Soit µ la mesure d’équilibre d’un endomorphisme de . Nous montrons ici qu’elle est son unique mesure d’entropie maximale. Nous construisons directement µ comme distribution asymptotique des préimages
Let µ be the equilibrium measure of an endomorphism of . We show that it is its unique measure of maximal entropy. We build µ directly as the distribution of premiages of any point outside an algebraic exceptional set.
@article{PMIHES_2001__93__145_0, author = {Briend, Jean-Yves and Duval, Julien}, title = {Deux caract\'erisations de la mesure d{\textquoteright}\'equilibre d{\textquoteright}un endomorphisme de $P^k(\mathbb {C})$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {145--159}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {93}, year = {2001}, zbl = {1010.37004}, language = {fr}, url = {http://www.numdam.org/item/PMIHES_2001__93__145_0/} }
TY - JOUR AU - Briend, Jean-Yves AU - Duval, Julien TI - Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $P^k(\mathbb {C})$ JO - Publications Mathématiques de l'IHÉS PY - 2001 SP - 145 EP - 159 VL - 93 PB - Institut des Hautes Études Scientifiques UR - http://www.numdam.org/item/PMIHES_2001__93__145_0/ LA - fr ID - PMIHES_2001__93__145_0 ER -
%0 Journal Article %A Briend, Jean-Yves %A Duval, Julien %T Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $P^k(\mathbb {C})$ %J Publications Mathématiques de l'IHÉS %D 2001 %P 145-159 %V 93 %I Institut des Hautes Études Scientifiques %U http://www.numdam.org/item/PMIHES_2001__93__145_0/ %G fr %F PMIHES_2001__93__145_0
Briend, Jean-Yves; Duval, Julien. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $P^k(\mathbb {C})$. Publications Mathématiques de l'IHÉS, Tome 93 (2001), pp. 145-159. http://www.numdam.org/item/PMIHES_2001__93__145_0/
[1] Polynomial diffeomorphisms of , IV : The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77-125. | MR | Zbl
, , ,[2] Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de , Acta Math. 182 (1999), 143-157.
, ,[3] On local entropy, in Geometric dynamics, Lect. Notes in Math. 1007, Springer Verlag (1983), 30-38. | MR | Zbl
, ,[4] Hypersurfaces exceptionnelles des endomorphismes de , Bol. Soc. Brasil. Mat., 31 (2000), 155-161. | MR | Zbl
, ,[5] Complex dynamics in higher dimension, in Complex potential theory, P. M. Gauthier and G. Sabidussi ed., Kluwer Acad. Press (1994), 131-186. | MR | Zbl
, ,[6] An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | MR | Zbl
, , ,[7] On the entropy of holomorphic maps, manuscrit, 1977.
,[8] Superattractive fixed points in , Indiana Univ. Math. J. 43 (1994), 321-365. | MR | Zbl
, ,[9] Ergodic properties of fibered rational maps, Ark. Mat. 38 (2000), 281-317. | MR | Zbl
,[10] Introduction to the modern theory of dynamical systems, Encycl. of Math. and its Appl. 54 (1995), Cambridge Univ. Press. | MR | Zbl
, ,[11] Propriétés métriques des variétés analytiques complexes définies par une équation, Ann. Sci. École Norm. Sup. 67 (1950), 393-419. | EuDML | Numdam | MR | Zbl
,[12] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983), 351-385. | MR | Zbl
,[13] On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 27-43. | MR | Zbl
,[14] Entropy and generators in ergodic theory, Benjamin Press, 1969. | MR | Zbl
,[15] Dynamique des applications rationnelles de , in Dynamique et géométrie complexe (Lyon 1997), Panor. Synthèses 8, Soc. Math. France (1999), 97-185. | MR | Zbl
,