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BOUNDED GENERATION AND KAZHDAN'S PROPERTY (T)
by YEHUDA SHALOM

1. INTRODUCTION AND DISCUSSION OF THE MAIN RESULTS

I. Introduction

The fascinating subject of arithmetic groups, in its various aspects, has attracted
much attention in contemporary mathematics. Its influence on group, representation,
and number theory, and its baring on many other fields of research, are by now well
recognized. (Recall that a subgroup of a (semisimple) linear algebraic group G defined
over Q, is called arithmetic if it is commensurable with G(Z).) A fundamental question
is to understand the finite dimensional linear representation theory of arithmetic groups,
a theme which splits naturally into two: representations with finite, and those with
infinite image. The latter may be viewed as a part of the rigidity theory, while
the former is known essentially as the congruence subgroup problem (or "property55),
abbreviated GSP. Another important feature of arithmetic groups is concerned with
their infinite dimensional representation theory, pertaining to property (T) of Kazhdan.

The connection between the above three themes is only partially understood,
although there is a strong circumstantial evidence that such in fact exists (for simplicity,
we confine the discussion here to Q-simple, simply-connected algebraic groups, and
leave aside also the S-arithmetic case). Indeed, both superrigidity and property (T)
are known to hold for exactly the same family of groups, including the real rank
one groups Sp(72, 1), F^O), whose treatment was traditionally different from that of
the higher rank groups. This "empirical fact55 is partially explained in [Mok] and
[Pa], where the same Bochner-type formulae developed in [MSY] for superrigidity,
are used to establish Kazhdan^ property. The two phenomena are further unified in
[Sh2], where they are derived simultaneously from the rigidity theory of harmonic
maps. On the other hand, the CSP is known to hold for "most55 families of higher
rank arithmetic groups, where the first two properties are present as well. Moreover,
CSP implies superrigidity (see [BMS, §16] and [Rag, §7]). In a different direction,
Lubotzky [Lub2] proved that the CSP is characterized by having a "slow growth55 of
the number of subgroups of finite index, and it is known that Kazhdan groups share a
closely related property [HRV, Prop. IV]. Unfortunately, the current known results on
property (T) are not yet sharp enough to be used for the question of GSP (compare
also with [Lubl, 10.4.1]).

In the last decade or so, a new notion has been introduced into this circle of
ideas: A group G is said to be boundedly generated if it admits a finite subset
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S, and some number v depending only on G and S, such that every g G G may
be written as a product: g=g^g^ ... g^, with g, G S and k, integers. This notion
originates in the work of Garter and Keller [GK], establishing bounded generation for
the groups SL^) (n ̂  3), where ^ is the ring of integers of a number field, relying
on class field theory (primarily on Dirichlet's theorem regarding primes in arithmetic
progressions). Rapinchuk has established a fairly direct relation between bounded
generation and rigidity (see [Rap3] and the references therein). He conjectured [Rapl]
that bounded generation and CSP are equivalent, thereby suggesting a clean group
theoretic characterization of the latter. (As observed in [Lub2, (5.5)], a conjecture in
this general form would be inconsistent with GSP for the word hyperbolic lattices
with property (T) - a problem which is fascinating in its own right.) In fact, in [PR]
Rapinchuk and Platonov showed that bounded generation implies CSP (and hence also
superrigidity), a result which was also established independently by Lubotzky [Lub2].
We remark, however, that bounded generation has not yet provided any new examples
of groups with CSP. Moreover, there is no uniform lattice of a semisimple algebraic
group which is known to posses this property.

In this paper we relate intimately another two of the above notions. More
precisely we make a strong use of bounded generation in the study of property (T) of
Kazhdan, motivated by a problem raised by Serre, and by de La Harpe and Valette.
Let us first recall the notions involved.

Definition 1.1. — Let G be a topological group, K C G a subset, £ > 0, and
(TC,J^) a continuous unitary G-representation. A vector v C J^ is called (K, ^-invariant, if
\\n(g)v - u\\ < e|H| \/g G K. The group G is said to have property (T) (of Kazhdan) if
there exist a compact K C G and £ > 0, such that every continuous unitary G-representation with
a (K, ^-invariant vector, contains a non-^ero G-invariant vector. In that case, (K, e) (or sometimes
just £, when the set K is clear from the context), are called Kazhdan constants for G.

The fundamental work of Kazhdan [Kaz] showed that higher rank simple
algebraic groups over local fields, as well as their lattices, have property (T), but without
supplying explicitly any Kazhdan constants. Over the years, property (T) turned out
to be an extremely interesting and powerful tool, and such constants make many of
the numerous applications of it, quantitative (cf. [HV] for details). While there is no
natural choice of a subset K C G when G is an algebraic group, for many lattices,
e.g., SL^(Z) n ^ 3, it is natural to seek a bound on £ for certain generating sets (such
as the unit elementary matrices in the preceding example), as was posed by Serre and
by de la Harpe-Valette (cf. [Bur] and [Hy p. 133]).

The question of Kazhdan constants for semisimple groups and their lattices was
solved in general in [Shi] (see there for more related literature). However, while the
solution for the continuous groups is in a certain sense optimal, producing a Kazhdan
set K of two elements, with the largest possible £, the results for the lattices are
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much less satisfactory, being dependent on a fundamental domain, and giving e for a
"large95 Kazhdan set, of a geometric, rather than algebraic type [Shi, Theorem B].
Although it might be possible to work out individual cases, the results of [Shi] seem
hopeless in studying fundamental questions such as the behaviour of the constant over
SL^(^), when the dimension n, or the ring ̂ , are varied. A partial result on Kazhdan
constants for the group SLs(Z) was obtained by Burger in [Bur]. Here we shall establish
a complete result, presenting a general, quite unexpected phenomenon of uniformity
of the constant for any dimension n ^ 3, over various families of finite, infinite, locally
compact and even infinite dimensional rings, and an explicit lower bound 0(n~2)
over n. In particular, we present for some arithmetic groups (such as SLs(Z)) the first
treatment of property (T), which is based only on their internal structure.

II. Statement and discussion of the main results

In the case of G = SL^(Z), the bounded generation property is known to hold with
respect to the set S of the unit elementary matrices (see Definition 1.2 and the Main
Theorem below). It seems important to remark, however, that the bounded generation
property may depend in general on the choice of S (for instance, a somewhat surprising

fact which does not seem to appear in the literature is that the group SL^(Z[^]) is
not boundedly generated by any finite set of unipotent matrices. As shown by Tavgen
[Tav], by using appropriate semisimple elements one can make this group boundedly
generated). Since we shall be interested also in rings which are not finitely generated
as Z-modules, we consider a more general bounded generation property. Here is the
precise notion we shall use.

Definition 1.2. — Let R be a commutative ring with unit, and SL^(R) the group of
determinant one n X n matrices over R. An elementary matrix E,j(^) 6 SL^(R), 1 ^ i ̂ j ^ n,
t G R^ is the matrix having 1 in its diagonal, t in the entry {i,j), and 0 elsewhere. The group
SL^(R) is said to be boundedly elementary generated if there is some v =v^(R) < oo
such that every matrix in SL^(R) may be written as a product of at most v elementary matrices.
When this property is satisfied, we shall sometimes denote it simply by writing v^(R) < oo.

In the case where R = ̂  is the ring of integers of a number field, bounded
elementary generation is precisely the property established in [CK] (for n ^ 3), and is
easily seen to imply the previous group theoretic bounded generation property, for an
appropriate finite subset S. Trivial examples of rings with v^(R) < oo are fields, and
even these will be of interest to us in the sequel. The knowledgeable reader will notice
the connection between this notion (and some of our discussion in the sequel), and
K-theory, although we will avoid using K-theoretic terminology.
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The main result of the paper is the following:

Main Theorem. — Fix an integer n > 3, let R be a commutative topological ring with unit,
and suppose v^(R) < oo. Assume that for some 1 ^ m < oo there exist elements a\, ....a^ € R
generating a dense subring. Let Fi C SL (̂R) be the set of unit elementary matrices (i.e., having
1 off the diagonal), and V^ be the set of elementary matrices {E^j(^)} with \i—j\ = 1 and t=0k
(1 ^ k ^ m). Then SL (̂R) has property (T), with £ =Vn(K)~l22~m~^ as a Ka^hdan constant for
the set Fi U F2. Moreover, if for some fixed m, a^s as above can be found in every neighborhood of
0 € R ,̂ then Fi alone is a Ka^hdan set for SL (̂R), with the same Ka^hdan constant.

For instance, if R is any locally compact, non discrete field, the assumptions of
the theorem are trivially verified (m = 2 suffices, when R is connected the last assertion
applies). We remark that the proof will show that the formulation of the Main Theorem
can be made more general: R need not be a topological ring, but merely a ring with
some topology. Then the above Kazhdan constants apply, for the family of unitary
representations which are strongly continuous with respect to this topology (i.e., for
every vector v the map g —> gv is continuous from SL^(R) with the topology induced^
by its natural inclusion in R" , to the Hilbert space). Thus, the conclusion of the Main
Theorem holds, for instance, for the set of all continuous unitary representations of
SL^(K), if K is any field equipped with a topology for which some finitely generated
subring is dense.

Before stating some consequences of the Main Theorem, which are discussed in
Section 4, we remark that in the theorem and its corollaries below one may replace,
with similar proofs, the group ("scheme55) SL^, by any Ghevalley group of rank > 1.
Elementary matrices should then be replaced by "root subgroups55, and the notion of
bounded elementary generation modified accordingly.

Throughout the rest of this section n denotes an integer ^ 3.

Corollary 1. — The value £=(33yz2 — 1 1 n + 1122)"1 is a Kazhdan constant for the
group SL (̂Z), for the set of all elementary matrices with 1 off the diagonal. If ̂  is the
ring of integers of a number field K^ and it is generated as a ring by \, a\,...,amy then

g ̂ 22-m-i^3^ - 1) + 68A + 2]~1 is a Kazhdan constant for the generating set F C SÎ (̂ )
described in the Main Theorem, where A denotes the number of distinct (rational) primes dividing the
discriminant qfK.. The same estimate holds ifwe replace ^ by any localisation ^§.

Corollary 1 follows from the Main Theorem using the bounds on Vn in [GK].
Corresponding bounds on Vn for all higher rank arithmetic Ghevalley groups can be
obtained from the work of Tavgen [Tav] (who established their bounded generation).
In the case of SL^(Z), a proof of bounded generation appears in [AM], which modulo
Dirichlet^ theorem, is completely elementary. Section 2 below is devoted to the study
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of SL^(Z) in the Main Theorem, both because several ingredients of the proof will
be needed for the general case (discussed in Section 3), and to supply, together with
[AM], a complete and more accessible treatment of this particularly interesting case
(see Theorem 2.6). No induced representations appear in our approach, and the only
tool used from representation theory is the spectral theorem for representations of
discrete abelian groups (recalled in the proof). A remark which was pointed out to us
by A. Zuk, is that the optimal Kazhdan constant for SL^(Z) (with the above generators)
is bounded from above by ^ / 2 / n , and in particular it must depend on 72. This follows
easily by considering the natural representation on ^(Z^ — {0}) , and the action on
the characteristic function of the set of n "standard basis" unit vectors. It therefore
seems of interest to close (even asymptotically) the gap between 0(n~2) and 0(n~1/2),
of the optimal Kazhdan constant, left by this work.

Notice that Corollary 1 yields for families of rings (^ a uniform Kazhdan
constant for SL^(^), with respect to generating sets with fixed cardinality. For instance,
this is the case if we consider all localizations of any given ring of integers, or take
rings of the form Z[^], when p varies over all primes, or Z[co], when co varies over
all prime power roots of unity. We should also add that W. van der Kallen has shown,
relying upon [CW], that assuming a Generalized Riemann Hypothesis, the bound on
Vn(^} does not depend on ^ at all! In this direction Loukanidis and Murty showed
(see [Mu]) that if S is a sufficiently large set of valuations of (^ (depending linearly on
the degree of the field extension, |S| ^ 5 suffices for Z), then v^(^§) depends only on n,
with an explicit quadratic bound, and not on ^ or S. Since the number of generators
of ^ as a ring is typically small, these results, together with the Main Theorem,
suggest a general and quite surprising phenomenon of uniformity of property (T) for
families of arithmetic groups.

Corollary 2. — Suppose that R is compact and m elements of R (including 1) generate
a dense subring. Then £ =(5y^222m)-l is a Kazhdan constant/or the finite set F C SL^(R)^ as
constructed in the Main Theorem,

For the proof see 4.1 and 4.5 below. This corollary is of interest already for
finite rings, as there are few known non trivial estimates for Kazhdan constants even
for finite groups. For instance, any finite field is generated by one element, so for any
fixed n ^ 3, the groups SL^(K) (where K varies over all finite fields) are all generated
by n2 + n — 2 elements, for which (lOOOyz2)"1 is a Kazhdan constant. It would be
interesting to see whether the latter result holds (even qualitatively) when n = 2 as well.
Also notice that Corollary 2 implies that for compact groups of the form SL^(R) {n > 3),
the existence of a finitely generated dense subgroup suffices to ensure that of a finite
Kazhdan set. Moreover, the size of the Kazhdan set and constant depend only on the
cardinality of a topologically generating set. (In particular, these compact groups have
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a positive answer to the "Banach-Ruziewicz problem55, and their finite quotients form
an expander family.)

Corollary 3. — Let R be any finite (commutative) ring. Consider the ring R((^)) of Lament
series over R^ equipped with the usual topology where high powers of t are close to 0. Then
SL^(R( (t))) (which is locally compact) has property (T) ofKa^hdan, with explicit Kazhdan constants
as in Corollary 2.

See 4.1 and 4.6 below for details. The proof of Corollary 3 will show that, as
in Corollary 2, one has \n ^ 5^2 for these rings, independently of R. Taking a family
of cyclic rings, say R^ = Z/j^Z, yields a construction of a sequence of locally compact
Kazhdan groups, each a homomorphic image of its preceding, so that the Kazhdan
constants for the (compatible) Kazhdan sets are all uniformly bounded from below. The
inverse limit of these groups, which is a non locally compact topological group, also
has property (T). Notice that the discrete group SL^(R[r1]), with R as in Corollary 3,
is a lattice in SL^(R((^))), hence has property (T) as well.

Corollary 4. — Let L(SL^(C)) denote the loop group associated with SL^(C)^ namely, the
group of continuous maps from the circle to SL^(C)^ under pointwise multiplication and the topology
of uniform convergence. Then L(SL^(C)) has property (T). Moreover, £ ==(37z2 •224)"1 > lO"6-^"2

is a Kazhdan constant for the set F of n2 — n maps taking constant values on each of the unit
elementary matrices.

These groups are the first examples of infinite dimensional Lie groups (in
particular, non locally compact groups) with property (T). They also seem the first
constructions of Kazhdan groups whose group of outer automorphisms is infinite (see
Paulina question in [HY p. 134]). Indeed, the group of homeomorphisms of the circle
is embedded naturally in their outer automorphism group. There is still no known
example of such locally compact group, excluding trivial constructions coming from
infinite products of one compact group (which may be excluded by considering only
Kazhdan groups with a finite Kazhdan set). We should also mention that Corollary 4
holds if one considers smooth, rather than continuous maps, with the appropriate
smooth topology.

Some of the important facts about unitary representations of loop groups were
first observed by physicists, and the subject was studied in depth by many authors,
with applications in quantum field theory and elementary particle physics, as well as
relativity and gravitation theory - see e.g. [PS], [Is] and the references therein (and
also [VGG] for a detailed treatment of the case SL^R)). Also notice that since any
connected group is a homomorphic image of its loop group, a necessary condition for
the loop group to have property (T) is that the original group has it. This condition
is however not sufficient, as the case of S0(/z, 2) (n ^ 3) will show (see the discussion
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following the proof of Lemma 4.8). It may be interesting to study more generally the
question of property (T) for loop groups of simple Lie groups (the case of Sp{n, 1)
being especially challenging).

If one replaces S1 by higher dimensional spheres, our method of proving property
(T) for the above groups (more precisely the bounded elementary generation over
appropriate rings) fails, so this larger family of so called "current groups55 may also be
interesting to study by different methods. We remark that if G is a j&-adic algebraic
group, there is of course no loop group associated to it, but one can study the current
group obtained by replacing S1 with a Cantor set. Our method will establish property
(T) for groups of this type as well (see Theorem 4.9).

Corollary 5. — Let R =Z[x\,..., x^] denote the ring of polynomials with m variables over Z.
IfVn{R) < oo then SL (̂R) has property (T).

It is an open question, raised by W. van der Kallen [Kal] in the context of
K-theory, whether v^(R) < oo (even in the case m=. 1). It was shown in [Kal] that if Z
is replaced by C the answer is negative, but even the situation with Q seems unknown.
Notice that specializing the variables to non algebraic complex values embeds F as a
linear group which is not a lattice (having elements with non algebraic eigenvalues). It
would be most interesting to see whether SL^(R) has property (T), and we conjecture
that this is indeed the case. An affirmative answer would produce first examples of
linear Kazhdan groups which are not lattices. In addition, varying the specializations
continuously yields non trivial continuous deformations of SL^(R), a phenomenon which
is quite unexpected for Kazhdan groups (compare with [Rap2]). On the other hand,
showing that SL^(R) does not have property (T) would answer negatively van der
Kallen^ question. It was shown in [Su, 6.6] that for any m the group SL^(R) is
indeed generated by the elementary matrices, and is hence finitely generated (an easy
consequence of the Steinberg commutator relations). Finally, notice that SL^(R) surjects
onto lattices as in Corollary 1, but also, by surjecting Z on finite prime fields, onto
lattices in linear groups of positive characteristic. It seems that this "universal lattice55

should receive more attention than it had so far in the literature.
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2. THE CASE OF SL,(Z)

First, a general remark is in order: For the ring R = Z (in this section) and other
rings (in the next ones), we shall consider various homomorphisms and actions of the
group SL2(R), some of them coming through the adjoint automorphism g —> ^-1.
To keep notations simple we will specify this only occasionally. However, as we shall
always arrange the (Kazhdan) sets involved to be invariant under this automorphism,
this abuse of notation will not interfere with our arguments.

We begin with a detailed analysis of the relative property (T) for the semi-direct
product SL2(Z) K Z2, with respect to Z2. The following result was proven by Burger in
[Bur]. However, our proof does not involve any analysis on an "ambient group55, and
in particular no induction operation is applied. This proof will be used, and its idea
generalized, in the discussion of a general finitely generated ring, replacing Z.

Theorem 2.1. — Denote by T^ S± C SI^Z), the elementary matrices with ±1 above and
below the diagonal respectively. Set a± ={±l,0\ ̂  ==(0, ± 1) G Z2. Denote by F the set of these
8 elements, embedded naturally in G=SL2(Z) ix Z2. Let {n, J^) be a unitary G-representation
containing a vector which is (F, 1 /' \G)-invariant (see Definition 1.1). Then ̂  contains a non-^ero
Z2-invariant vector.

Proof. — Consider n\^2 and let P denote the corresponding projection valued

measure. Recall that P assigns to every Borel set B C Z2 ^ T2 an orthogonal projection
P(B) of J^, and satisfies:

(1) For every unit vector y, |Lly(B)= (P(B)y, v) is a probability measure on T2.
(2) P( { 0 }) is the projection on the subspace of Z2-invariant vectors.
(3) f(£K)=n(g)~iP(E)K(g) for all g € SI^Z) and B C T2. (Here the action of SI^Z)

on T2 is through the adjoint.)

Set £=1/10 and let us assume that v G ̂  is a unit vector which is (F, e)-
invariant, but there is no Z^invariant vector. We argue to obtain a contradiction. Let
|Lly denote the corresponding measure on T2, given by (1). By (2) and our assumption,
|ly has no mass at 0, and so may be viewed as a measure on T2 — { 0 }. Our strategy
will now be as follows: First, identify T2 with (-^, |,]2 C R2. We will use the fact that
v is "almost a^ P^-invariant55 to deduce that most of the mass of [iy is contained in

(-^, ^)2. On the other hand, using (3) we will observe that (l, is "almost invariant55

for the action of T^ S^. The fact that T^, S^-^, ^)2 C (-^ \f for the ordinary
linear action on R2, will then imply that there is an "almost invariant55 measure for
the action of these four matrices on R2 — { 0 }, which we finally show to be impossible.
Of course, we will argue with explicit estimates, making the notion "almost invariant55

quantitative.
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Recall that v is the assumed (F, £)-invariant vector (with £=1/10), and that we
identify (measurably) (—|,, ^j2 with Z2 by assigning to (x,y) € (—i, ^]2 the character

3C(7z, m)^^-^. Denote X=(-^ ^)2.

Ctem 1. — n,(X) > 1 - e2.
Proof of Claim 1. — Write y= J ̂ 44(X)' Recall that for any ^ C Z2 we have

n(^)v= f %(^)^44(X)- Therefore, with our identification of T2 and (—-, -]2, we have:

(i) H )̂. - .||2 = / , , V^ - 112^^) ^ e2

•'(-3? zl

(ii) H^). - »||2 = ! , l^211^ - 112^ )̂ ^ e2.
•'(-25 2]

(We trust the reader will not confuse the representation n with n = 3.141...). Since

^2nit _ i [2 = (cos(27^) - I)2 + sin2 2Tlt=2-2 cos 2nt= 4 sin2 71̂  2 for ̂  |^| < ^ we get
from (i) and (ii):

^({W^})^2^ ^({H^})^2^. D

C^TO 2. — For every Borel set B C T2 and g C {T^ S± }, one has:

\^(gS) - ̂ (B)| ^ 2e.

Proo/' of Claim 2. — By properties (1) and (3) above we have for every Borel
subset B C T2 and g 6 { T±, S± }:

\^(gS) - ̂ (B)| = K -̂̂ B)̂ , .) - {P(B)., ,)|
< |(^-1)P(B)^)^ .) - (̂ -̂ (B)., v}\ + ̂ (g-^v, v} - <P(B)., y)|
= {{K^-^WV - v), v}\ + |(P(B)., (n(g)v - »)}\
< Wm\\\\^ - 4 + ||P(B)|| ||it(?). - .|| ^ e + e= 2e. D

Consider now the measure (l on ( — - - ] 2 denned by u.(B)=u.;,(BnX). By Claim 1
for every B we have 0 < ^(B) - u,(B) < e2. Fix some g € {T^ S'1'}. From Claim 2 it
follows that for every Borel set B:

H(gB) - a(B) = (a(^B) - a^B)) + (^B) - ̂ (B)) + (^(B) - u(B)) ^ 0 + 2e + e2.

Since this is the case for arbitrary B, we actually have |u.(gB) — u-(B)| < 2e + e2. Finally,
normalizing u. and using Claim 1 again, we get a probability measure v=u./u,(X),
supported on X — { 0 }, which satisfies for every Borel subset B and g € {T^, ̂  }:

|v(gB) - v(B)| ^ (2e + e2)/^ - e2) =21/99 < 1/4 (e= 1/10).
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Next, notice that for every g as above we have gK C (—- -)2 for the ordinary
linear action of g on R2. Thus, if we now view V as a measure defined naturally on
R2, we obtain a contradiction to the following general result (whose proof therefore
completes the proof of Theorem 2.1):

Lemma 2.2. — Let v be a finitely additive probability measure defined on the Bore I sets
of R2 - { 0 }. Then there exists a Borel set Y C R2 - { 0 } and g € { T^ S± }, such that
[v(^Y)-v(Y)[^l/4.

Proof. — The result is proved in [Bur, §4]. For completeness, let us present
briefly this nice and easy argument, simplified even further. The reader may benefit
from keeping in mind the discussion here when we deal with the case of a general
ring in the sequel (compare with Lemma 3.3 below).

Consider the disjoint partition of R2 — { 0 } into 8 regions, formed by the lines
x=jy, x= —y^ x= 0,^=0. Starting from the positive ^-axis and going counter clockwise,
we denote the regions by A, B, G, D, and then, identifying each point p with —p, the
regions A, B, G, D repeat. Let us agree that every region is half closed, half open,
containing only its boundary going clockwise. It is then easy to check that:

T^AUB) C A S^AUB) C B T-(DUC) C D S-(DUC) C G

Now, if a measure V exists, which contradicts the assertion of the lemma,
we would get from the above inclusions that v(B), v(A), v(C), |Li(D) < ^ respectively.
However v(A) + v(B) + v(C) + v(D) = v(A U B U C U D) = 1, a contradiction. D

Corollary 2.3. — Let (n, ̂ ) be a unitary representation ofG=SL^{Z) K Z2, and F C G
be the subset of 8 elements as defined in Theorem 2.1. If v e S^S is a unit vector which is
(F, e/20)-invariantfor some £ > 0 ,̂ then for every g € Z2 one has \\T^(g)v — v\\ < £.

Proof. — Let 3^ o C S^ be the subspace of Z^invariant vectors and J%? i its
orthogonal complement. Since Z2 is normal in G, both subspaces are G-invariant.
Write the corresponding (orthogonal) decomposition v = VQ + v\. For every g G F we

/ £ \ 2

then have: \\n(g)v — v\\2 = \\n(g)VQ — vo\\2 + \\n(g)Vi — v\\\2 ^ ( _ j . However, since there

are no non-zero Z^invariant vectors in J^i, it follows from Theorem 2.1 that for
some go € F: (||yi[|/10)2 ^ ll^gb)^! ~ ^ i l l 2 - Therefore combining the last two inequalities
yields (||yi||/10)2 ^ (e/20)2, or ||z/i|| ^ e/2. Finally, for every g C Z2 we have by the
calculation above (recalling that VQ is ^-invariant): \\u(g)v — v\\2 == ||7c(g)yi — u\\\2, hence
||7l(^-^2|M ^£. D

To complete our discussion of SL^(Z), we shall need to recall a basic structural
fact, which will enable us to apply our foregoing analysis.
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Lemma 2.4. — Fix an integer n > 3. Every elementary matrix Ey(^) G SL^(Z) (̂  Definition
1.2) belongs to some copy of a subgroup isomorphic to 7?, contained naturally in the semi-direct
product SL.2(Z) x Z2^, itself embedded in SL^(Z). In fact, the asserted copy o/^SL^Z) can always
be found along the main diagonal (i.e. occupying the entries ( i , j ) with i , j = k , k - ^ 1, for some
1 ^ k ̂  n — \).

The same result holds for any commutative ring replacing Z.

Proof. — Although the claim is standard, we give the details of the proof, as
properties of the construction will be used in the sequel. For n = 3 there are four
natural embeddings of SL,2(Z) K Z2 which together contain every elementary matrix.
These are the (integral matrices of the) two upper maximal parabolic and two lower
maximal parabolic subgroups. The upper parabolic subgroups are those defined by
having third row (0, 0, 1), and first column (1, 0, 0). The two lower parabolics can
be obtained from the first two by taking their adjoint images (namely, third column
(0, 0, 1) and first row (1, 0, 0)). It is easy to check that these subgroups are isomorphic
to SL.2(Z) ix Z2 and that they provide the copies required in the Lemma.

For a general n we proceed by induction. Given an elementary matrix E^), it
is easy to see that if ( z , j ) ^=( l , 7z ) and {iyj)^^, 1), then Ey(t) is contained in a copy
of SL^_i(Z) occupying either the upper or lower (n — 1) x (n — 1) principal minor. To
deal with the case (i,j)=(l,n) take the natural embedding of SL.2(Z) in the upper
left corner of SL^(Z), and the subgroup generated by Ei^(^), ^,n{f) (f ^ Z), which is
isomorphic to Z2. Together they generate a copy of SI^Z) ix Z2 as required. The case
(i,j)=(n, 1) is dealt with similarly (or one can take the adjoint image of the previous
construction).

It is clear that the above proof works for any ring replacing Z. D

Finally, we shall need the following general result:

Lemma 2.5. — Let {n, J^) be a unitary representation of a group G. Suppose that for
some unit vector v € «-%?, one has for all g € G : \\K(g)v — v\\ ^ 1. Then there exists a non-^ero
G-invariant vector in 3^ .

Proof. — The result follows from [Hy Ch. 3, Cor. 11] (actually, with 1 replaced
by any value smaller than ^/2), but we include a proof for completeness. Recall the
following well known geometric property of a Hilbert space (in fact, any GAT(O) metric
space): For any bounded set Q^ C J%? there is a unique point VQ^ € S^ ("center of
mass"), minimizing the function fofv) = sup{ [1^—^11 [ q € Q^} (see e.g. [HY 3.8]). Notice
that if G acts on 3^ by isometries then G-invariance of Q^ implies, by uniqueness, that
UQ is G-invariant as well. With these preliminaries, and the notations of the Lemma,
denote Q= u(G)v. As VQ^ is G-invariant, we only need to show that VQ^ =[= 0. However,
this is clear as foffl) = 1 and fo^v) ^ 1, so in any case 0 cannot be the unique vector
minimizing the function^. D
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We are now ready to complete our discussion of SL^(Z).

Theorem 2.6. — Suppose that n ^ 3 and let F C SL^(Z) ^ ^ ̂  ^ all (n2 - ri)
elementary matrices with 1 off the diagonal. Let Vn=Vn(Z) be as in Definition 1.2. (By [CKJ:
Vn ^ ^{3n2 - n) + 51.; Then the group SL^(Z) has property (T), with (20v^-1 as a Ka^hdan
constant for the set F.

Proof. — Since \\n(g)v — v\\ = ll^"1)^ — v\\ it is enough to prove the same result
when F consists of the elementary matrices with ± 1 off the diagonal, namely, replacing
F by FUF-1. Suppose now that v C ̂  is (F, (20v,)-1 ̂ invariant, and let g C SL,(Z) be
any elementary matrix. By Lemma 2.4 we can find a copy ofSL,2(Z)ixZ2 inside SL^(Z)
such that g G Z2. Furthermore, the proof of Lemma 2.4 shows that such copy can be
found intersecting F with a generating set of 8 elements, exactly as in the situation of
Corollary 2.3. It then follows from 2.3 that \\n(g)v - v\\ ^ v,(Z)-1.

We shall be done by showing that the assumption of Lemma 2.5 holds. Indeed,
given any A G SL^(Z), write A=^?i ... gv^ where go =1 is the unit matrix, and all ^s
are elementary. We then have:

v.-l

n{A)v -v= Y, ̂ (gog\ ... gv,-i)v - n(gog^ ... gv^-i-^v

v"-1 v.
||7l(A)y-y|| ^ ̂  h(go-gv,-i)v-n(go...g^_^)v\\= ^\\n(@)v-v\\ ^Vn'v^=\

as required. D

3. PROOF OF THE MAIN THEOREM

We now proceed to consider the case of a general finitely generated ring, aiming
at the Main Theorem. Our strategy will be similar to that in the case of Z, only the
details are technically more involved. All the rings discussed hereafter will be assumed
commutative and with unit. In order to study the relative property (T) for general
finitely generated rings, the following auxiliary, inductive-type result, will be essential.

Theorem 3.1. — Suppose that R is a discrete ring and that for some finite set
F C SL2(R) ix R2 and some £ > 0, (F, e) form Ka^zdan constants for the relative property
(T), namely, for every unitary representation ofSL^R) ix R2 with (F^, ^-invariant vector, there is a
non-^ero ^-invariant vector. Assume also that F contains the four elementary matrices o/'SL2(R)
with ±1 off the diagonal. Let R[t] denote the ring of polynomials over R with variable t. The
ring R is embedded naturally as a subring ofR[t], which induces an embedding o/'SL2(R) K R2
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in SL2(R|7]) tx R^]2. Let 0 < 5 < £ be a real number such that (§ + 25/e)/(l - 8/e) ^ ^.
Then (F^ §) form Ka^hdan constants/or a relative property (T) o/'SL2(R[^]) K R[^]2 z^A r^^
to R[^]2., where F^ zj ̂  union off and the set of four elementary matrices in SL^R)^]) having
± t off the diagonal.

To prove Theorem 3.1 we shall first need to obtain a presentation of the dual
group of Rp] (viewed as a discrete abelian group) in a form suitable for our analysis.
We thus preface the proof with some general discussion concerning rings of this type.

3.2. The ring R[t] and its dual

Any discrete commutative ring R may be regarded as a discrete abelian (additive)
group. Its dual R is defined as the set of all characters % : R —> R/Z satisfying
%(r+j) =^(r) +/(J). Recall that the dual of a discrete group is compact (abelian group)
for the topology of pointwise congruence: 5^ —> % iff for all r € R one has 5^(r) —> %(r).

Starting with any ring R as above, consider the group K of all formal series
oo A
S Xn^? Kn ^ R- This is an abelian group under the natural "coordinate55 addition

n=0

operation. We put the topology of "coordinate convergence55 on K, which is just the
product topology coming from its natural identification with R°°. This makes K a
compact abelian topological group.

We wish to show that K may be identified with R[^]. First we embed it in Rp]
by defining

(i) (x , - r )=E(Xn,^eR/z T=^r^eR[f\, ^Ex^eK
n

where for r G R and % € R, (^, r) stands for the action of % on r. Notice that for only
finitely many n's one has ^ ^=0, so the sum in (1) is actually a finite sum and hence
always defined.

That the above homomorphism into R[^] is indeed an embedding is easy to
see: if %Q= Sx^"" satisfies (^o ,7~)=0 for all T € R[(], then taking T =rntn gives
^5^ r) = 0 for all r G R, i.e. ̂  = 0 for all n. It is also easy to verify that this embedding
is continuous (namely if ^ -^ 0 in the topology of K then for every T € R[^] one
has (x^y~) —> 0), so the image is a (compact and hence) closed subgroup of Rp].
Finally, to show that it is actually surjective, and hence an isomorphism, it is enough
by Pontrjagin duality, to show that if T G R[t] satisfies (^ ,7~)=0 for all % C K
then T=0. Indeed, if ^=S^^ ^d ^ ^ X °f Ae form X^^ we have
{^,7~} = (5^, rn) =0, then necessarily ^=0. Since this holds for all n, necessarily
7o=0.
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We thus have an "explicit55 description of R[^], which we identify with K.
However it will be more convenient to work with a larger group K. One may think
heuristically of the relation between K and K as that between R and R/Z, when the
ring R is Z. This point of view will actually be of help in the sequel. K is defined
as the group of all "Laurent55 (rather than "Taylor55) series in ^-1, with coefficients in
A oo
R, namely, the formal series of the form ^ X^F^, where m G Z is any integer. K is

n=m

naturally embedded in K, and declaring it an open subgroup makes K a topological
abelian group as well. The same formula as in (1) defines a homomorphism of K
onto R[^] which, when the latter is identified with K as above, is just truncating the
negative components (n < 0). Thus, we may identify R[(| with K, once two elements
of K are identified if their difference has only "negative components55.

A
Next, recall that for any commutative ring S, the abelian group S carries a

A
structure of S-module: for % 6 S and s G S set s ' % = % o ^ where % o s(t) = %(sf). The
point of the above description of R[^] is that if we know the "R-multiplication55 on
R, then we can describe the same for the ring R[^]. Indeed, the R[^] multiplication
operation on R[^] is given by a natural product formula: for T == ^^"5 ̂  SXm^"^

_ _ _ A ^

set: y~ • 3C= S(^ • Xm)^"772 (where ^ • ̂  C R is the original R-multiplication operation
n, m

A ^ ^ —
on R). Here one sees that working in K rather than K is more convenient, as we may
have n — m > 0. Again, since ^ 4: 0 for only finitely many n's, there is no convergence
issue in the above expression. To prove that this formula indeed describes the R[^]-
module structure on Rp], we need to show that for all % G K and T ^~p G R[^j:
(^, T ~ p ) = (V X,j5"). By linearity it is enough to check it when 7jc=f)Co(~n'> ^~=^o^5

~p zzpQ^. Indeed, then we have

^--^-)-.{^ s^}
(rx,?)=w-,^ {'T' "o "̂} -<^?>-

Having this established, let us return to the general framework of a commutative
discrete ring S with unit. The group SL.2(S) acts by automorphisms on S2, which
induces an action on the dual S2: A-^^oA'"1 (AC SL,2(S), % € S2). It is a general

'^9fact that the dual action ofSL,2(S) on S~ is given by the adjoint operation: I f A G SL,2(S)

and ^= ^(Xi ? X2) ^ S2 then A^^A"^, where the multiplication of a matrix in SL.2(S)
and a vector in S2 is defined by the S-module structure on S2. We leave the verification
of this easy general fact to the reader. This ends our general discussion ofR[^].
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With these preliminaries we can now return to the proof of Theorem 3.1.

Proof of Theorem 3.1. — Let (TT, J%?) be a unitary representation ofSL2(R[^)o<R[^]2

and v G S^S a unit vector which is (F^, §)-invariant (see the Theorem for notations).
Let S^S o C J%7 be the subspace of R2-invariant vectors and S^S \ its orthogonal
complement. S^o and S^ \ are SL2(R) ix R2-invariant. Write the corresponding
decomposition v = VQ + v\. Then for all g G F we have

\\n(g}v- ,||2 = ||ii(̂ o - .oil2 + ||̂ i - ̂ i||2 < §2

whereas, since in 3^ \ there are no R2-invariant vectors, there exists, by the assumption
on F and e, some go G F with e^HI2 ^ \\^(go)v\ - ^i||2. It follows that \\v^\\2 ^ (8/e)2

n

which implies that ||^o||2 = |H|2 - |H|2 ^ 1 - (i) , and so ||yo|| > 1 - 8/£.
Now, writing VQ = v — v\ and using the triangle inequality, we get for every g G F^:

||̂ (g^o - VQ\\ ^ \\n(g)v - v\\ + \\n(g)Vi - vi\\ ^ § + 28/e.

Normalizing VQ yields a unit vector UQ = VQ/\\VQ\\ which, by the foregoing discussion, is
(§ + 28/e)/(l - 8/£)-invariant, so by the choice of 8: \\n(g)uo - UQ\\ < 1/10 for all g € F,.

Henceforth we shall use freely the results and notations in Section 3.2 above.
Consider the restriction of n to R|)1]2 and let P denote the associated spectral measure
on R[^]2 (see the proof of Theorem 2.1 above). Let X C K2 ^ Rp]2 be the subgroup
of elements with no "free component":

x={(xi, 3fc) ^ K 2 1 x-xir1 +x^-2 +... ( ^ = 1 , 2 ) }
It is easily verified that P(X) is the orthogonal projection onto the subspace of R2-
invariant vectors (with the natural embedding of R in R[^), so P(X)^o = ^o- I1 follows
that the measure (lo(B)= (P(S)UQ, 2/0)5 defined on K, is supported on X. The reader
may find it helpful at this point to compare the role played by X C K C K, and
(~4? I:)2 ^ (~2 5 2^2 ^ ^2 ^^^ri^ly? ln t^le pf0^ °f Theorem 2.1. Assuming that
there are no R[^]2-invariant vectors in ^?, which implies that ^{O}1^? we shall
argue to obtain a contradiction.

As in the proof of Claim 2 in Theorem 2.1, the fact that UQ is 1/10-invariant
implies that for every g G F^ D SL2(R[^]) and every Borel set B C K2 one has:
||Llo(§B) — |Llo(B)[ < 2 - 1 / 1 0 = 1 / 5 . (The action here is through the adjoint, but again
notice that all our sets are invariant under this operation.) Also, similarly to the proof
of Theorem 2.1, the action of SL2(R[^]) on K2 extends naturally to a "linear" action
on K2 (i.e., matrix multiplication over the ring R[^, F1]). If g is any elementary matrix
with =bl or -^zt off the diagonal, then for this extended action on K2 we have gK C K2.
Hence, if we view [IQ naturally as a measure on K2 (actually, K2 — { 0 }), the discussion
above and the following claim yield together the required contradiction:
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Lemma 3.3. — Let

E-^- f 1 ±t} S ^ - f 1 °}^-V - ^ 0 1 ) s ~ [ ± t \ )0 \ ) •J ~ \±t 1
1 ±1\ .-± / I OM
0 1 N^ ±1 1

I^ - f 1 ^ N ^ - f 1 °^
" ~\0 \ ) d ~ \±\ \ ) ]

and consider the natural ^-action on K2 by matrix multiplication. Then for every finitely additive
probability measure V on K2 — { 0 }, there is a Borel subset Y C K — { 0 }, and g € E, satisfying
|v(?Y)-v(Y)|^l/5.

00

Proof. — For an element 0^y^= ^ X^"" define the "valuation" vQ[) to be the
n-=. m

minimal n for which ^n^O (fo1* instance, v(^r2 +...)= 2). It is easily verified that
vW) = z<X) - 1 and that v{%i + ^2) ^ min{ ̂ i), ^2)}, with equality if ^i) 4= ^2).

Partition K2 — { 0 } into three disjoint regions:

A={(Xi,X2)KXi)>^C2)}
B={(Xi,X2)kXi)=^(X2)}
C={(Xi,X2)|^(Xi)<^(X2)}.

Using the above "valuation55 properties of v it is now easy to check that:

(i) T ^ A U ^ C G (ii) S^C U B) C A (iii) N^(A) C B

For instance, let us check (i) (abusing notation, we identify rows and columns through
the transpose operation). We have:

( l t} f^\ - ^ X l + ^ 2 \
vo i A x 2 y V x2 )

so if z<X2) ^ z<Xi) then v(^) = v^) - 1 < y(Xi) and hence z<Xi + ^2) = v{^ < v^\
Similarly, one can easily verify (ii) and (iii).

Suppose now that a measure v exists, which violates the conclusion of Lemma
3.3. By (ii) we would then have v(C) + v(B) < v(A) + 1/5 and since by (iii)
v(A) < v(B) + 1/5 we have v(G) + v(B) < v(B) + 2/5 or, v(C) < 2/5. By (i) we deduce:
v(A) + v(B) < v(C) + 1/5 < 3/5 so altogether we get v(A) + v(B) + v(C) < 3/5 +2/5=1,
a contradiction. This completes the proof of Theorem 3.1. D

Using Theorem 3.1 we can now establish explicit Kazhdan constants for the
relative property (T) of SL,2(R) ix R2, for a general finitely generated ring R.

Theorem 3.4. — Fix some integer m > 0 and denote by R^ the ring Z[̂ ...̂ ] of
^^ c\

polynomials over Z with m variables. Let ¥ C SL,2(Rw) K R^ be the subset consisting of the
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four elements {(±1,0)^(0,, =h 1)} C R^ and the 4(m + 1) elementary matrices of SL,2(R^)
n

^A d=l^ -Lx\,...y ±^ (^A^ diagonal. Then every unitary representation ofSL^{Rm) x Rw ^̂
9

^ (F, 2 • (22)-w- ̂ -invariant vector, contains a non-^ero Vi^-invariant vector.

Proof. — For m = = 0 apply Theorem 2.1. To proceed by induction we invoke
Theorem 3.1. The only calculation to be verified is that the recursive relation
8 + 2§/£
-———— < 1/10 is satisfied, where £ = 2 • 22^ and S = 2 • 22-w-l. D
1 — 6/£

Corollary 3.5. — Let R be any topological commutative ring with unit, and (Xo = \,
a^...^a^ 6 R elements which generate a dense subring S C R. Let F C SL.2(R) K R2 be
the subset described in Theorem 3.4 when replacing the variables Xi with the a^s. Suppose that
(n, ̂ ^) is a unitary representation of G =SL2(R) ix R2, and v (E ̂  is a unit vector which is
(F_, £ • 22~m~ ̂ -invariant for some £ > 0. Then, for every g € R2 one has \\K(g)v — v\\ < £.

Proof. — The map which sends 1, x\^...^Xm C R^ to 1, (Xi,...,a^ G S C R resp.,
extends canonically to a surjective ring homomorphism R^ —> S, which induces a
group homomorphism:

q>: SIA) K R^ SL2(S) K S2 C SL2(R) K R2.

Let ^o C ̂  denote the subspace of R2-invariant vectors and ̂  i C S^
its orthogonal complement. Write V=VQ + v\^ the corresponding decomposition. Notice
that by the density of S in R there are no non-zero S^invariant vectors for the
representation of SL,2(S) K S2 on S^\, and hence also for that of SL,2(Rw) « R^ acting
through (p. Therefore, from Theorem 3.4 it follows that there exists some go C F for
which 2 • 22-w-l||yl|| < H^o)^ — v\\\. On the other hand, by the assumption:

\MV - .||2 = ||7r(̂ o - vo\\2 + ll̂ oh - v, ||2 ^ (£ • 22-m-l)2

hence
^ . g^-m-l . ̂ J^2 ^ ^ . ̂ -m-1^2 ^ ||yj|^£/2.

Finally, repeating the calculation above for any g C R2 and using the fact that .0 is
^-invariant, yields \\n(g)v — v\\ = \\n(g)v\ — .i|| ^ 2||yi|| < £, as required. D

We can now easily prove the Main Theorem, stated in the introduction.

Proof of the Main Theorem. — The proof is similar to that of Theorem 2.6. The
main auxiliary result here is Corollary 3.5, which replaces Corollary 2.3. Lemma 2.4
applies to any ring R, and its proof shows that the matrices involved in the copies
of SL2(R) ix R2, which together contain every elementary matrix, are exactly those
of the set Fi U F2 in the theorem. As for the final assertion of the theorem, if
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(TT, J%^) is a continuous representation of SL^(R), and v e J%^ is a unit vector, take
a neighborhood U of 0 C R such that for any elementary matrix E;j(^) with t C U:
[|7c(E^))z/- y[ | < e^^R)"^"^1. Then, if n has no non-zero fixed vector, by the
first part of the Main Theorem there must be some g C Fi with \\n(g)v — v\\ ^ e, as
required. D

4. APPLICATIONS OF THE MAIN THEOREM

In this section we establish the corollaries to the Main Theorem, stated in the
introduction. In light of the Main Theorem, their proof relies on a bound on Vn.
Corollary 1 follows, as indicated in the introduction, from the results of [CK], whereas
Corollary 5 is a straightforward application of the Main Theorem, so we only need to
discuss Corollaries 2, 3 and 4. To prove Corollaries 2 and 3 it clearly suffices to show
the following:

Theorem 4.1. — If R is a ring as in Corollary 2 or 3, then V^(R) ^ 5n2.

We preface the proof of 4.1 by considering first the simplest example of a ring
for which SLn is boundedly elementary generated, namely, a field. That SL^(F), where
n ^ 2 and F is any (abstract) field, has this property, is a completely elementary fact
which follows from the Gauss elimination process. In fact we shall need the following:

Lemma 4.2. — Let {Fa }aei be a set of (abstract) fields. Consider their direct product:
R = nFa (with the pointwise operations). Then v^(R) ^ ~{3n2 — n).

Proof. — We shall prove that any field F satisfies v^(F) ^ ^(3n2 — n). In fact,
the actual value is less than this estimate, and our proof will be somewhat expensive.
However, the point of this proof is that the order and type of elementary matrices
E (i.e. the (z,j) such that E=Ey(^)) which appear in the decomposition of a general
matrix, do not depend on the given matrix, only the values of the entries t. We
will actually consider the elementary operations on the rows and columns needed to
transform a general matrix to the identity one. Then, for a general ring R of the above
type we have SL^(R) ^ nSL^(F(x), and we can transform any matrix to the identity
by performing simultaneously the elementary operations in all the SL^(Fa) (where the
value of the entry ta will of course depend on a).

Given a matrix A € SL^(F), add to the last row a multiple of the first one, then
a multiple of the second, and so on, until the n — 1 row. Since the first column is not
all zeros we can always find scalars such that this process yields a non-zero element
in the entry (n, 1) (notice that the type and order of operations do not depend on
A, only the scalars). Using one more elementary operation: adding a multiple of the
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first column to the last one, we can arrange to have 1 in the entry (n,n). Using this
we now perform n — 1 elementary operations which annihilate the first n — 1 elements
in the last row, and then n — 1 operations which do the same for the last column.
Altogether, we have used (n - 1) + 1 + (n - 1) + {n - 1) = 3n - 2 operations in a fixed type
and order, to get a matrix with zero entries in the last row and column, except for
the entry (n, n) which is 1. Now continue the process by induction to get the identity
matrix. The number of operations used is at most E^(3A; — 2)=^(3n2 — n), thereby
proving Lemma 4.2. D

Aiming at Corollary 2, we shall also need the following:

Proposition 4.3. — Let R be a compact topological commutative ring with unit. Suppose that
R contains a finitely generated dense subring S. Then every non invertible element x G R is contained
in a (proper) maximal ideal, which is closed.

The proof of Proposition 4.3 is based on the following:

Lemma 4.4. — With the notations of 4.3, let I < R be a closed ideal, and x G R
with I + R^=(=R. Then there exist finitely many elements s\,...,Sn C S such that I + Rx C
I+RJI +...+RJ, ^=R.

Proof of 4.4. — Denote I o = I + R ^ and 7lo:R —^ R/IO the canonical projection.
Let {Vn} form a base for the neighborhoods of x in R (by the assumption on S, R
is second countable). There exists some Ji G Ui D S such that Tlo(^i) is not invertible.
Indeed, otherwise, we would get a sequence ^ —^ x such that 7Co(^) are invertible,
but 7lo(^) —^ 0, so then any limit point T of the sequence of elements ~^ € R/IO
satisfying ^7Co(^)=T, satisfies 7~0=T, a contradiction. Denote Ii =Io +R^i =(=R and let
Til: R -» R/II . As before, we may find s^ € U2 H S such that L? = Io + R^i + R^ + R? and
continuing this process yields a sequence Sn € S, Sn —^ x, satisfying lo+R^i +...+R^ =|:R
for every n. Recall that by Hilbert's basis theorem S is Noetherian, namely, every ideal
is finitely generated. In particular, the ideal Ss\ + Ss^ +... < S is finitely generated, say,
by Ji,..., Sk. It follows that the ideal J = R^i + Rs^ + ... = R^i + ... + R^ is closed (as each
Rsi is compact). Also, J =|= R by the construction of the '̂s. On the other hand, since
Si —> x clearly x Cj=J. Therefore I +J is the required ideal. D

Proof of 4.3. — It follows from lemma 4.4, taking Io = 0, that there exist
s\,...,Sk € S such that x eJ=Rj i + ... R^=(=R. Consider now increasing chains of
proper ideals containing J and generated by elements of S, and take, by Zorn's lemma,
a maximal element I. As S is Noetherian, I is finitely generated, and hence closed. We
claim that I is maximal. Indeed, otherwise there exists some y € R with I + Ry ^ R,
but then Lemma 4.4 contradicts the maximality of I. D

With these preliminaries, we can now prove Theorem 4.1.
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4.5. Proof of Theorem 4.1 for the case R compact. — First notice that we may assume
that R contains a finitely generated dense subring (in fact, a ring generated by n2

elements). This is so since for any A C SL^(R) it is enough to consider the ring S
generated by the n2 entries of A, and replace R by S.

Next, let {la } denote the set of all maximal closed ideals in R, and I = D la.
Then for every a the quotient R/Ia is a field F^, and we have a canonical continuous
ring homomorphism (p: R —> IIFa. By the Chinese remainder theorem the image of R
is dense in IIFa (for the product topology). However, as R is compact, the image is
also closed, hence (p is onto, and induces an isomorphism (p: R/I —> TIFa'

Now, given any A € SL^(R) we use the discussion above and Lemma 4.2 to
transform A, using ^{3n2 — n) elementary operations, into a matrix B which satisfies
B =. I^modI (1̂  stands for the unit n x n matrix). In particular, the diagonal of B has
entries of the form 1 + u, with u € I. However such a diagonal element is invertible,
for if it weren't, by Proposition 4.3 we could find a closed maximal proper ideal J < R
containing 1 + u. But by definition u € J, so 1 G J, a contradiction. Thus, the matrix
B has invertible elements in its diagonal, so n — 1 elementary operations in each of
the n rows transform it into a diagonal matrix. It is an easy exercise to check that
every diagonal n X n (determinant one) matrix is a product of 4-{n — 1) elementary
matrices (4 are needed for SL?, repeat the process n — 1 times). This shows that
v,(R) ^ j(3^2 - n) + n{n - 1) + 4(n - 1) < 5n2. D

4.6. Proof of Theorem 4.1 for the ring R((^)). — The idea here is similar to that in
4.5, only the proof is technically much more simple. This is because the ring R((^))
has only finitely many maximal ideals (all closed), which are actually easy to describe:
these are exactly the ideals of the form I((^)), where I is a maximal ideal ofR. Indeed,
on one hand, for an ideal of this form one has R((^))/I((^)) ^ (R/I)((^)), which is a
field since R/I is, hence I((^)) is maximal. In the other direction, letj < R((^)) be a
maximal ideal, and (p:R((^)) —> R((^))/J ^ F be the projection from R((Q) to a field
F. (p(R) is a finite subring of a field, hence a subfield, so for some maximal ideal I < R
we havej 3 I. Since J is an ideal we must havej 3 I((^)). However we saw that I((^))
is already maximal, soj=l((^)) as required.

At this point we may repeat the whole argument as in 4.5 above. Since there
are only finitely many maximal ideals la, we do not need the compactness of R to
deduce that R/ Fl la is isomorphic to a direct sum of fields, the Chinese remainder
theorem suffices. The rest of the proof in 4.5 goes through, hence our result. D

Let us now discuss Corollary 4. First, notice that if X is any topological space
and G = SL^(C), then G^ the group of continuous maps from X to G, is naturally
isomorphic to the group SL^(R), where R is the ring of continuous functions/:X —> C
(with the pointwise addition and multiplication operations). For Corollary 4 we are
interested in the case X=S1 (later we will also discuss the case where X is totally
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disconnected). Let us denote this ring by R. First notice that R has a finitely generated
dense subring, namely, the ring generated by sin 2nx, cos 2nx and, say, -^/2 + i (that the
first two, together with C, generate a dense subring, is just the Stone-Weierstrass
theorem, but the ring generated by ^/2 + i is dense in C). In fact, considering
sin2nx cos2nx ^/2 + i
———? ———, ————, we see that the condition in the last assertion of the Mainn n n
Theorem holds as well (with m = 3). Thus, in order to complete the proof of Corollary
4 it suffices to show the following:

Proposition 4.7. — For n ̂  2 and the ring R above, one has v^(R) ^ j^2.

Proof. — The proof of Proposition 4.7 is based on the following topological fact:

L£mma 4.8. — Letf, h: S1 —> C be two continuous functions with no common ^ero. Then
there exists a continuous junction (p: S1 —> C such that h + ̂ f has no ^.ero.

Let us first see how 4.7 follows from 4.8. Let A C SL^(R) be any matrix (R as
above) and/,...,/ its first row. Because detA=l, them's have no common zero.
Therefore, also the functions f= |/|2 +... + )/-i|2 and h=fn have no common zero. Let
(p: S1 —> C be as in 4.8 for the functions/and h above. Now perform the following n— 1
elementary operations on A: first add to the last column the first column multiplied
by <P • /i? then add to it the second multiplied by (p • /^ and so on, until the n — 1
column. After these n — 1 operations we obtain a non vanishing, hence invertible,
continuous function on S1 as the entry (1,/z), so by one more elementary operation
we can generate the constant function 1 in the entry {n, n). Using (n— 1)+(^— 1) more
operations we then annihilate the rest of the last row and last column, so altogether
we have used {n — 1) + 1 + (n — 1) + {n — 1) = 3n — 2 operations to reduce the problem
from a general n x n matrix to a (n — 1) x (n — 1) matrix. Thus, to transform A to I at

i
most ^ 3k— 2 ^ J7Z2 operations are required.

k=n

Thus, to complete the proof of 4.7, and hence of Corollary 4, we are left with
the proof of 4.8.

Proof of Lemma 4.8. — The claim is a rather easy exercise and thus we only
sketch here the proof. Consider the function \|/ = — h/f. If / does not vanish then
V is defined everywhere, so any (p which is different from \y for all x will do (e.g.
(p=\|/+ 1). Of course,/may vanish, but since it does not vanish together with A, it is
easy to see that as a function to the one point compactification C U { oo } ̂  S2 (where
a
. = oo), \y is well defined and continuous. Thus, we need only to verify the following

fact: Let S2 be the two dimensional sphere, and oo G S2 a point. Then for every
continuous \y: S1 —^ S2 there exists a continuous (p: S1 —> S2 such that for every x both
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(p{x) ̂  oo and (p{x) =(= V|/(^). We sketch the idea of proof. Fix two points p , q (=: S2 — {00}
and suppose their distance from each other, from oo, and from \|/(0) =\|/(1) is greater
than 2. Let Bp, B^ denote the balls of radius 1 around p, q resp. The idea of the
construction of (p is as follows: For most of the time the path (p will be fixed at p
or <y, and will move rapidly between p and q whenever V)/ gets close to one of them.
More precisely, at t=0 we put (p=j& and wait until \y "touches55 B ,̂ for the first time.
It then takes V|/ a certain time, in which it must stay within a ball of radius ^ around
the touching point, and in that time (p will escape quickly to q, avoiding that ball and
oo. Based on the uniform continuity of \|/, this process repeats finitely many times and
may easily be used to define a continuous function (p as required. The details are left
to the reader. D

Notice that the above proof does not apply if we replace C by R, and Lemma 4.8
is false in that case. In fact, if we replace C by R it is no longer true that every
matrix in SL^(R) is a product of elementary matrices, since 7l;i(SL^(R)) =t= {e} and it
is not difficult to see that every \|/: S1 —> SL^(R) which is a product of elementary
matrices must be null homotopic. Put in a different language, the loop group associated
with SL^(R) is not connected, and the connected component is exactly the subgroup
generated by the elementary matrices. A different phenomenon occurs with the Lie
group S0(/z, 2) for n ^ 3. This group has property (T) and an infinite (abelian)
fundamental group. Thus, its Loop group cannot have property (T), as its quotient
by the connected component is isomorphic to 7Ci(SO(7z, 2)). In both of the above
examples it would be interesting to see whether the connected component of the Loop
group has property (T). One may also study in general the case where S1 is replaced
by other manifolds, say, a higher dimensional sphere Sd (here higher homotopy groups
form obstructions to elementary generation).

We conclude with a brief discussion of the group Gx when G = SL^(Q^), and
X is a Cantor set (Q^-the field of j&-adic numbers, may be replaced here by any
non-archimedean local field).

Theorem 4.9. — With the above notations, the group Gx satisfies the assumptions of the
Main Theorem, and hence has property (T).

Proof. — As in the foregoing discussion we may identify Gx with SL^(R), where
R is the ring of continuous functions (p:X —> Q ,̂. We identify X with Z ,̂ C Q ,̂, the
ring ofj^-adic integers. By an elementary fact (attributed in [Sch, p. 127] to Kaplansky,
but was apparently proved first by Dieudonne [Di], as was pointed out to us by
J.-P. Serre), the subring of polynomials with coefficients in Q ,̂ is dense in R (for the
uniform convergence topology). Thus, the subring S C R generated by the function
f(x) = x and the constant function 1 / p is dense. Hence we only need to verify bounded
elementary generation. For this we first need to show that Lemma 4.8 holds if S1 is



BOUNDED GENERATION AND KAZHDAN'S PROPERTY (T) 167

replaced by X^ and C by Q ,̂. The proof of this elementary fact is easier than that of
4.8 and is left to the reader. Let us indicate how it implies v^(R) ^ j/z2, which then
completes the proof.

First, notice that the above modification of Lemma 4.8 implies that for any two
continuous functions/, A:X —> Q ,̂, there exists a continuous (p such that h + (evanishes
exactly in the set of common zeroes of h and f. Indeed, denote by Y C X the closed
set of common zeroes and let Y C ... Us C Ui C Uo=X be a decreasing sequence
of open-closed subsets with nU^=Y. Then for every n > 0, h and/have no common
zero in U ^ — U ^ + i (which is closed and open) and hence there is a continuous function
(p^ on Vn — Un+\ such that h + (p/has no zero there. Extending (p^ to be zero outside
Vn — U^+i, (p(^)= ^(p^(^) is a function as required.

Now let A G SL^(R) and denote by/,..., / its first row. By the above there
exists a continuous function (pi:X —> Q ,̂ such that/ + <Pi / vanishes exactly in the
common zeroes of/ and/. Correspondingly, add the first column multiplied by (pi
to the second. Now let (p2 be such that/ +(p2(/ "^^Pi/) vanishes exactly on the set of
common zeroes of/, / and/. Correspondingly, add the second column multiplied
by (p2 to the third one. Continuing this process and using detA= 1, we get after n— 1
elementary operations an invertible function in the n-th entry of the first row. One
more operation yields the constant 1 in the (n, n) entry, and the rest of the argument
is identical to that in Proposition 4.7. D
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