A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map h:T→R is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map h:T→R whose graph is invariant under no symplectic twist map (Corollary 2).Assuming that the dynamic of a twist map restricted to a Lipschitz graph is bi-Lipschitz conjugate to a rotation, we obtain that the graph is even C 1 (Theorem 3).Then we consider the case of the C 0 integrable symplectic twist maps and we prove that for such a map, there exists a dense G δ subset of the set of its invariant curves such that every curve of this G δ subset is C 1 (Theorem 4).
@article{PMIHES_2009__109__1_0, author = {Arnaud, M.-C.}, title = {Three results on the regularity of the curves that are invariant by an exact symplectic twist map}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--17}, publisher = {Springer-Verlag}, volume = {109}, year = {2009}, doi = {10.1007/s10240-009-0017-8}, mrnumber = {2511585}, zbl = {1177.53070}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-009-0017-8/} }
TY - JOUR AU - Arnaud, M.-C. TI - Three results on the regularity of the curves that are invariant by an exact symplectic twist map JO - Publications Mathématiques de l'IHÉS PY - 2009 SP - 1 EP - 17 VL - 109 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-009-0017-8/ DO - 10.1007/s10240-009-0017-8 LA - en ID - PMIHES_2009__109__1_0 ER -
%0 Journal Article %A Arnaud, M.-C. %T Three results on the regularity of the curves that are invariant by an exact symplectic twist map %J Publications Mathématiques de l'IHÉS %D 2009 %P 1-17 %V 109 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-009-0017-8/ %R 10.1007/s10240-009-0017-8 %G en %F PMIHES_2009__109__1_0
Arnaud, M.-C. Three results on the regularity of the curves that are invariant by an exact symplectic twist map. Publications Mathématiques de l'IHÉS, Tome 109 (2009), pp. 1-17. doi : 10.1007/s10240-009-0017-8. http://www.numdam.org/articles/10.1007/s10240-009-0017-8/
1. Symplectic twist maps without conjugate points, Isr. J. Math. 141 (2004), p. 235-247 | MR | Zbl
, ,2. Surface transformations and their dynamical application, Acta Math. 43 (1920), p. 1-119 | JFM | MR
,3. La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather., Astérisque 1983/84 (1985), p. 147-170 | Numdam | MR | Zbl
,4. A. Chenciner, Systèmes dynamiques différentiables. Article à l'Encyclopedia Universalis.
5. Convex Hamiltonians without conjugate points, Ergod. Theory Dyn. Syst. 19 (1999), p. 901-952 | MR | Zbl
, ,6. A. Fathi, Une interprétation plus topologique de la démonstration du théorème de Birkhoff, appendice au ch.1 de [9], pp. 39-46.
7. Estimation de l'entropie des systèmes lagrangiens sans points conjugués, Ann. Inst. Henri Poincaré Phys. Théor. 57 (1992), p. 117-146 | Numdam | MR | Zbl
,8. A theorem of E. Hopf, Mich. Math. J. 5 (1958), p. 31-34 | MR | Zbl
,9. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Étud. Sci. Publ. Math. 49 (1979), p. 5-233 | Numdam | Zbl
,10. Sur les courbes invariantes par les difféomorphismes de l'anneau, Asterisque 1 (1983), p. 103-104 | Numdam | Zbl
,11. A geometric proof of the existence of the Green bundles, Proc. Amer. Math. Soc. 130 (2002), p. 2311-2312 | MR | Zbl
,12. P. Le Calvez, Etude topologique des applications déviant la verticale, Ens. Mat., Soc. Bras. Mat., 2 (1990). | Zbl
Cité par Sources :