We resolve several longstanding problems concerning the stability and the absence of multi-particle binding for N≥2 polarons. Fröhlich’s 1937 polaron model describes non-relativistic particles interacting with a scalar quantized field with coupling $\sqrt{\alpha}$, and with each other by Coulomb repulsion of strength U. We prove the following: (i) While there is a known thermodynamic instability for U<2α, stability of matter does hold for U>2α, that is, the ground state energy per particle has a finite limit as N→∞. (ii) There is no binding of any kind if U exceeds a critical value that depends on α but not on N. The same results are shown to hold for the Pekar-Tomasevich model.
@article{PMIHES_2011__113__39_0, author = {Frank, Rupert L. and Lieb, Elliott H. and Seiringer, Robert and Thomas, Lawrence E.}, title = {Stability and absence of binding for~multi-polaron systems}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {39--67}, publisher = {Springer-Verlag}, volume = {113}, year = {2011}, doi = {10.1007/s10240-011-0031-5}, mrnumber = {2805597}, zbl = {1227.82083}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-011-0031-5/} }
TY - JOUR AU - Frank, Rupert L. AU - Lieb, Elliott H. AU - Seiringer, Robert AU - Thomas, Lawrence E. TI - Stability and absence of binding for multi-polaron systems JO - Publications Mathématiques de l'IHÉS PY - 2011 SP - 39 EP - 67 VL - 113 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-011-0031-5/ DO - 10.1007/s10240-011-0031-5 LA - en ID - PMIHES_2011__113__39_0 ER -
%0 Journal Article %A Frank, Rupert L. %A Lieb, Elliott H. %A Seiringer, Robert %A Thomas, Lawrence E. %T Stability and absence of binding for multi-polaron systems %J Publications Mathématiques de l'IHÉS %D 2011 %P 39-67 %V 113 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-011-0031-5/ %R 10.1007/s10240-011-0031-5 %G en %F PMIHES_2011__113__39_0
Frank, Rupert L.; Lieb, Elliott H.; Seiringer, Robert; Thomas, Lawrence E. Stability and absence of binding for multi-polaron systems. Publications Mathématiques de l'IHÉS, Tome 113 (2011), pp. 39-67. doi : 10.1007/s10240-011-0031-5. http://www.numdam.org/articles/10.1007/s10240-011-0031-5/
[1.] Advances in Polaron Physics, Springer, Berlin, 2010 | DOI
[2.] Variational path-integral treatment of a translation invariant many-polaron system, Phys. Rev. B, Volume 71 (2005), pp. 214301-214313 | DOI
[3.] The N 7/5 law for charged bosons, Commun. Math. Phys., Volume 116 (1988), pp. 417-448 | DOI | MR
[4.] Schrödinger Operators. Springer Texts and Monographs in Physics, 1987 | Zbl
[5.] Lieb-Thirring inequalities with improved constants, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 1121-1126 | DOI | MR | Zbl
[6.] Asymptotics for the polaron, Commun. Pure Appl. Math., Volume 36 (1983), pp. 505-528 | DOI | MR | Zbl
[7.] Slow electrons in a polar crystal, Phys. Rev., Volume 97 (1955), pp. 660-665 | DOI | Zbl
[8.] Bi-polaron and N-polaron binding energies, Phys. Rev. Lett., Volume 104 (2010) | DOI
[9.] Theory of electrical breakdown in ionic crystals, Proc. R. Soc. Lond. A, Volume 160 (1937), pp. 230-241 | DOI
[10.] Existence of dressed one-electron states in a class of persistent models, Fortschr. Phys., Volume 22 (1974), pp. 159-198 | DOI
[11.] Statistical mechanics of the electron-phonon system, Lett. Nuovo Cimento, Volume 28B (1970), pp. 274-286
[12.] Absence of phonon-induced localization for the free optical polaron and the corresponding Wannier exciton-phonon system, Phys. Rev. B, Volume 37 (1988), pp. 8042-8047 | DOI
[13.] Analytical properties of polaron systems or: do polaronic phase transitions exist or not?, Rev. Mod. Phys., Volume 63 (1991), pp. 63-90 | DOI | MR
[14.] Bounds on the minimal energy of translation invariant N-polaron systems, Commun. Math. Phys., Volume 297 (2010), pp. 283-297 | DOI | MR | Zbl
[15.] Self-energy of slow electrons in polar materials, Philos. Mag. Ser. 7, Volume 44 (1953), pp. 329-336 | Zbl
[16.] M. Hirokawa, Stability of formation of large bipolaron: non-relativistic quantum field theory, preprint (2006), . | arXiv
[17.] Schrödinger inequalities and asymptotics behavior of the electron density of atoms and molecules, Phys. Rev. A, Volume 16 (1977), pp. 1782-1785 | DOI | MR
[18.] The motion of slow electrons in polar crystals, Phys. Rev., Volume 88 (1952), pp. 960-961 | DOI
[19.] The motion of slow electrons in a polar crystal, Phys. Rev., Volume 90 (1953), pp. 297-302 | DOI | MR | Zbl
[20.] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1976/77), pp. 93-105 | MR | Zbl
[21.] An improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem., Volume 19 (1981), pp. 427-439 | DOI
[22.] The Stability of Matter in Quantum Mechanics, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[23.] Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., Volume 217 (2001), pp. 127-163 | DOI | MR | Zbl
[24.] Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., Volume 35 (1975), pp. 687-689 Erratum: ibid., 35 (1975), 1116 | DOI
[25.] Exact ground state energy of the strong-coupling polaron, Commun. Math. Phys., Volume 183 (1997), pp. 511-519 Erratum: ibid., 188 (1997), 499–500 | DOI | MR | Zbl
[26.] Ground-state energy and effective mass of the polaron, Phys. Rev., Volume 111 (1958), p. 728-722 | DOI | Zbl
[27.] Strong coupling limit of the polaron ground state, J. Phys. Soc. Jpn., Volume 38 (1975), pp. 181-182 | DOI
[28.] The bipolaron in the strong coupling limit, Ann. Henri Poincaré, Volume 8 (2007), pp. 1333-1370 | DOI | MR | Zbl
[29.] The polaron revisited, Rev. Math. Phys., Volume 18 (2006), pp. 485-517 | DOI | MR | Zbl
[30.] Interaction of non-relativistic particles with a quantized scalar field, J. Math. Phys., Volume 5 (1964), pp. 1190-1197 | DOI | MR
[31.] S. I. Pekar, Research in Electron Theory of Crystals, United States Atomic Energy Commission, Washington, DC, 1963.
[32.] Theory of F centers, Zh. Eksp. Teor. Fys., Volume 21 (1951), pp. 1218-1222
[33.] Path Integral Approach to Quantum Physics, Springer, Berlin-Heidelberg-New York, 1994 | MR | Zbl
[34.] Pekar-Fröhlich bipolarons, Polarons and Applications, Proceedings in Nonlinear Science, Wiley, New York (1994)
[35.] The polaron functional integral, Stochastic Processes and Their Applications, Kluwer, Dordrecht-Boston-London (1990) | MR | Zbl
[36.] Stability of multi polaron matter, Phys. Rev. B, Volume 47 (1993), pp. 2596-2601 | DOI
[37.] Large bipolarons in two and three dimensions, Phys. Rev. B, Volume 43 (1991), pp. 2712-2720 | DOI
[38.] Strong-coupling analysis of large bipolarons in two and three dimensions, Phys. Rev. B, Volume 45 (1992), pp. 5262-5269 | DOI
Cité par Sources :