2.4.1) or (8.2.4.2) is satisfied, then yx is s-clean at x.

2. If the condition (8.2.4.3) 1s satisfied, then x is s-clean at x. Assume the condition
(8.2.4.4) 1s satisfied. Then, in the notation of the proof of Proposition 8.2.4.2, x is s-clean
at x if and only if either ¢ - (m;); € @i O¢ has no zero at x or ¢|¢ - (m;); = 0. The first
condition is equivalent to (8.2.4.3). By the condition (8.2.4.4), we have ¢|¢ # 0. Hence,
the second condition ¢|¢ - (m;); = 0 is equivalent to that m; is divisible by p for every ¢. [J

We recall the main result from [24] and prove a complement.

Lemma 8.2.6. — Let the assumption be as in Proposition 8.2.4. Assume dim Xk + 1 =2
and let ¥ C X, C D be the sets of points where F is not clean and not s-clean with respect to X
respectively.

1. The subsets ¥ and X consist of finitely many closed points of D.

2. [24, Remark 4.13] Let x be a closed point of D and [ X' — X be the blow-up at x. If
X s clean at x, then ¥ is clean on a neighborhood of = (x).

3. [24, Theorem 4.1] There exists a successive blow-up [+ X' — X at X such that x is
clean with respect to X'
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4. There exists a successwe blow-up f: X' — X at X such that x s s-clean with respect
o X'.

Progf: — 1. Clear from the definition.

2 and 3. See [24, Remark 4.13] and [24, Theorem 4.1] respectively.

4. By 3, we may assume x 1is clean with respect to X. Let x € Z;. If x is a singular
point of D, then yx is s-clean at x. Hence, x is a smooth point of D and we may assume
D is irreducible. We put D, = 7D and prove the assertion by induction on r > 0. By [24,
Corollary 4.9] and [21, Theorem (8.1)], we have ¢ =1 in the notation of [24, Corollary
4.9] for the blow-up X’ — X at x. Hence, we have ¥ =7 —¢=7r—1 < r and the assertion
follows by induction. O

We expect that Lemma 8.2.6.3 holds in arbitrary dimension.
For an s-clean character of order p, we give a local description of the normalization
in the corresponding cyclic covering of degree p.

Proposition 8.2.77 (Cf. [38, Lemma 1]). — Let X be a regular flat separated scheme of finite
of finte type over Ok and U = X\ D be the complement of a divisor D with simple normal crossing.
Assume that K s of characteristic O and contans a primitwe p-th root g, of 1.

Let x € H' (U, Z/pZ) be a character of order p. Let NV — U be the cyclic Galois covering of
order p trivializing x and 'Y be the integral closure of X in V.

Assume that x s s-clean with respect to X. Then, there exists an s log structure My on'Y such
that (Y, My) is log regular [25] and that NV is the maximum open subscheme where My 1is trivial.
We have My =j, O35 N Oy wherej: N — Y denoles the open immersion.

Progf: — The proof'is similar to that of [38, Lemma 1]. Since the question is local,
we may assume that X = SpecA is affine and that the log structure on X is defined by
the chart P =[], N¢; = A sending the basis ¢ to ¢ defining irreducible components D,
of D. By Corollary 8.2.5, it suffices to consider each case (8.2.4.1)—8.2.4.3) and (8.2.4.4").
We take the notation in Proposition 8.2.4.

(8.2.4.1) Assume a = u[[.£" where u € A* and p{m; for at least one i. We put
Qy=PxZe, ¢,= /’%(Zi mie; +¢,) and Q; = Qg+ (¢). Let Q C pr be the saturation of
Q. We put B, = A[¢]/(# — u[];£") and define a monoid homomorphism Q; — B, by
¢, uwand ¢ > t. We define B = B ®410,] A[Q], Y = Spec B and define a log structure
My onY by Q — B.

We show that Y is log regular and is equal to the normalization of X in V. By
the assumption that there exists m; prime to p, the quotient Q" /Q; = (P® x Ze,) /Ze, is
torsion free. The quotient B /I, by the ideal I; C B; generated by Q; \ Q; is equal to
A= A/(t;1=1,...,n) and is regular. Since B, 1s flat over A, we have dimB, =dim A =
dim A + 7 = dim B, /I, + rank Q" /Q;. Hence, similarly as the proof of [38, Claim], the
log scheme Y is regular by [25, Proposition (12.2)]. Since the normal scheme Y is finite
over X and Y xx U =1V, it is the normalization of X in V.
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(8.2.4.2) Assume a € A* and da|¢ has no zero. We put B = A[¢]/(# — a), A=
A/(ty, ..., t,) and B =A[/]/(# — 7). By the assumption that ¢z is non-vanishing, the ring
B is regular and hence B = A[¢]/(# — a) is the normalization on a neighborhood of x.
The open subscheme V of Y = Spec B is the complement of a divisor with simple normal
crossing defined by (¢, - - - ¢,).

(8.2.4.3) Let u € A* be a unit, 0 < m; < ¢ be integers and we put b=u[[;#" and
a=1—b. We assume that p{m; < ¢ for at least one i. We put z = ¢, — 1 as above and
t=1— z/s. Then, by an elementary computation, the equation # = a is equivalent to

= %(sp - (s—z)p).

We define a polynomial /' € Ok[S] of degree p — 1 by f = (& — (S — 2)!) /2. We have
f=1-=5"mod z. We put B; = A[s]/(s" — % -f(s)). We put r, = ¢, — m; > 0 and define
aunit w € AX by Z/b=w - [].£'. The assumption m; < ¢ for at least one ¢ means that
Z2/b=w-[].£ is in the maximal ideal at x. Hence, shrinking X if necessary, we may
assume f(s) 1s a unit of B.

We put Qy =P X Ze¢,, ¢, = /%(Zirie,- +¢,) and Q; = Qy + (¢,). Let Q C QF be
the saturation of Q);. We define a monoid homomorphism Q; — B, by ¢, = w - f(s)
and ¢ = 5. We define B =B, ®41q,) A[Q], Y = SpecB and define a log structure My
on Y by Q — B. Then similarly as in the case (8.2.4.1), we see that Y is log regular and
is equal to the normalization of X in V.

(8.2.4.4") Let c € A, 0 < m; < ¢ be integers and we put b= ¢[[,£" and a =
1 — b. We assume that m; < ¢ for at least one ¢ and p divides m; = p - m. for every .

We also assume that de|¢ is not 0 at x. We put ¢ =1—[]. L‘Z-n;s. Then, the equation # = a
is equivalent to (1 — [, 4"s)’ = 1 — [],£"c. We define a polynomial g € A[S] of degree
byg= (S —T], z‘;mi)” + ;4. Then, as in the case (8.2.4.2), B = A[s]/(g(s) + ¢) is the
normalization of A. The open subscheme V of Y = Spec B is the complement of a divisor
with simple normal crossing.

Since (Y, My) is log regular, we have My =;,0y N Oy. O

We consider the sheaf of differential forms 25, Mys defined with respect to the log
structure My and the trivial log structure on S.

Corollary 8.2.8 (Cf. [38, Lemma 1]). — Let the notation and the assumption be as in
Proposition 8.2.7 and o be a generator of Gal(V/U). Let L, denote the ideal sheaf defining the fixed
part Y° CY. Then, we have the following.

1. For each geometric point y of the fixed part Y°, the action of o on the stalk My 5/ Oy 5 is
trivial.

2. We define an ideal sheaf T, of Oy to be that generated by L, and o (b)/b— 1 for b € My.
Then, Ty s an tnvertible ideal defined by an effective Cartier divisor D, . Further, we have

8.2.8.1)  7*D, =D,.
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3. We put D' = (p — 1)D,. Then, the coherent Oy-module 2, x(log /log) defined by
Qy X (log /log) = Coker(m*Qy /s (logD) — Qﬁl( My /s) s an invertible Oy -module.

4. Define an Oy-linear surjection @, Q%{ My/s = To ) T2 by ¢y(da) = 0(a) — a and
s (dlogh) = o (b)/b — 1. Then, it induces an isomorphism Q%(/X(log /log) ®o, Op, —
T/ T} = Op, (=Dy).

5. We put By = (T*E) oq where E =) D; denotes the support of D, Then, the sequence

1,7;>0

0— O (—7*D,) —% 7*QL (logD) ®0. O
(8.2.8.2) o g xTo8 e
— Q gy ®0y Oy —— Ogy(=Dy) — 0

15 exact.

Proof. — Since the assertions are local, it suffices to consider the cases (8.2.4.1)—
(8.2.4.3) or (8.2.4.4") respectively.

1. Letw: Y — X be the canonical map. Since the canonical map ./\;lx,,,@ — My J
induces an isomorphism ./\;lfgn@ ®Q— Y v 5 ® Q, the assertion follows.

2 and 3. We take the notation in the proof of Proposition 8.2.7.

(8.2.4.1) The ideal J, is generated by o (x)/x — 1 for x € Q. Hence, it is generated
by ¢, — 1. We have D, = div(g, — 1) and D, = p - div({, — 1) by Proposition 8.2.7.

The Oy-module €2, x(log /log) 1s generated by dlog? and the annihilator is ().
We have divp=(p— 1) - div(g, — 1).

(8.2.4.2) The ideal J, is generated by o (1) — t = ({, — 1)¢. Since ¢ is a unit, it is
generated by ¢, — 1. We also have D, = div(¢, — 1) and D, = p - div(¢, — 1) by Proposi-
tion 8.2.7.

The Oy-module €, x(log /log) is generated by d¢ and the annihilator is (). We
have div p= (p — 1) - div(g, — 1).

(8.2.4.3) The 1ideal J, is generated by o(s)/s — 1. By s = z/(1 — ¢), we have
o(s)/s—=1=0-0/(0=¢)—1=(—Dt/(1 =¢t) =zt/(1 —t—2zt). Since | —t = z/s,
it is further equal to z¢/(z/s — zt) = st/(1 — st). Since 1 — st and ¢ are unit, the ideal J,
is generated by (s). Since (&) = (2/b), we have p- D, =7*D,.

We put g =5 — z—;f(S) € A[S]. Then, the Oy-module Q%(/X(log/log) is gener-
ated by dlogs and the relation is given by p - dlogs = dlogf(s) and g'(s) - s - dlogs = 0.
Since g'(s) = ps"~' — %f’(s) =" (p—s5-1(5)/f(5)), the annihilator is (p — s - f(5) /[ (5)).
Since ¢'(s) = l_[f;ll (s — o'(s)) and div(l — o(s)/s) = D, for each 7, we have div(p — s -
SO ) =(p—1)-D,. |

(8.2.4.4') The ideal J, is generated by o'(s) —s. By t=1—[T.£"s, we have o (s) —
s=(¢ — Dt/ 1], t:”;. Since ¢ is a unit, the ideal J, is generated by (z/[]. t;n;). Thus, we
have p- D, =7*D,.
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The Oy-module Q3 x(log/log) is generated by ds and the annihilator is @ (9)).
Since g'(s) = ?:—11 (s — 0(s)) and div(s — 0(s)) = D, for each i, we have div g'(s) =
(p—1)-D,.

4. By the assertion 3, the map ¢, : 2y x(log/log) ®oy Op, — Op, (=D,) is a
surjection of invertible Op_-modules and hence is an isomorphism.

5. It follows from 4 that the sequence (8.2.8.2) is exact at Q{{ My ®0y Ok and at
Ok, (—D,). Hence, the kernel of the map in the middle is an invertible Oy, -module. By
the assumption that 6 is clean, the map rsw6 is a locally split injection. The composition
Oy (—7*D,) = 7*Q5 (logD) ®0, Or, — Q;MY ®oy O, is the 0-map by (8.1.1.5).
Hence, the assertion follows. [

8.3. A computation in the rank 1 case. — Let X and U =X\ D over S = Spec Ox
be as in the previous subsection. We briefly recall the definition of the O-cycle class ¢
in [24] for a smooth sheaf F of F,-vector spaces of rank 1 on U. Let Dy, ..., D, be the
irreducible components of D and let E = ero D, C X'be the support of the Swan divisor
D, =) .1nD,. We put n = dimXx + 1. The divisor E is supported on the closed fiber Xj.
Hence, the coherent Og-module 23 /s (logD) ®py Ok is locally free of rank n and the
bivariant Chern class c(Q% /S(log D) ®o, OF) is defined as an operator CH*(E — E).

Assume yx 1is clean with respect to X. Then, we define the O-cycle class ¢, € CH(E)
by

(8.3.0.1) ¢y = {c(Qg/S(logD) Qo (’)E)* N{1+D,)™'n Dx}dim0

= (=D)"! Z 7i - 61 (Coker(rswi(x))) N [Di.

=1

By [24, Theorem 5.2], the cycle classes ¢, define an element of FyG(dy,uU) for the finite
étale Galois covering V — U trivializing x, if dim Ug < 1.

We fix an isomorphism ng — Q/Z[%] C Q/Z. Yor a character x € H'(U, Q/Z[%])
of order prime to £, let F, denote the corresponding locally constant constructible sheaf
of Fy-vector spaces of rank 1 on U.

Comgecture 8.3.1. — Let X be a regular flat separated scheme of finite type over S and
U =X\ D be the complement of a dwvisor with simple normal crossings. Let f: N — U be the
étale cyclic covering trivializing x . Assume that x s clean with respect to X and that x s tamely
ramified on the generic fiber.

T hen, we have

8.3.1.1)  SwyuF, =f"c

m FO G(av/UV) Q(4yo0) -
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We prove a refinement of Conjecture 8.3.1 assuming dim Ug < 1 in Theorem
8.3.7 at the end of this section. Similarly as [27, Lemma 5.1.2], Conjecture 8.3.1 implies
Conjecture 7.2.8, by Brauer induction.

We show that the class ¢, also satisfies an excision formula.

Lemma 8.3.2. — Let X be a regular flat separated scheme of finite type over S and U = X\ D
be the complement of a divisor with simple normal crossings. Let X, be a regular divisor meeting D
transversely. We put Uy =X\ (DN X)) and U, =UNX,.

Let x be a character on U and let xo = x|u, and x, = x|u, be the restrictions. Assume that
both x and xq are clean with respect to X. Then x, s also clean with respect to X, and we have

Cx = Cxo Tt Oxp

Progf. — The union D' = D U X, is a divisor of X with simple normal cross-
ings and the intersection D} = D N X is a divisor of X, with simple normal cross-
ings. Let D; be an irreducible component of E and we put C; = D; N X,. The image
of the map Q% ss(logD) ®oy Oc, — Q4 /s (logD’) @0y Oc, is canonically identified with
Q;q/s(long) ®ox, Oc,. Hence, if both x and x, are clean, then x is strongly clean on
a neighborhood of C; in the terminology of [21, Definition (7.4)]. Thus, by [21, Theo-
rem (9.1)], x; is strongly clean with respect to X, and D,, is the pull-back of D, .

We put E; = ENX,. Then, by the exact sequence 0 — Q;(/S(logD) ®oy Op —
Q%i/s(logD/) ®oy Op = O, — 0, the difference ¢, — ¢,, is equal to

{¢(Q2 5(log D) ®oy Op) N1 +Dy)™"'N D} o
— {e(Q4,5(logD') ®oy Op) N1 +D)™'ND, o
= {C(Qég/s(logD) ®ox OE)* N(+D)™' NN DX)}dimO'

By D,, =X, ND, and by c(Qgi/S(logD))* NX, = c(Q%l/S(long))*, the right hand side
is equal to ¢y, . UJ

Let U" — U be a finite étale morphism tamely ramified with respect to X and let
X' be the normalization of X in U’. Then, X’ has a natural log structure such that U’ is
the maximum open subscheme where the log structure is trivial and the map X' — X is
log étale with respect to this log structure. By taking a regular proper subdivision of the
associated fan [25, Section 10], we obtain a log blow-up X" — X’ such that X" contains
U’ as the complement of a divisor with simple normal crossings.

Lemma 8.3.3. — Let X be a regular flat separated scheme of finite type over S and U = X\ D
be the complement of a divisor with simple normal crossings. Assume dim Xg = 1. Let g: U — U be
a finite étale morphism tamely ramified with respect to X. Let X' be a log blow-up of the normalization
of X and g: X' — X be the canonical map.
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Let x be a character on U and let x' be the pull-back to U'. Assume that x s clean with respect
to X. Then x' s also clean with respect to X' and we have

X
Cr =g 0y

Proof. — We may assume that the subdivision defining X' induces a subdivi-
sion of the fan associated to X and defines a log blow-up X, — X. The induced map
X" — X is finite. Since g: X' — X is log étale, the map é—f*Q;(/s(logD) — Qg,/s(logD’)
is an isomorphism. At each singular point of D, x is strongly clean with respect to X.
Hence, by [21, Theorem (8.1)], the divisor D,, is the pull-back of D, and the divisor D,
is also the pull-back of D, . Further by [21, Theorem (8.1)], x’ is clean with respect to X’
and we have ¢, = g*c, . U

In the rest of this section, we assume that K is of characteristic 0. The case where
K is of characteristic p > 0 is studied similarly as in [27] and in [38].

We first show that the computation in the previous subsection implies Conjecture
8.3.1 for a character of order p under a slightly stronger assumption. Since (Y, My) in
Proposition 8.2.7 is log regular, by [25], there exists a log blow-up Y — Y satisfying the
following property: The map Y — Y induces an isomorphism over V and the scheme Yis
regular and contains V as the complement of a divisor Dy with simple normal crossings.
We regard Yasa log scheme with the log structure defined by Dg. Then, themapY — Y
is log étale.

Proposition 8.3.4. — Let X be a regular flat separated scheme of finite type over S = Spec Ok
and U = X\ Dx be the complement of a divisor with simple normal crossings. Assume that K contains
a promative p-th root §, of 1. Let 6 be a characler of order p s-clean with respect to X.

LetY — Y be a log blow-up as above and assume that the action of G = Gal(V/U) = Z/pZ
is extended to an action on Y. Let & be a generator of G and assume that o is an admissible automorphism
(Definition 5.1.4.2) of Y.

L. We put cg = ((T'y, AY)) G5~ € FOG(av/U’\?). Then, we have

to ={¢"(Qg/500gD9) - (14 D) ™" Do
9. Letw: Y — X be the canonical map. Then, we have
(8.3.4.1) Sw fg =7 Co

V/U

in FoG(3y,uY).

Proof. — 1. This is Lemma 5.1.5.2.

2. Since Y — Y is log étale, we have an exact sequence 0 — OEv(_ﬁ*DQ) —
Qx/s(logDx) ® Op; — Qy/5(logDy) ® O, — Op(=D,) — 0 by Corollary 8.2.8.2.
Hence the ratio of the total Chern classes ¢(Q2g,5(logDg) ® Og.) - ¢(2x/s(logDx) ®
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Og))™!is equal to (1 — D,)(1 — 7*Dy)~". Thus, by the equality 7*Dy = pD, (8.2.8.1),
we have
7 e = 1% (2L sQogDx)) - (1 +7°Dg) ' - Dy}
= {C*(Qﬁl?/s(logD?)) ) (1 + ”*DG)_I b D“}dimo'
By 1, the right hand side is equal to p - ¢,.

Since ¢yi = ¢, for every ¢ € (Z/pZ)*, the integral Swan class Sw%, /U,?F" is equal to
b svyu(0) = —p - ¢;. Thus the assertion follows. O

We recall an induction step from [38], which will be used in the proof of Theo-
rem 8.3.7 below.

Lemma 8.3.5 (Cf. [38, Lemma 2]). — Let X be a regular scheme and U be the complement
of a divisor with simple normal crossings. Let x,0 € H' (U, Q/Z) be characters clean with respect to
X. Assume 0 1s of order p and s-clean. Let NV — U be the cyclic covering of degree p trivializing 0 and
Y be the normalization of X in 'V with the log structure defined by V. Let Y — Y be the log blow-up
defined by a regular proper subdivision of the fan of Y and v : Y — X be the canonical map.

Assume x 1s clean with respect to X and the pull-back x' = 7w* x s clean with respect to Y.
Assume further that the following condition s satisfied:

(8.3.5.1) forD, = Zi 7;D; and Dy = ZisiDl-, the condition r; = 0 implies s; = 0, and the
condition r; > 0 implies r; > s;.

Then, we have
(8.3.5.2) T, =y + Dll(}%/v,Yl
in CHy(Eg).

The proof is the same as [38, Lemma 2] by using the exact sequence (8.2.8.2) and

we omit it.

Corollary 8.3.6. — We keep the notation and the assumptions in Lemma 8.3.5 except that we
do not assume (8.3.5.1). Assume further that x s of order n = mp and 6 = m - x. Assume that the
Swan class Sw% 0, xFy 1 defined integrally and that we have

(8.3.6.1) SWe 0, v Fr =8¢y
Then, the Swan class Sw% Uy x 18 also defined integrally and we have

(8.3.6.2) SWo oy Fy = ey
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Progf: — By the definition of the Swan class and by s\z/U(ai) = sy,u(o) for an
integer prime to p, we obtain

Z log _ Z log
SWV/U,YJ:X - DV/U,Y = SW\’/UI,YfXI - D\’/Ul,Y'

By 6 =m - x, the assumption (8.3.5.1) is satisfied. Hence, by applying Lemma 8.3.5, we
obtain f*¢, = g%¢,, + é*Dl{f /vy, Thus, it follows from the assumption (8.3.6.1) and the

. log . log - log
chain rule DU/V’Y = DU/UI‘Y —i—g*DU]/V’Yl. O

In the rest of the paper, we consider the case dim Uk = 1. In this case, the strong
form of resolution of singularity is known and consequently the Swan class SwZ o s
defined integrally as an element of FyG(dy,uV).

Theorem 8.3.7. — Assume K s of characteristic 0. Let U be a regular flat separated scheme
of finite type over S such that diim Uy = 1. Let ' = F be a locally constant constructible sheaf of

F-vector spaces of rank 1 and x € H' (U, Q/Z) be the corresponding character. Let f: NV — U be
the cyclic covering trivializing x . Then, we have

(8.3.7.1) [K() : K] - SwZ, Fy = [K(&) : K] - f7,
i?’l F()G(av/UV).

Proof. — Let x' be the p-primary part of x and V' — U be the cyclic cover-
ing trivializing x" and let 7: V — V' be the canonical map. Then, since SW\Z,/UfX =
JT*SW\Z,,/U]:X/ and ¢, = ¢,’, we may assume that the order of x is a power of p.

We show that we may assume U = Uk. Let X be a proper regular flat scheme
over S containing U as the complement of a divisor D with simple normal crossings. By
blowing up some closed points in the closed fiber of X, we may assume that Ux C X
is the complement of a divisor with simple normal crossings. We show the claim by the
induction on the number of irreducible components of Usy.

If the number is 0, then Uy is empty and there is nothing to prove. Let C be an
irreducible component of Uy. Let o be the restriction of x to Uy = U \ C. By blowing
up X at the boundary of C, we may assume that both x and x, are clean with respect
to X. Then, by the excision formulas Proposition 7.2.5.2 and Lemma 8.3.2, the equality
(8.3.1.1) for xo 1s equivalent to that for x. Thus, by the induction, the claim is proved.

We assume U = Uk. By taking the base change to K(¢,) and by applying Corol-
lary 5.4.2 and Lemma 8.3.3, we may assume that K contains a primitive p-th root of 1.

Assume x is of order p. Then, by Lemma 8.2.6.4, we may assume x is s-clean with
respect to X by replacing X by a blow-up. Then, it follows from Proposition 8.3.4.

Assume y is of order p" and we prove the assertion by induction on zn > 1. Similarly
as above, we may assume that 6 = p"~' x is s-clean. Let U; — U be the cyclic covering of
degree p and g: V — U, be the canonical map. Let Y, be the normalization of X in U,
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and Y, — Y, be a blow-up as in Corollary 8.3.6. Let 7 : Y, — X be the canonical map.
Then, further similarly as above, we may assume that X' = m*x is clean with respect to
Y. Then, by the induction hypothesis, we have SW\Z/ /Ul,?}—x/ =g*c,». Thus it follows from
Corollary 8.3.6. U

We deduce the integrality of the Swan classes and the conjecture of Serre under
the assumption dim Ug < 1.

Corollary 8.3.8. — 1. Let U be a regular flat separated scheme of finite type over Ok. If
dim Ug < 1, Comjecture 7.2.8 1s true.
2. For a regular local ring A of dim A < 2, Conjecture 7.2.9 s true.

Proof. — 1. By the Brauer induction and by the induction formula Proposi-
tion 7.2.6, we may assume rank F = 1. Then, it follows from Theorem 8.3.7.

2. Since the positive characteristic case is proved in [28], it follows from 1 and
Lemma 7.2.10. O

As 1n the classical ramification theory, our proof of the integrality Conjecture 7.2.8
is by the reduction to the rank 1 case using Brauer induction.
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