Answering a question of Smale, we prove that the space of C 1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.
@article{PMIHES_2009__109__185_0, author = {Bonatti, Christian and Crovisier, Sylvain and Wilkinson, Amie}, title = {The {C} 1 generic diffeomorphism has trivial centralizer}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {185--244}, publisher = {Springer-Verlag}, volume = {109}, year = {2009}, doi = {10.1007/s10240-009-0021-z}, mrnumber = {2511588}, zbl = {1177.37025}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-009-0021-z/} }
TY - JOUR AU - Bonatti, Christian AU - Crovisier, Sylvain AU - Wilkinson, Amie TI - The C 1 generic diffeomorphism has trivial centralizer JO - Publications Mathématiques de l'IHÉS PY - 2009 SP - 185 EP - 244 VL - 109 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-009-0021-z/ DO - 10.1007/s10240-009-0021-z LA - en ID - PMIHES_2009__109__185_0 ER -
%0 Journal Article %A Bonatti, Christian %A Crovisier, Sylvain %A Wilkinson, Amie %T The C 1 generic diffeomorphism has trivial centralizer %J Publications Mathématiques de l'IHÉS %D 2009 %P 185-244 %V 109 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-009-0021-z/ %R 10.1007/s10240-009-0021-z %G en %F PMIHES_2009__109__185_0
Bonatti, Christian; Crovisier, Sylvain; Wilkinson, Amie. The C 1 generic diffeomorphism has trivial centralizer. Publications Mathématiques de l'IHÉS, Tome 109 (2009), pp. 185-244. doi : 10.1007/s10240-009-0021-z. http://www.numdam.org/articles/10.1007/s10240-009-0021-z/
[BC] Récurrence et généricité, Invent. Math. 158 (2004), p. 33-104 | MR | Zbl
, ,[BD] On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. 96 (2002), p. 171-197 | EuDML | Numdam | MR | Zbl
, ,[BDP] A C 1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math. 158 (2003), p. 355-418 | MR | Zbl
, , ,[BCW1] C 1-generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn. 2 (2008), p. 359-373 | MR | Zbl
, , ,[BCW2] Ch. Bonatti, S. Crovisier, and A. Wilkinson, The centralizer of a C 1 generic diffeomorphism is trivial. Preprint arXiv:0705.0225 , 2007. | MR | Zbl
[BCVW] Ch. Bonatti, S. Crovisier, G. Vago, and A. Wilkinson, Local density of diffeomorphisms with large centralizers. Preprint arXiv:0709.4319 , 2007. | Numdam | MR | Zbl
[Bu1] Centralizers of partially hyperbolic diffeomorphisms, Ergod. Theory Dyn. Sys. 24 (2004), p. 55-87 | MR | Zbl
,[Bu2] Centralizers of area preserving diffeomorphisms on S 2 , Proc. Am. Math. Soc. 133 (2005), p. 1101-1108 | MR | Zbl
,[Fi] T. Fisher, Trivial centralizers for Axiom A diffeomorphisms. Preprint. | MR | Zbl
[FRW] On the conjugacy relation in ergodic theory, C. R. Math. Acad. Sci. Paris 343 (2006), p. 653-656 | MR | Zbl
, , ,[G] Groups acting on the circle, L'Enseign. Math. 47 (2001), p. 329-407 | MR | Zbl
,[Ko] Commuting diffeomorphisms, in: Global Analysis, Proc. Sympos. Pure Math. XIV (1970), AMS, Providence | MR | Zbl
,[N] A. Navas, Three remarks on one dimensional bi-Lipschitz conjugacies. Preprint arXiv:0705.0034 , 2007.
[PY1] Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. 22 (1989), p. 81-98 | Numdam | MR | Zbl
, ,[PY2] Centralizers of Anosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. 22 (1989), p. 99-108 | Numdam | MR | Zbl
, ,[Pu] The closing lemma, Am. J. Math. 89 (1967), p. 956-1009 | MR | Zbl
,[R] A minimal positive entropy homeomorphism of the 2-torus, J. Lond. Math. Soc. 23 (1981), p. 537-550 | MR | Zbl
,[Sm1] Dynamics retrospective: great problems, attempts that failed. Nonlinear science: the next decade, Los Alamos, NM, 1990, Physica D 51 (1991), p. 267-273 | MR | Zbl
,[Sm2] Mathematical problems for the next century, Math. Intell. 20 (1998), p. 7-15 | MR | Zbl
,[To1] Generic Morse-Smale diffeomorphisms have only trivial symmetries, Proc. Am. Math. Soc. 65 (1977), p. 145-149 | MR | Zbl
,[To2] Centralizers of C 1-diffeomorphisms, Proc. Am. Math. Soc. 71 (1978), p. 289-293 | MR | Zbl
,Cité par Sources :