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NOISE SENSITIVITY OF BOOLEAN FUNCTIONS
AND APPLICATIONS TO PERCOLATION

by Ita BENJAMINI, Gi. KALAI, Opep SCHRAMM

ABSTRACT

It is shown that a large class of events in a product probability space are highly sensitive to noise, in
the sense that with high probability, the configuration with an arbitrary small percent of random errors gives
almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to
be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given.

Consider, for example, bond percolation on an n+ 1 by n grid. A configuration is a function that
assigns to every edge the value 0 or 1. Let ® be a random configuration, selected according to the uniform
measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges
¢ with () =1. By duality, the probability for having a crossing is 1/2. Fix an € € (0, 1). For each edge e,

let ©'(¢)=0(e) with probability 1 — €, and o'(9=1— o with probability €, independently of the other edges.
Let p(t) be the probability for having a crossing in ®, conditioned on ® =1T. Then for all » sufficiently large,
P{t:|pm) — 1/2| >&} <e.
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1. Introduction

1.1. Noise sensitivity — three examples

Consider the Hamming cube Q, = {0, 1}" endowed with the uniform probability
measure P. Let .4 C Q, be some event. Given a random x= (xy, ..., x,) € Q,, suppose
that y=(J1,...,7,) is a random perturbation of x; that is, for every j € {1,...,n}, y,=x;
with probability 1 —¢€, independently for distinct j’s. Here € € (0, 1) is some small fixed
constant. This random perturbation of x will be denoted Ng(x). We may think of Ng(x)
as x with some noise.

Based on the knowledge of Ng(x), we would like to predict the event x € 4.
Since the joint distribution (x, Ng(x)) is the same as that of (Ng(x), x), an equivalent
problem is to predict Ne(x) € .4 knowing x. The event .4 is noise sensitive if for
all but a small set of x, knowing x does not significantly help in predicting the event
Ne(x) € 4. More formally, .4 is noise sensitive, if for some small 8 > 0,

(1.1) b, e, 8)=P{x: [P(N(x) € .4 | 9 — P(A)| >} <8,
Set
o4, €)= inf{8 > 0: Y2, ¢, <3},
which is the infimum of all 8 > 0 such that (1.1) holds. This will be called
the sensitivity gauge of .4. A sequence of events .4, C Q, wil be called

asymptotically noise sensitive if

lim ¢(4,,€=0, Vee(0,1/2).

m—o0

Remark 1.1. — As shown in Section 2, .4, are asymptotically noise sensitive if
and only if
1.2) lim var[P(Ng(x) € A, |x)] =0.

A simple example of a sequence of events which are not noise sensitive is
dictatorship. The first bit dictator is the event @n:{(xl,...,xn) € Q,:x= 1}. To
verify that {Z,} is not asymptotically noise sensitive, consider some event .4 C Q,.
Then for £ > n we may obviously consider .4 as a subset of Q by ignoring the

extra variables. Note that this does not change the value of ¢(#,¢). Consequently,
0D, €)=0(Z,€) $0 for all n> 1.
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Let us examine now the example of majority. Pick some € € (0, 1/2). Let
A6, C Q, denote the majority event, that is,

b, = {(xl,...,x,,) €Q,: ij> n/2}
J

The probability that 37 % — #/2 > /n is bounded from below as n — oco. Given such
an x, the probability that Ng(x) € 4, is greater than P[.Z4,] + 8, for some constant
8, >0, depending on €. We conclude that majority is not asymptotically noise sensitive
as n — 00.

Majority and dictatorship are not only noise insensitive, they are actually “noise
stable”, in a sense defined in Subsection 1.4 below.

It turns out that the noise insensitivity of majority and dictatorship is atypical,
and many natural and interesting events are asymptotically noise sensitive.

Our third example is bond percolation on an m+1 by m rectangle in the ordinary
square grid Z?. A configuration is an element in Q={0, 1}*, where E is the set of
edges in this rectangle. Let ® € Q be a random configuration, selected according to
the uniform measure. A crossing is a path that joins the left and right sides of the
rectangle, and consists entirely of edges ¢ with w(¢)=1. Let &,, be the event that there
is some crossing of this rectangle. By duality, it is not hard to see that P[&,] =1/2.

Theorem 1.2. — The crossing events &, are asymptotically noise sensitive; that 1is,
o(%,,,€ — 0 as m — oo.

This theorem will appear as a corollary of a general result. To introduce the
more general statement, we need the notion of influence.

1.2.  Influences of variables

Set [n]={1,..,n}. Given x € Q and j € [n], let ox=(x],...,x,), where x,=x,
when k4; and ¥ =1 — . The influence of the £-th variable on a function f: Q — R
is defined by

(1.3) L(N)=f o) =Sl -

In other words, I;( ) is the expected absolute value of the change in f when the
k'th bit x; is flipped. We shall often not distinguish between an event .4 and its
indicator function ) ,. In particular, for events .4, Ii(4)=Iix ,). Note that I;(#)
is the probability that precisely one of the two elements x, oux is in 4.

This notion of influence was introduced by Ben-Or and Linial [4]. Kahn, Kalai
and Linial [23] (see also [10, 31]) showed that for every .4 C Q, with P[.4]=1/2

there is a j € [n] with I(4) > clogn/n, for some constant ¢ >0, and that there always
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exists a set S C [n] with [S| < ¢(€)n/logn whose cumulative influence is > 1 — g; that
is, the measure of the set of inputs for variables in [#] — S which determine the value
of fis less than e.

Put

1) =Y N,
H(f) =Y (/)"
k

Theorem 1.3. — Let A4, C Q, be a sequence of events and suppose that H(_4,) — 0
as m — 00. Then {.4,} is asymptotically noise sensttive.

Equivalently, there is some continuous function @ satisfying ®(0, €) =0 such that ¢(4, €) <
DOH(.A4), €) for every event .4 in some L.

On Q,, we use the usual lattice order: (xy,...,x,) < (y1,...,»,) Uff x < y; for all
7 € [n]. A function f: Q, — R is monotone if f(x) < f(y) whenever x < y. An event
A C Q, is monotone if its indicator function ) P is monotone.

For monotone events, Theorem 1.3 has a converse:

Theorem 1.4. Let A4, C Q, be a sequence of monotone events with

infH(.4,) > 0.

m

Then {4,} is not asymptotically noise sensitive.

The assumption that the events .4, are monotone is necessary here.
(For example, take ., to be a uniform random subset of Q,, or parity: .4, :=
{r€Q, : ||« is odd}.)

Suppose that .4 is a monotone event where the influences of all the variables
are the same. The influence I;(.#4) then measures the sensitivity of .4 to flips of a
single variable. Note that, quite paradoxically, .4 is least sensitive to noise when I,(_4)
is largest.

We now give a quantitative version of Theorem 1.3 under the assumption that
H(.#,) goes to zero fast enough.

Theorem 1.5. — Let A4 C Q,, and suppose that H(_4) < n~% where a € (0, 1/2].
Then there exist ¢, ¢co > 0, depending only on a so that

oA, ) < an 2, Ve € (0,1/4).

Consequently, if A4, C Q, s a sequence of events satisfying H(_4,) < (n,)™* and €, 15 a
sequence in (0, 1/4) such that €,logn,, — oo, then ¢(4,, €,) — 0.
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1.3. Weighted majority

It turns out that for monotone events noise insensitivity is also closely related to
correlation with majority functions.

Let K C [n] and define the majority function on K by
M () = sign >_(2% — 1);

jeK
that s,
=1 if Yk % < |K[/2 ;
(1.4 Mk(x) = 0 if Yexx=IK|/2;
Lif Yex % > [K|/2.
For f: Q, — R set

A(f) = max{|E(fM)| : K C [1]}.
Theorem 1.6. — Let f: Q, — [0, 1] be monotone. Then

H(f) < CA(f)*(1 — log A(f)) log,
where C 15 some universal constant.

Consequently, if A, C Q, 1is a sequence of monotone events with

(1.5) lim A(2,)? (1 — log A(2,)) logn, =0.

m— o0

Then {_4,} is asymptotically noise sensitive.

One cannot get rid of the logn, factor (see Remark 3.10), except by using
weighted majority functions. For positive weights w = (w,, wy, ..., w,) consider a weighted
majority function, which is defined by

Mao(x1, %, %) =sign (D (25 — 1))
Finally write
A(A) = max{[EpsM,,)| : w € [0, 1]"}.
Theorem 1.7. — Let A4, C Q, be a sequence of monotone events. Then {An} is
asymptotically noise sensitive if and only if lim AA,) =0.

m— 00

For a monotone event .4 C Q,, which is symmetric in the n variables, its
correlation with unweighted majority is enough to determine if it is noise sensitive.
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1.4. Stability

We now define the notion of stability, which is the opposite of noise sensitivity.
Suppose .4 C Q,, and let ¥ € Q, be random-uniform. For € > 0, let Ne.4 denote
the event Ng(x) € 4. It is then clear that P[ 4A N 4] — 0 as ¢ — 0. (BAA
denotes the symmetric difference, (& — A4)U (4 — #).) The faster P[.4A N 4]
tends to zero, the more noise-stable .4 is. More precisely, let {4} be a collection
of events, where .4 C Q,. We say that {4} are uniformly stable if the limit
lim, ,P[x € 4 AN 4] =0 is uniform in i.

For w € R" and s € R, let .#,, , be the (generalized) weighted majority event

by, = {x eR": Z(ij — Duw; > s} C Q,.

j=1

Let 9 denote the collection of such events:
M:={ M, ,:n=1,2,.,weR" s¢ R}.

In Section 3 we show that

Theorem 1.8. — M is uniformly stable. Moreover, for every M € M
P[/ — Nett] < Ce'/*,

where C is a universal constant independent of A .

Note that an infinite sequence {4} with P[.4] bounded away from 0
and 1 cannot be asymptotically noise sensitive and uniformly stable. We also observe
(Lemma 3.8) that when {4}, (4 C Q,), is asymptotically noise sensitive and {.%},
(% C Q,), is uniformly stable, then .4 and % are asymptotically uncorrelated. One
can say, somewhat imprecisely, that the noise sensitive events are asymptotically in the
orthocomplement of the uniformly stable events.

Stability and sensitivity are two extremes. However, there are events that are
neither sensitive nor stable. For example, if & is the event of a percolation crossing, as
described above, and .#4 is the majority event, then & N.# is neither asymptotically
noise sensitive, nor uniformly stable.

1.5. Fourier-Walsh expansion

For a boolean function f on {0, 1}", consider the Fourier-Walsh expansion
f= ZSC["]_}? (S)us, where, ug(T)=(—1)"TI. Here and in the following, we identify
any vector x € Q" with the subset {j € [n] : x,=1}, of [n] ={1, 2,...,n}. Consequently,
|x| denotes the cardinality of that set; that is, |x| =||x||; for x € Q,.
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Theorem 1.9. — Let A4, C Q, be a sequence of events, and set g, . Then {4,}

:x )
i asymptotically noise sensitive iff for every finite k

(1.6) lim Y {2,(8: S C [, 1 < |S| < £} =0.

{An} s uniformly stable iff

(1.7) lim sup >"{2,(S) : S C [1], [S| > k} =0.
k—oo m

It can be easily shown that for f=y

I(f)=4 > f(S7IS].

SC[n]

(This follows from (2.5) below with p=2.) We will introduce another quantity
JN= X TSI

0% SC[n]
Also set for A4 C Q,, n>1,
o) = logI(_4)/logn,
B(.4)= —log J(.4)/logn.
For events .4 we clearly have 0 < B(#4), and B(#4) < a(4), provided that
P[.4]=1/2. When ./ is monotone a(4) < 1/2.

Perhaps some words of explanation are needed. I(#) measures the sum of the
influences of the variables. For monotone events it is maximal for majority, where
I(4) ~ /n and thus o(4) — 1/2. In the terminology used in percolation theory,
I(4) is the expected number of pivotal edges.

For the crossing events & of percolation (in arbitrary dimensions) it is conjectured
that I(&") behaves like a certain fractional power (a critical exponent) of n. It is conjectured
that in dimension 2, as n tends to infinity, a(%") tends to 3/8. Thus, this critical
exponent generalizes and has a Fourier-analysis interpretation for arbitrary Boolean
functions.

o) is large if there are substantial Fourier coefficients f(S) for large |S|. In
contrast, B(.-4) is large if there are no substantial Fourier coefficients f(S) for S of small
positive size. We conjecture that for the crossing events for percolation, as n tends to
infinity B(%’) tends to a positive limit. We are curious to know whether this limit is
strictly smaller than the limit for a(%).

1.6. Some related and future work

There are interesting connections between noise sensitivity and isoperimetric
inequalities of the form described by Talagrand in [32]. These connections and
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applications for first passage percolation problems will be discussed in a subsequent
paper [6].

Our notion of noise sensitivity is related to the study of noises by Tsirelson
[34, 35]. “Noise”, in Tsirelson’s sense, is a type of o-field filtration. Uniform stability
seems to correspond, in the limit, to the noise being white, while asymptotic sensitivity
seems to correspond to the noise being black.

1.7. The structure of this paper

Theorems 1.3 and 1.4 are proved in the next section. Our proofs combines
combinatorial reasonings with applying certain inequalities for the Fourier coefficients
of Bonami and Beckner which were used already in [23]. However, to get the results in
the sharpest forms we have to rely on a sophisticated “bootstrap” method of [33] and
on the main results of that paper which rely on this method. Talagrand’s remarkable
paper [33] has thus much influence on the present work.

Weighted and unweighted majority functions are considered in Section 3. An
applications to percolation is described in Section 4 followed by some related open
problems in Section 5. In Section 6, we will work out two examples (due to Ben-Or
and Linial). In one of these a(4) — 1 —log, 3 and B(.4) — 1 —log, 3. In Section 7
we consider relations with complexity theory. A simple description of noise-sensitivity
in terms of random walks is given in Section 8. In Section 9 we consider perturbations
with a different sort of noise, where the number of bits that are changed is fixed. The
conclusions are similar to those above, but there is an amusing and slightly unexpected
twist.

For simplicity we consider here the uniform measure on Q,. More generally, one
may consider the product measure P,, where P,{x: x;=1} =p. Our results and proof
apply in this setting. (All that is needed is to replace the Fourier-Walsh transform by its
analog as given in Talagrand’s paper [31] and the proofs go through without change.)
However, the case when p itself depends on 7 is interesting, but will not be considered
here.

Since the first version of this paper was distributed, a few of the problems we
posed were settled by several people, not always in the direction anticipated by us.
These developments are mentioned briefly in a few “late remarks” throughout the

paper.

Acknowledgments.
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2. Sensitivity to noise

We now put the noise operator N¢ defined in the introduction into a somewhat
more general framework. That will allow us to deal, for example, with the situation
where the 1 bits are immune to noise but the 0 bits are noise prone.

Consider the following method for selecting a random point x € Q,. Let ¢y, ..., ¢,
be independent random variables in [0,1], with E¢=1/2, for j=1,..,n, and let
o € [0, 1]* be random uniform. Set

1, ifl-w<g,
xj:{ S G

0, otherwise.

Then x is distributed according to the uniform measure of Q,; it will be denoted by
N(®, ¢)-

Let v be the measure on [0, 1]” such that v(X)="P[(g, ..., ¢,) € X]. We think of
x as being chosen in two stages. In the first stage, ¢=(q, ..., ¢,) is selected according to
v. This ¢ gives a product measure P, on {0, 1}" that satisfies P,{t € Q, : 1(j)=1} =¢;
Then x is chosen according to the measure P,.

For example, suppose z € Q,. Define g=¢(z) € [0, 1]" by ¢gj=1 —¢ if z;=1 and
gi=¢ if z;=0. Then for every z € Q,, the perturbation Ne(z) has the same distribution
as N(m, ¢(z)). The v giving this distribution of ¢ will be denoted ve.

However, the construction N(w, ¢) is more general than that given by the noise
operator Ng. As hinted above, one can create a situation where 1 bits are robust, but
0 bits are prone to noise. More precisely, take ¢;=1, with probability 1/2 — & and
gi=¢/(1/2 + ¢) with probability 1/2 + €.

Another interesting example is obtained by taking each ¢; to be 1, with probability
(1 —¢)/2, 0, with probability (1 —€)/2, and 1/2 with probability e.

Let f: {0, 1}" — R be some function. In the following, f/ will be taken to be
the characteristic function )_, of some event .4 C {0, 1}", or f=y _, — P(-4). What
information does the first stage in the selection of x=N(®, ¢), namely the selection of
¢, give about the value of f(x)? If we know that ¢=¢2, then our prediction for f{x)
would be

G(f, )=E(f() | ¢=2).
The expected value of G(f, ¢) is obviously E( f). Let

2LV =EG(f 9= [ GU o dvid)

This is just the second moment of G(f, ¢). If Z(f, v) — (Ef)? is small, then for “most”
values of ¢ there is no prediction for f(x) that is significantly better than the a priori
knowledge of Ef. We often write G(#, ) and Z(#4, ) in place of G(x ,,-) and

Zix ;)
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Lemma 2.1. — The number Z( f, V) depends only on f and the variances C; of the variables
g;- 1ts expression in terms of the Fourier coefficients 1s,

Zisv)= > 19 46

SeQ, =
Proof. —
G(f =B/ | 4=2)
= 2 /OII5110 -3
Tcin] JeT  j&T
=227 5110 -4
T S JET €T
-7 (S a0 o)
S T'CS JET' €T
([ Hello-s)
T"'C[n)-S jeT” j&T"
=27® (H((l -3 - zj)) (H((l -y zﬂ)
S = JES
=27 ®Il0 - 2).
S JE€S
Therefore,

Z(£,v)=EG(f, ¢
=2 fOfS)E (H(l —og)TJ01 - gq,.))
s ¥ JES jes’
=SS 787S) T B0 - 2¢° ] E( - 2g).
5 ¥ JESNS! JESAS!

Since Eg;=1/2, summands with S S’ vanish. The lemma follows. O
For every e € [0, 1], x € Q,, and f: Q, — R set

Qef (x) = Ef (Ne(®))
(here the expectation is only with respect to the noise). Also let
var( f, €) = var(Qef) = Z(f; ve) — (Ef)*.

Note that for singletons S={i} C [r], we have Qeus=(1 — 2e)us. If Sy, Sy C [n]
are disjoint and x € Q, is fixed, then Ng(x) N'S; and Ng(x) NSy are independent.
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Consequently, Qg(us, us,) = (Qus,)(Qeus,). We may conclude that Qgus=(1 — 2¢)/Slug
for every S C [n], and linearity gives

2.1) Qef= > F 81 — 2¢)us

SCln]

One consequence of this, which can also be obtained from Lemma 2.1, is

2.2) var( f, €)= Z f g)?S!,

0% SCn]

Now we relate var(.4, €) with the sensitivity gauge ¢(4, €):

Proposition 2.2. — For every A4 C Q,

1
—var(.4, €) < O(4, €) < var(4, 8)1/3.
2

Progf. — Let d=0¢(4, €), and set

Y:{yEQn:

)—PL2]| > 8}.
Then, by the definition of ¢, P[Y] > &. Consequently,
var(_4, €) > 8°P[Y] > 8 = ¢(4, ¢)’.

For the other direction set
Y = {y €Q,: ngxJé(j) — P[./@]l > 8}.

Then P[Y'] < 8. For y € Y/, the trivial estimate ‘Qs% P P[J@]I < 1 holds. Therefore,
var(4, €) < P[Y'] + 8 < 20(4,¢). O

Proof of 1.9. — The first part is immediate from Prop. 2.2 and (2.2). For
the proof of the second part, observe that (2.1) implies that (1.7) is equivalent to
lgn — Qegnllo — O uniformly as € — 0. Since |g,| and |Q¢g,| are bounded, this is

equivalent to ||g, — Q ¢gnlli — O uniformly, which is the same as uniform stability for
{A4.} O

Remark 2.3. — Another consequence of 2.2 and (2.2) is that for constant
g, ¢ € (0,1/2), we have ¢(4,,& — 0 iff ¢(4,,¢) — 0. Consequently, to verify
that .4, is asymptotically noise sensitive, it is enough to prove var(.4,, €) — 0 with
any fixed € € (0, 1/2).
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By Theorem 1.9, to establish Theorem 1.3 we need to show that the L? weight
of the Fourier coefficients with |S| small is negligible. For a function g= Y g(S)us let

Tng=Quing= Y 2SN lus.
Observe that Ty(g) =Eg and T,g=g. Also note that

(2.3) I'T1_2cgll5 = var(g, €) + (0%,

by (2.2).
The following hyper-contractive inequality of Bonami and Beckner [7, 3], which
was crucial in [23], will be useful.

Lemma 2.4 (Bonami, Beckner). — ||Tyf|la < || f|14n2-

The following is a slightly weaker version of Theorem 1.3, which is sufficient
for the applications to percolation. It is presented here, since we can give an almost
self-contained proof of it.

Theorem 2.5. — Suppose that A, C Q, is a sequence of events and

logH(A4,,
2.4) lim (08HA)
m—oo loglogny,

Then {A4,} is asymptotically noise sensitive.

Proof. — Abbreviate .4 for .4, and n for n,, and set fi=y ,. Let f= X4~
P[.4]. Thus, ?(@):O and ?(S) =7(S), when S 0.

Recall that o= (], ..., x,), where x;=x; if 1¥j and ¥ =1 — x. Let

SO=f®) =S,  J=1,2,..,m

and note that
0, ifjgs,
o (S), ifjeSs.
Since f; takes only the values —1, 0, 1, equation (1.3) gives for every p > 1,

(2.5) Al =1
We set n:=1 — 2¢, where € € (0, 1/2) and

F_s(n):=var( 8, &) = [Tof[l3= > f (S'n*S.
S+ 9

8)= {
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By Remark 2.3 and Theorem 2.2, it is enough to prove that F_¢(1/2) — 0 as m — ooc.
We have

Fe() < Zf(S S’ = Z“TanQ

]—1

1 n
<7 S 4l  (by Lemma 2.4)
(2.6) i=1

< ilj(t/@)z/ G by (2.5)

=1
< g/ "2>H(J6)1/ (+?) (by the means inequality).

Take some 1; € (0, 1/2), to be later specified, and set A:= logF_gzM;)/logn;. If n > ny,
then

Z 7 (2! +nxzf
(2.7) l<|S|<),/2
< M/M)Fe(m) + =20
Assume that H(4) € (0,¢7?), and let a:= min{—logH(./@)/logn, 1/2}. We may
choose M;:=+/a/2. Then H(4) < n™*% and therefore (2.6) and the definition of A give
_alogn
3log(1l /a)

The definition of a together with (2.4) and (2.8) show that A — oo as m — oo.
Hence (2.7) implies F_¢ (1/2) — 0 as m — oo, which completes the proof. O

2.8) A

Proof (y’ 1.5. — The above calculations together with Prop. 2.2 show that

alogn
(4, €) < var(4, € 1/3 =F ¢(1 — 28)‘/3 < 21/3( _ 28) 9log(1/a) ,

for € € (0, 1/4), when we assume H(4) < n7% a € (0, 1/2]. The theorem follows
immediately,. O

For the proof of Theorem 1.3, we will need the following.

Theorem 2.6. — For each k=1, 2,..., there is a constant C; < 0o with the following
property. Let A4 C Q, be a monotone event and f=Y, ,. Then

S 7 (8 < CHA) (- logH@A))

IS|=%
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This inequality was proved by Talagrand [33] for £=2. (Talagrand considers
an extension of this relation for two events, and our generalization applies for that
extension as well.)

Proof of 2.6. — To prove the theorem one can follow Talagrand’s proof almost
word-by-word. We will only describe the changes needed to adapt the proof. One
modification required is that the inequality

> t} < ezexp<—t2/k(82 Zag)‘l/k>

must be used in place of the sub-Gaussian estimate that appears as Prop. 2.1 in [33].

1/k
Set g= /(@ £ 05) " . For g < 2 the inequality (2.9) is trivial, while for ¢ > 2 it follows
by substituting ¢ into

> asus(S)

S| =k

2.9) P {s’ :

(2.10) <@-1" (32 Oti)l/2 , Vgx2,

Z Olsus

S| =&

q

which appears in [31] as (2.4) and is a consequence of the dual version of the Bonami-
Beckner inequality.

Set Ay:={x € 4 : osx € 4}, and note that 2P[A;] =I;(4). In the proof for the
case k=2, Talagrand considers in Section 3 of [33] partitions IU]J = [n], and estimates
S{I(4)* :j € L(s)}, where L(s) is the set of j € J such that

2
urn(x /SQPAjQ.
;(/Aj {}()) > 5P|

To generalize Talagrand’s argument for £ > 2, one gives a similar estimate to
S {I{4)? :j € Li_1(s)}, where Ly_i(s) is the set of j € J such that

2
Z{ (/Au,-(x)) iCL i =k— 1} > s"P[A]”

J

We omit the details, since from this point on only straightforward changes are required
to adapt Talagrand’s beautiful (but rather mysterious) argument. O

In the case of monotone events, Theorem 1.3 follows immediately from
Theorems 2.6 and 1.9. In order to get rid of the monotonicity assumption, we introduce
the shifting operator.
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Let j€ {1,...,n}, and let f: Q, — R. For x € Q,, set

max{ f(v), f(ox)}, if x=1,

min{ f(x), f(o;x)}, if x=0.

The operator x; is called the j-shift. The following lemma describes some useful
properties of shifts.

K5 (%)= {

Lemma 2.7 (Shifting). — Let f: Q, — R, and let j, 1 € {1,...,n}. Then

l. X%y ... X, f s monotone.

2. L. f) < I{/f).
3. var(K; f; €) > var(f, €) for each € € [0, 1].

Progf: — Suppose for the moment that ¢ ;. For any 4, b € {0, 1} and x € Q,, let
%,,5 be x with the ¢’th coordinate set to a and the j’th coordinate set to 4. Note that x;
is monotone nondecreasing in the variable x. Hence xix; f(x; 1) is the maximum of f
on {x9,0, X0, 1, %1,0, X1,1} and KX; f (%, o) is the minimum. It follows that kx; f=kiKX; /.
This relation easily implies the first claim of the lemma.

For the second part, we may assume with no loss of generality that j % i, because
L(x; f)=L(f). A case by case analysis shows that

|f(x0,0) = f (x1,0) + | f (%0, 1) =S (1, 1)l
> [ f(%0,0) — %/ (x1,0)| + [%5.£ (%0, 1) — 6./ (x1,1)|,

and the second part follows by summing over x € Q,.
For the last part, set

2()=E[f(Ne() | x=1],
2 () =E[fNe®) | x=)].

Note that g( ) +go/())=g()) +£(9j 1), but | g(y) — g(0}(»))l < lg(y) —£(0;y)|. This

implies g(y) +£(0;())) <2() +&(o jy) . By summing over y, we obtain E(¢’) < E(g?).
Since Eg=Eg, the last claim of the lemma now follows. O

Proof of 1.3. — Let 4 C Q,. Set g=KiKp...X;X, ,. Then by Lemma 2.7, g is
monotone, H(g) < H(#) and for each € >0 we have var(g, €) > var(.4, €. Moreover, g
takes only the values 0 and 1. By applying Theorem 2.6 for g, and using Theorem 2.2,
Theorem 1.3 immediately follows. O

Proof of 1.4. — Observe that for a monotone f: Q, — R

(2.11) L(f)=27{;}l,
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and therefore
(2.12) H(f)=43 f{s}".
j

Hence 1.4 follows from Theorem 1.9. O

Note that (2.12) implies the well-known inequality
2.13) H(4)< 1
for monotone events 4.

Remark 2.8. — It is tempting to look for a simpler proof of Theorem 1.3, along
the following lines. Using (2.5) with p=2, we find that

2
(2.14) H(f)=Y ( > 4?(8)2) =16 f(Sf s,

j=1 \82(j} 5,8

where f=y,_, for some event .4 C Q,. This expression is more complicated than (2.12),
but is still valid when .4 is not monotone. The fact that fis the indicator function of
an event is summarized by the equation f2=F£ In terms of the Fourier transform, this
translates to a convolution equation

(2.15) Fxf=Ff.

(By replacing f with 2 f— 1, this transforms to the simpler lookingf *f:x{@}.) One
may suspect that there should be a direct argument that uses only (2.15) and (2.14) to
prove that for every k=1, 2, ...

S f8F—0

S| =k

when H(f) — 0. Then Theorem 1.3 would follow from Theorem 1.9.

3. Correlation with majority

3.1. Uniform weights

Fix some n € N. Recall the definition (1.4) of the majority function Mg, and set
M= Mn - M[n] .

Theorem 3.1. — Let f: Q, — [0, 1] be monotone. Then

1) < CyREUM (1+1/~10gE(/M),

where C 1s some universal constant.




NOISE SENSITIVITY OF BOOLEAN FUNCTIONS AND APPLICATIONS TO PERCOLATION 21

Progf. — Write f () for the average of f on the set {x: }:jxj=k}:

7= (k) PIFC)

lx|=k

Then

3.1) E(/M)=2"Y ( ) (Fb—F@a—h) .

k2
Recall that s =(y1,...,y,) where ;=1 — % and y;=x; for i%j. Then
IN)=27"D 3 |f@x~
*

Since fis monotone, f(x) —f(s;x) > 0 when x;=1 and f{x) —f(s) < 0 when x;=0. Hence
the expression for I( ) simplifies,

N=2" 1@ (2l —n)

o (e

:2'”%()([(1: Fn—h) @k—n)

For any A > 0 write A) = (n+A+/n)/2. Since 0 < f(k) < 1, by comparing (3.2) and (3.1),
we obtain the following estimate.

I(/) < (2KY) — ) E(/M) +27" 3 (k> V' ~F—b) @k~ n)

K>k

<M/RE(/M)+27 3 ()Qk—n

k>KN)

Because there are constants C;, Co > 0 such that

k— 2
(3.4) 9 (Z) 2k — n) < Crexp (_(QTan)—)
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holds for every n and £, by choosing A =Cs/—logE(fM), where C; is a sufficiently
large constant, we get

n

203 (k) (2 — n) < Cy/nE(fM),
k>k(A)

and the theorem follows from (3.3). O

Given a set K C [n], let Mg denote the majority function on the set K; that is,

-1 iijeK’ﬁ<|K|/2;
Mk (v) = 0 if Yk %=1K|/2;
Loif Dlex > K|/2.

Also set,

k()= DTS-

keK
Corollary 3.2. — Let K C [n] and suppose that f: Q, — [0, 1] is monotone. Then

Ik(f) < Cy/IKIE(fMy) (1 + /= logE(fMy)) ,

where C is some universal constant.

Proof. — Set m=|K|, and assume, that K={1,...,m}. Given z € Q,, set

&KR=2"" " fz)).

YEQ,_p

Then fx is monotone and I(fk)=Ik(f). Consequently, the corollary follows from
Theorem 3.1. O

Proof of 1.6. — Assume, with no loss of generality, that

(3.5) L (f) <T(S)

for all j € {1,...,n— 1}. Cor. 3.2 implies that

k
36) S < Gl (1+/~TogAl) i

j=1
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for some constant G, and every k£ € [n]. Subject to these constraints and (3.5), H( f)
is maximized if equality occurs in (3.6) for every k. Therefore,

H(/) < GIAGY (14 JTg?Tf))QZ (- \//:)2

n

=O(MA(/)*(1 — log A(f)) Sk~

= O(DA(f)*(1 = log A(f)) log .

This proves the first part of Theorem 1.6. The second part now follows from
Theorem 1.3. O

>~

Theorem 1.6 tells us that if A(#,) — 0 fast enough for monotone events .4,
then they are asymptotically noise sensitive. Conversely, if a sequence of (not necessarily
monotone) events satisfies inf A(_4,) > 0, then it is not asymptotically noise sensitive.
This can be proven directly, and also follows from Lemma 3.8 below.

It is interesting to note that

Theorem 3.3. — Majority maximizes 1 among monotone events A4 C Q,.

This follows from [15], although the explicit statement does not appear there. It
also follows from the classical Kruskal-Katona theorem. See also [18, Lem. 6.1].

3.2. General weghts

We will investigate now some relations between noise-sensitivity and weighted
majority functions. Several of the properties we need for weighted majority functions
are easy to establish if the distribution of weights allows us to use a normal
approximation for f(x)= > wx. But, as it turns out, working with arbitrary weights is
harder.

Our first goal is to show that weighted majority functions are uniformly noise
stable. This will imply the “only if” part of Theorem 1.7. For this, the following easy
(and quite standard) lemma will be needed.

Lemma 3.4. — Let w=(w), ..., w,) ¥0 and f(x) = 3=; wi(2x; — 1). Then

(3.7) P[|f| > fllwlls] < 367,
and
(3.8) P[| f| < 0.3||w]|2] < 0.92.

A much stronger estimate than (3.7) is known (see [28]).
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Progf. — Without loss of generality, we assume that ||w||;=1. Then E[ f*]=
3||wl|; — 2||2]|; < 3. Hence (3.7) follows:

Pllf] > 4=P[f* > /] < T E[f1 =30
This implies

Ell oy =P/ >4+ [ P/ >dds<307 +0°,
s>t

Hence

E[l ooy f1=E[f1 —E[f*1 2] > 1 =372 = °.
We choose #=10, and obtain

10 — 9.9P[ 2 < 1/10] = I0P[ /2 > 1/10] + P[ /2 < 1/10]/10
> E[1; 210, /%] > 9/10,
which gives (3.8). O

Lemma 3.5. — Let b > 0, let v\,...,v; > b, and let g= Zf:lzjvj, where Plz;=1] =
Plzi= — 1] =1/2, and the z; are independent. Then for every t > 1 and every s € R,

(3.9) Pllg— sl <] <c-1/3/d,

where ¢ is some universal constant.

This lemma is a consequence of Theorem 2.14 in [28], for example. However,
since the proof of that theorem is arduous, we now present a simple combinatorial
proof.

Proof. — Let x be a random uniform element in Q,, and let * be a random
uniform permutation of {1, 2,...,d}. Let C be the collection of sets S that have the
form S={j: n(j) <r} for some r € R. Then there is a unique y € C with | y| = |x|.
Observe that y is a random uniform element of ;. Consequently, the distribution of g

is the same as the distribution of A(y):= Z}i: 1(1 —2y))v;, where y; is 1 or 0 when j € y or
J &, respectively. Since C is totally ordered by inclusion, there is at most one S € C
such that |A(S) — 5| < b/2. So when = is fixed, the probability that |A(S) —s| < 8/3 is at
most rnax{P[|x| =1 :r€ R} =0(1)/+/d. This establishes (3.9) for ¢=1/3. The result

for general ¢ > 1 follows by applying the result for t=1/3 for an appropriate succession
of values of 5. O

Proof of 1.8. — Let w=(wy,...,w,)F0 and 5 € R. Let f(x):= Z}l:le(ij‘ - 1),

and consider the event . :={x € Q : f(x) > so}. Take € > 0, and let J C [n] be
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a random subset, where each j € [n] is in J with probability €, independently. Set
Y(J):= >Jjey wi2% — 1). Then 2Y(]J) has the distribution of f— Ne f. Let & € (0, 1) and
set

(3.10) a:=inf{t>0: PIY(J)| > 4 < 8}.

Our goal is to give an estimate from above to P[| f| <2a] in terms of € and §,
which will tend to zero when 8 is positive and fixed and &€ — 0.

Set W(]):= >, w?. This is the variance of Y(]J) conditioned on J. Note that
y€J “

P[IY(J)| > a| JI=P[Y())* ><* | J] <E[Y(J)? | JI/a*=W(J)/d".

Therefore,

5=P[Y(J)| >d= Y PIY(J| >a| J=X]P[J=X]
(3.11) _ _’ZC["] o
< Y min{l, e *WX)}P[J =X] =E[min{1, a*W(])}],

XC[n]

and we conclude that
3.12) PW(]) > 84%/2] > §/2.

Now let zi, 29, ..., 2, be independent variables that are uniform in [0, 1], and are
independent from (xy, ..., x,). Let m be the largest integer such that me < 1. Let I;, ..., 1,
be disjoint open intervals in [0, 1], each of length €. Let I,:=[0, 1] — U;_ L. Let
Jr k=0, 1,...,m) be the set of : € [n] with z; € I;. Then each J; with £ > 0 has the
same distribution as J above. Let .4; be the event that W( Ji) > 84?/2. Then from
(3.12) with J; in place of J we find that P[.4;] > §/2 for k=1, 2,...,m.

We claim that for £+ the events .4, and .4 are negatively correlated. This
can be established by proving by induction on =z that the events W( J;) > s and
W(Jw) > o are negatively correlated for each s;, sy € R (which is intuitively obvious,
since the intervals I; and I are disjoint). Let K be the number of £ > 0 such that the
event % occurs. Then

E[K]= ) P[4] >md/2,

and

2
EK’] -EK]’= ) P[4N. 4]~ (ZP[J&]) < E[K],
kK k
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because the events .4, .4 are negatively correlated when k& # ¥. Therefore
P[K <md/4] < P|(K — EK)’ > (md/4)]
(3.13) < 4md)*E|(K — EK)?| =4(md)~ (E[K?] — (EK)*)
< 4md)’E[K] < 4m™'872.

Let L be the set of £ € [m] such that [Y(J)| > av/3/10. By (3.8), applied to Y(J)) in
place of f,

Plke L|.4] > 8/100.

Moreover, conditioned on all the J;, the events {k € L} are independent. Consequently,
a calculation similar to (3.13) gives

P[|L| <m8/100 | K > md/4] < O(1)m~'872
When we use this and (3.13) together, we get
3.14) P[|L| <m8/100] < O(1)m~'872.

If we condition on L, on all Y(J;) for £ ¢ L and on all [Y(J)| for £ € L, then what
remains to determine f are only the signs of Y( J;) with £ € L. Moreover, these signs are
independent, and are + or — with probability 1/2. Hence we may apply Lemma 3.5
with b:=ay/3/10, d:=|L|, s:=s50 — >orer Y(Jo), &= 2o4er Y(J#), and take v=(y) to be
the sequence ([Y(Ji)| : £ € L). The conclusion is that for ¢> 1

P[|f— sl < @v/8/10 | |L| > m8/100] < O(1)t/+/m.
Together with (3.14), (and choosing ¢=20/+/3) this gives

(3.15) P f— sl < 2] < O(1) (572 + V&5 7).

We now come to analyze the effect of noise. Because 2Y(J) has the same
distribution as f— Ng f, for every a >0

P26 & NeAE] < P[| f— 50| < 2a] + P[[Y())] > 4]

Choose §:=¢'/* and, as before, use (3.10) to define a. Then P[| f—s| < 24] < O(l).‘sl/4
and P[|Y(])| > 4] < el/, Consequently,

(3.16) P[./6 A Ne 4] < O(1)e'/*,

and the theorem immediately follows. O
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Question 3.1. — What is the best exponent possible on the right hand side
of (3.16)?

Late Remark 3.6. — Yuval Peres and Elchanan Mossel found a simple proof
showing that, as expected, the correct exponent is 1/2.

Remark 3.7. — It follows from Theorems 1.8 and 1.3 that inf{H(.Z4)
A6 € M} > 0. (A direct proof will follow.) We conjecture that H(.Z4) is minimized
among 4, ¢ C Q, in 9 when all the weights are equal. It is a consequence of
Theorems 1.8 and 1.9 that

lim su Y . (S?=0.
We actually expect that among weighted majority events in Q,, the one with equal
weights is the least stable, and for every £ > 1 maximizes Y5 X > (S)2.

For the proof of 1.7, the following will be needed.

Lemma 3.8. — Let A, 5, CQ, be two sequences of events. Suppose that the sequence
{A,} is noise-sensitive, while the sequence {.98,} is noise-stable. Then

lim P[4, N ] — P[4,]P[.5,] =0.

Progf. — This can be proven directly, but since P[4, N %,] =E[x_, X, ], the

lemma is immediate from 1.9. O

Let the influence vector of an event .4 C Q, be the vector I%:=
(II(J@L ey In('/@» € R

Proof of 1.7. — The “only if” direction follows from Theorem 1.8 and
Lemma 3.8.

For the other direction, we need to show that monotone, noise-insensitive events
% C Q, have a non-vanishing correlation with some weighted majority event .4,
w € [0, 1]". Talagrand’s Theorem 1.1 [33] gives a lower bound on the correlation of
monotone events. This theorem asserts, in particular, that for two monotone events,
if the inner product of their influence vectors is bounded away from zero, then the
correlation between them is also bounded away from zero ().

We know from Theorem 1.3 that for noise-insensitive events, ||I#||, is bounded
away from zero. It remains to show that for every » € [0, 1]* with ||9||;=1, we can

) For uniformly stable events, it seems that also the converse is true: if the correlation is bounded away from zero,
then so is the inner product of their influence vectors. For monotone uniformly stable events, this follows from the two-event
version of Theorem 2.6.
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find a weighted majority function & =.4,, w € [0, 1]", such that the inner product
(I# | 1) is bounded away from zero. We will prove that this holds when one chooses
w:=0.

Given any w € R*, w#0, let I* € R" denote the influence vector of .4,
If = Ij(.%w).

Proposition 3.9. — There is an absolute constant ¢ > 0 such that (w, I*) > ¢ for every
n=1,2,.. and every w € R" with nonnegative coordinates and ||w||; = 1.

Proof. — Set f(x)=3;_ (2% — l)w; for x € Q,. Then f{]} w; for j € [n]

and f(S)=0 for S C [n], |S| 1. On the other hand, I(Z4,)=M,({ j}), where
M,, =sign( f). Therefore,

(0, 1) = (f, M) = ( f, M,,) =E| f(3)],

which is bounded from below, by (3.8). This completes the proof of the proposition,
and the proof of Theorem 1.7. O

Remark 3.10. — We now show that one cannot remove the log in Theorem 1.6.
Fix some k,n € Z with n > k > 0. Let wj:l/\/]Tog—n for j=1,..,n, and let u=1//k
for j < k and 4=0 for j > k. Set f,(x)=>_;_ (2% — l)w; and f() (2% — 1w,
where x € Q,. Then the event f, > O 1s noise stable, by 1.8. We show that
Pl[f,>0]| f.>0] — 1/2 as n — 00, no matter how k=#k(n) is chosen. Indeed,
given any x € Q, let s(x):= E fy(x) = 3,;(2% — 1). If s(x) <0, let ¥ be obtained from
x by replacing —s(x) of the 0 entrles in x by I’s, where the set of entries replaced is
chosen randomly and uniformly among all possibilities, and if s(x) > 0, set ¥ = x. Then
P[f,(®) > 0| fi(¥) > 0] =P[ f(x) > 0]. Therefore, by Lemma 3.5 applied to w, it is
enough to show that fo®) — fo®) = 0 in probability as n — co. This follows from

E| £, — £u(9)] = (2/RE[max{0, —sx)}]ij o(1)//logn.

4. An application to percolation

Let R be an (m + 1) X m rectangle in the square grid Z?, and let Q be the
set of all functions from E, the set of edges of R, to {0, 1}. We identify Q with Q,;
where n=n,=|E|=2m? — 1. A point x € Q is called a configuration, and can be
identified with the subgraph consisting of all vertices of R and all edges ¢ with x(¢)=1.
A connected component of this graph is called a percolation cluster.
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Let & =&, C Q be the event that there is a left-right crossing of R; that is, &
is the set of all configurations that contain a path joining the left and right boundaries
of R. An easy and well known application of duality shows that P[&] =1/2.

Kesten [24] gives an estimate from above for the probability that an edge near
the middle of R is pivotal for &. Similar estimates for edges near the boundary
can probably be extracted from Kesten’s paper. These give an inequality of the form
I(&,) < m™'~, ¢ >0, for each j. Then Theorem 