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MEAN DIMENSION, SMALL ENTROPY FACTORS
AND AN EMBEDDING THEOREM

by ELON LINDENSTRAUSS

ABSTRACT

In this paper we show how the notion of mean dimension is connected in a natural way to the following
two questions: what points in a dynamical system (X, T) can be distinguished by factors with arbitrarily small
topological entropy, and when can a system (X, T) be embedded in (([0, 1] ) , shift). Our results apply to
extensions of minimal Z-actions, and for this case we also show that there is a very satisfying dimension theory
for mean dimension.

1. INTRODUCTION

In Lindenstrauss and Weiss (1999), the notion of mean dimension of a dynamical
system is developed. It is a new invariant for dynamical systems, suggested by
M. Gromov, that can give interesting information on a dynamical system even when
the usual invariants of topological entropy and topological dimension are infinite. We
denote the mean dimension of a system by mdim(X). In addition to mean dimension,
which behaves rather like topological dimension, in Lindenstrauss and Weiss (1999)
we have also defined an analogue of Minkowski dimension mdim^(X, d) that is not
a topological invariant but depends on the metric (one can turn it into a topological
invariant by taking the infimum of this value for all metrics d compatible with the
given topology), and an analogue of the definition of zero dimension in the inductive
definition of dimension, the Small Boundary Property (SBP). In the general setting of
amenable group actions on compact metric spaces B. Weiss and myself have been able
to show the following implications:

mdim(X) ^ mdim^(X, d) for all d, and
X has SBP => mdim(X) = 0.

We also mention that if the topological entropy ofX is finite then mdim^(X, d) = 0 for
all rf, that if the dimension of X is finite then mdim(X) = 0, and that if X is uniquely
ergodic then X has the SBP. Thus the collection of systems with mdim(X) = 0 is rather
large and can potentially unify arguments given for systems with finite dimension, finite
entropy or a unique ergodic measure.

In this paper, I use an analogue of the Rokhlin Tower Lemma in measurable
dynamics and the Baire Category Theorem for the space of functions from X to a
suitable K to complete the dimension theory for mean dimension, and prove that for
systems where the Tower Lemma holds,



228 ELON LINDENSTRAUSS

(1.1) 3 metric d : mdim(X) = mdim^(X, d)

(1.2) X has SBP ^=^ mdim(X) = 0.

Unfortunately, the proof I give to the Tower Lemma works only for extensions
of minimal Z actions. For these systems, however, equations (1.1)—(1.2) give a very
satisfying dimension theory for mean dimension. Recall that a system (X, T) is minimal
if X has no T invariant proper closed subsets (we will implicitly assume throughout
that the minimal systems we will consider are non-trivial, i.e. infinite).

These techniques also shed light on two problems that have not been completely
understood for quite some time. The first of these questions is a very natural question
raised in Shub and Weiss (1991) — When can one lower the topological entropy of a system
by taking (continuous) factors? We recall that a factor of a dynamical system (X, T) is a
dynamical system (Y, S) (together with a onto map 0: X —> Y) such that the following
diagram commutes

X -^ X

o o
4' 4"

Y ^ Y

It seems that the correct question to ask is for what pairs of points x, y G X can
one find (for every e > 0) factor mappings Og into a system with topological entropy
less than e such that Oe(^) ^ ^e(j)' It ^ (nontrivial) pairs of points in X can be
distinguished then, as shown in Lindenstrauss (1995), for any factor (Y, S) of (X, T)
and any T| G [Atop(Y), Atop(X)] one can find an intermediate system (Z, R) such that
(Z, R) is a factor of (X, T), Aiop(Z) = T|, and such that the factor map X —> Y factors
through Z. The existence of such factors is proved in Shub and Weiss (1991) for
uniquely ergodic systems, and in Lindenstrauss (1995) for finite dimensional systems.
In Lindenstrauss (1995) it is also shown that for some systems, no two points can be
distinguished by finite entropy factors — or, in other words, these systems have no
finite entropy factors.

The examples given there have positive mean dimension, and, as shown in
Lindenstrauss and Weiss (1999), no factors with zero mean dimension. In this paper
we show that for extensions of minimal Z actions every two points can be distinguished
by low entropy factors if and only if the system has zero mean dimension. Moreover,
there is a unique factor of X, the maximal zero mean dimensional factor, such that
x and y can be distinguished by low (or finite) entropy factors only if they map into
different points in the maximal zero mean dimensional factor, and if this maximal
zero mean dimensional factor has a nontrivial minimal factor (e.g. if X is minimal) the
converse is also true.
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Another question that has been considered by previous authors and on which we
can, using mean dimension theory, considerably clarify the picture is when can a dynamical
system be embedded in ([0, I]7, shift)? The initial motivation for this result is Beboutov's
theorem that every real flow (X, T^) whose fixed point set can be embedded in R can
be embedded in the space of continuous functions on R, with the natural action of
R (see Kakutani (1968)). A dynamical system can have a trivial obstruction to being
embeddable in ([0, I]2, shift) if it has too many periodic points. But, for example, it
was not clear for a long time if every minimal dynamical system is embeddable in this
system. Jaworski proved that if (X, T) is finite-dimensional and has no periodic points
then it is embeddable in ([0, I]7, shift) (Jaworski (1974); a more accessible source is
Auslander (1988), Chapter 13, pp. 183-194). In Lindenstrauss and Weiss (1999) it is
shown that a necessary condition for (X, T) to be embeddable in (([0, 1] ,̂ shift) is
that mdim(X) ^ d — and so there are many minimal systems that are not embeddable
in ^([0, l]^)7, shift). The different behavior for R actions from that ofZ actions is not
too surprising considering the fact that [0, I]2' is a compact metric space, whereas the
space of continuous functions from R to [0, 1] is huge.

In this paper, we give a partial converse of the necessary condition that
mdim(X) < d. We show (for extensions of minimal Z actions) that if mdim(X) < cd
for some c < 1 then X can be embedded in [([0, l]^, shift). In particular we get
two new results that do not involve at all the notion of mean dimension: any uniquely
ergodic (or more precisely strictly ergodic) system and any minimal system with finite
entropy can be embedded in ([0, I]7, shift).

These results are (hopefully) only part of some larger picture. It would be
interesting to extend these results to more general Z-actions, and to more general
groups. Even extending the results to Z2 seems to require new ideas. But I would
like to remark that the obstruction to extending these results is not purely technical.
Especially troublesome seem to be the periodic points of X. Indeed, if the set of
periodic points of X is not zero-dimensional then X does not have the SBP, and as
we have seen periodic points do indeed obstruct embedding X into (([0, l]^)2, shift).
The problem of handling the case where there are many periodic points has been
successfully handled in Lindenstrauss (1995) for the special case of finite-dimensional
systems, where it is shown that for theses systems every two points can be distinguished
by low entropy factors regardless of the dimension of the periodic points.

Another nice question that remains open is what is the largest constant c such
that mdim(X) < cd implies that X can be embedded in ([0, 1]^, shift)? The bound we
get is that 0 1/36.

Overview. — In the next section, §2, we review the necessary definitions and
results we need from Lindenstrauss and Weiss (1999). In §3 we prove the Tower
Lemma for extensions of minimal systems. In §4 we prove the existence of a metric d
such that mdim^(X, d} = mdim(X), using a Baire Category argument.
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We prove the embedding theorem in §5. The proof of the embedding result is
more difficult than the proofs of the main results of §4 and §6, and seems harder to
generalize to more general setups.

The main result in §6 is that every system with mdim(X) = 0 has the SEP.
We also describe in this section the implications of the SBP on small entropy factors,
and the existence of a maximal mean dimension zero factor. We conclude §6 with a
surprising corollary that exhibits a sharp dichotomy between systems with mdim(X) = 0
and systems with mdim(X) > 0.

§2, §3 and the beginning of §4 (up to Lemma 4.4) contain ideas and definitions
that are used throughout. The remainder of §4, §5 and §6 can be read independently
of each other.

Acknowledgments. — This work is part of the author's PhD thesis, conducted under
the guidance of Prof. Benjamin Weiss of the Hebrew University. I would like to thank
him for many helpful discussions and insights, and for his constant encouragement.
I would also like to thank Prof. Mikhael Gromov who first suggested the notion of
mean dimension, and with whom I had a very helpful discussion on this and related
subjects.

2. PRELIMINARIES

We consider a compact metric space X, and an invertible map T: X i—^ X. Like
topological dimension, the mean dimension will be defined using open covers of X,
and since X is compact, all covers are supposed to be finite. We will say that a cover
P refines a ((3 >- a), if every member of p is a subset of some member of a. We also
define the order of a cover a by

ord(a) = max V^ lu(^) \ — 1
\ ̂ x uea /

and define ^(a) = info^ord(P). Recall that the topological dimension of a space X is
^ D if and only if every open cover a can be refined by a cover P with ord(P) ^ D,
i.e. if and only if ^(a) < D for all a.

We state without proof a few facts about open covers and ^(a) (for proofs see
Lindenstrauss and Weiss (1999)):

Definition 2.1. — A continuous map f'.VL —> Y will be called ^-compatible if it is possible
to find a finite open cover ofY, ^, such that f~1 (?) > a. We will use the notation f> a to denote
that f is a compatible.

IfX is compact, to see that a continuous y:X — ^ Y i s a compatible it is enough
to check that for every y G Y,/"^) is a subset of some U 6 a.
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Proposition 2.2. — If a is an open cover ofX, then

^(a) ^ k

if and only if there is an a-compatibk continuous function f: X —> K where K has topological
dimension k.

Proposition 2.3. — Let a, P be open covers of X, and set a V P = { U H V • U C a
V e P } . Then

^(aVp^^oO+^p).

We use the notation o^ = \/^ T'U

Definition 2.4. — If (X, T) is a dynamical system, then the mean dimension of (X, T),
denoted by mdim(X, T) (or mdim(X) ifT is understood), is defined by

^'(a~1)
(2.1) mdim(X, T) = sup lim v ° / ,

a n-^oo n

where a runs over all finite open covers ofX.

By sub-additivity of ^, the limit in (2.1) exists. We mention some important
basic properties of mean dimension:

1. If Y is a T-invariant subset of X then mdim(Y, T) ^ mdim(X, T). However, if
(Y, S) is a factor of (X, T), mdim(Y, S) might well be bigger than mdim(X, T).

2. If (X, T) is finite dimensional then mdim(X, T) = 0.
3. If X = [0, I]7, and a: [0, I]2 -^ [0, I]7 is the shift transformation, then

mdim([0, I]7, a) = 1. More generally, mdim(([0, 1] ,̂ a) = d. All proper factors
of either of these systems have strictly positive mean dimension.

4. For any dynamical system (X, T), mdim(X, r?) = 7zmdim(X, T).
5. If (X,, T,) is a sequence of dynamical systems, 1 ^ i < I with I < oo, then

(2.2) mdim(Xi x Xs x • • . , Ti x T2 x • . •) ^ ^mdim(X,, T,).
;<i

Throughout this paper, we will use the notation n to denote the set { 0, .... n— 1 },
for any n G N. If n 6 N and a C R (or Z) we take amodn to be the unique
0 < r < n such that a - r C 7?Z. Finally, if A, B C Z, we let A + B denote the set
{ ^ + 6 : ^ G A , & G B } .
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3. A ROKHLIN-TYPE LEMMA FOR SOME DYNAMICAL SYSTEMS

The Rokhlin Tower Lemma in ergodic theory is the following theorem:

Theorem 3.1. — ^(X,, ̂  , [i^T) is a measure preserving system, \JL a probability measure,
and if in addition the measure of the set of periodic points is ^ero, then for every N and 8 > 0 there
is a B such that the sets in the collection {T^B }^o are disjoint and

ndjT-^i-s.
i=0

An alternative way to phrase this is that there is, for every N and 8 > 0, a
measurable function n'.YL —> { 0 , ..., N — 1} such that n(Tx) = n(x) + 1 modN, except
for a set of measure at most 8. This relatively simple lemma is a very powerful
tool in ergodic theory. One of the typical uses of it is for constructing partitions
of X with various properties by reducing this to a question of partitioning orbits
{x , Tx, ..., T1^"1 A:} of points in X.

There is a natural notion to replace the condition that a set has measure less
than 8 for dynamical systems:

Definition 3.2. — Let (X, T) be a dynamical system. For a set G C X define the orbitwise
capacity of C to be

1 n-1

ocap(C) = lim - supV^ lc(T^).
n-^oo ^ x(EX i=Q

T^ocap(G) = 0 we shall say the set C is uniformly small.

^-i
^=oWe remark that as sup^^^^o lc(T^) is sub-additive in n, the limit above exists

and in fact

1 "-1

ocap(G) = inf- sup V lc(T^).
n n xex ^o

The definition of uniformly small sets is due to Shub and Weiss (1991). Note that
ocap(A U B) ^ ocap(A) + ocap(B), and so in particular the union of any finite number
of uniformly small sets is uniformly small. We would also like to remark that it is not
hard to see that for closed sets C

ocap(C) = sup H(G),
Î T-irn )̂

where MT-mv(X) denotes the collection of T-invariant measures on X.
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Lemma 3.3. — Let (X, T) be an extension of a nontrivial (i.e. infinite) minimal system.
Then for any N there is a continuous function TZ:X —^ R such that the set

E={xeX:n{^x) f 72 (^+1}

satisfies E n T"E = 0 for all n = 1, .... N.

Proof. — It clearly suffices to prove the lemma for the case X minimal, since if
n: X —> R is as in the lemma and Y is an extension of X (with (|): Y —> X a factor
map) then n o ̂ : Y —> R attests the validity of the lemma also for Y.

As (X, T) is minimal we can find open sets U, U' C X with U C U' and such
that

(3.1) U' n T-^U' = 0 for all 0 < k ̂  N.

In fact, we can take U' to be any ball of small enough radius. Note that as U is open,
(X, T) minimal, there is some M such that

M-l

|j T^ U = X.
k=0

Let w:X —> [0, 1] be a continuous function such that

supp w C U7 and w\^j = 1.

We will use w to define a markovian random walk on X, which for every starting
point x will end after a finite number of steps, as follows: At any pointy we will get to
during the random walk, we finish the random walk with probability w{y) and move
to T"^ with probability 1 — w[y).

As the orbit of every point eventually enters the set U on which w = 1 this
random walk will indeed stop after a finite number of steps.

Let

n (x) = E(# of steps in the random walk starting at x).

Note that if x ^ U' then the random walk starting at x will always move in the next
step to T~1^, so

x^V =^ n^x)=n[x)- 1.

Thus

E = [ x : n (T(x)) ^ n(x) + 1 } C T^U'.

And the result follows from (3.1). D
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In this form, it does not seem that this Rokhlin-type Lemma can be extended
to a more general setup. The following corollary of Lemma 3.3, is what is needed to
prove Theorems 4.3 and 6.2, and seems more likely to be true in more general setups.

Corollary 3.4. — Let (X, T) be an extension of a non-trivial minimal system. Then for any
§ there is a continuous n: X —> R such that

E = { x : n(Tx) ^ n(x) + 1 or n(x) ^ Z }

has orbit capacity less than S.

Proof. — Let 7i(x) be as in Lemma 3.3 for N > 1/58. Define

r [a\ if 0 ^ {a} < 1 - £,
g^)=^^{a}-^-e) ^^_^

^g is a continuous function R —> R. Notice that

(3.2) ge{a + ! - £ ) = g^(a) + 1 if and only if £ ^ {a} ^ 1 - £,

and under these conditions g^(a) G Z. Also notice that for any a G R
N-l

(3.3) ^ l ^ i -£ ] ({^+A( l -£ )} )^N-2rNe1 .
k=0

Now, take £ < 1/1 ON and define

n{x)=g^\-^n(x)).

For every x C X, we know that

n^x) ̂  n^T^x) + 1 for at most one 0 ^ k < N.

Set Ao to be this exceptional k if it exists. Then by (3.2) and (3.3) we see that for all
0 ^ k < Ao except at most two such k ' s

n{^^kx)=n(r^k-'x)+l.

and the same is true for all but at most two integers k in the range Ao < k < N.
Hence if

E = {x : n{T(x)) ^ n(x) + 1 or n(x) ^ Z},

then

E^o1 IE(T^) 5 .
ocap(E) ^ sup ———_——— ^ _ < 5.

x^X ^ -^

D
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We remark that just as in measurable dynamics, the periodic points form
an inherent obstruction to Rokhlin-type results of the type presented here. In
the subsequent sections, we shall call a continuous function TZ:X —> R such that
n(Tx) =(= n(x) + 1 only rarely a level Junction, since they can be though of as assigning to
every x C X its position in a Rokhlin-like tower.

4. CONNECTIONS WITH THE METRIC MEAN DIMENSION

In Lindenstrauss and Weiss (1999) we presented another definition of a mean
dimension that is metric dependent. We first recall the definition:

For an open cover a, define the mesh of a according to a semi-metric or
metric d by

mesh(a, d) = max diam(U).
uea

Definition 4.1. — Let X be a dynamic system, d{', •) a metric on X. Define

<(^=max<P^T>).
a^n^b

Set

(4.1) S(X, e, d) = lim ]- inf log |a|,
^°° nmes^a,^-l)<e

S is monotone nondecreasing as e —^ 0, and we wish to measure just how fast it increases. We define
the metric mean dimension of'X (for the given metric d), mdim^(X^ d}, as

(4.2) mdim^.^^lim8^8-^.
e_0 | log £ |

Notice that

Atop(X,T)=limS(X, £ ,< / ) ,
£^0

so, essentially mdim^(X, d) measures how fast the terms that approximate the entropy
S(X, £, d) tend to oo as £ —> 0 (and in particular, mdim^(X, d} = 0 if Afop(X) < oo for
any metric rf).

The limit in (4.1) exists, since if both mesh(a, dn) < £ and mesh(P, dm) < £ then

mesh(a V T-"P, <^) < e and log |a V T-'P] ^ log |a| + log |P|
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hence the sequence

On = inf log | a |
mesh{a,dn~})<E

is sub-additive {a^+m ^ cLn + ^m); and so

(4.3) S(X, e, </) = lim ^ = inf^.
^—^oo ^ n ^

Now mdim^(X, a?) is metric dependent. The main result regarding this mean
dimension in Lindenstrauss and Weiss (1999) was the following:

Theorem 4.2 (Lindenstrauss and Weiss (1999)). — For any metric d on X^

mdim(X) < mdim^(X, d).

This result is true for all dynamical system, with the acting group being any
countable discrete amenable group. Using Corollary 3.4, we can complete the picture
for extensions of minimal Z actions, by showing that the following is true:

Theorem 4.3. — If (X^, T) is an extension of a minimal system, then there is a metric d
such that

mdim(X) = mdim^(X, d).

This theorem has a close analogue in the standard theory of topological
dimension. It is well known that for any separable metric space Z, with metric d,
the topological dimension of Z and the Hausdorff dimension according to d satisfy

dim(Z) ^ dim^(Z, d),

(this is the analogue of Theorem 4.2). Furthermore, there is a metric d ' on Z such
that equality holds, that is

(4.4) din^^dim^Z,^)

(see Hurewicz and Wallman (1941), chapter VII, and especially Theorem VII.5).
Recall how (4.4) is usually proved: For simplicity we assume Z is compact.

Consider all continuous maps from Z to a compact convex subset K C ^M with
nonempty interior, for M large enough (greater than 2dim(Z)+ 1), and let |['|| be some
norm on R^ The usual choice is K = [0, 1]̂  but this makes no difference in the
proof. Endow this space of functions, C(Z, K), with the uniform convergence topology,
i.e. the topology given by the metric

</,/)= sup \\f{z)-M\-
^€Z
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One shows that for a dense G§ set of functions / € G(Z, K), the map / is
a homeomorphism of Z onto the subset f(Z) C K (where we use on /(Z) the
topology induced from that of K). The set f(Z) also inherits a metric from K
— the metric given by the norm ||-|[. The proof that there is a metric d ' for which
dim(Z) = dim^(Z, d ' } is completed by showing that for a dense G§ subset of C(Z, K)
we have dim^(y(Z), [ | - | [ ) = dim(Z).

We follow the same procedure here. For our uses, it is not enough to map our
dynamical system X to a metric space. Since we are considering properties of the
dynamical system (X, T), our mappings must preserve the dynamics. However, this is
easily attainable as follows: Let K be a compact convex subset of some Banach space
(finite- or infinite-dimensional as needed). We will consider mappings from (X, T) to
the dynamical system (K71, a), where the topology on K7 is the usual product topology
and a is the two-sided shift

a : ( . . . , A ; _ i , A o , A ; i , ...) ̂  (...,/o,/;i,^ ...)

(each ki is in K). To any map^E G(X, K) there corresponds a map I/:X —> K7' that
respects the Z action on these spaces (i.e. ly-o T = a o Iy) as follows

^•.x^{...,f(^-lx),f(x),f{rrx),...).
It is easy to see that conversely, all maps F: X —> K7 that respect the Z action can be
obtained in this way, but we will not need this.

Let D be some standard metric on K7. What we would like is to prove that for
a dense G§ set of functions f ^z. C(X, K) the map ly is an embedding of (X, T) into
(K7, o), and that for a dense G§ set of/G G(X, K) we have

mdim^(Iy(X), D) = mdim(X).

While it is true that for systems with finite mean dimension, if dim(K) is large enough,
then for a dense G§ set of functions ̂ 6 C(X, K) the map ly is an embedding, the
proof of this result is somewhat more elaborate than the proof that for some metric d
the metric mean dimension is equal to the mean dimension, and so we defer it to
the next section. Instead we will work with infinite-dimensional K such as the Hilbert
cube, for which the result that for a dense G§ set of^C C(X, K), the associated map
If is an embedding, is a triviality, since it is well known that for a dense G§ set of
/€ C(X, K),/itself is an embedding (see for example Hurewicz and Wallman (1941),
Theorem V4). This approach has the additional advantage that we will only need to
use the weaker Rokhlin-type result, Corollary 3.4, while for the embedding theorem
we will need the full force of Lemma 3.3.

We begin with some notations. Let K be compact and convex, inside some
Banach space. For any collection ̂  of vectors from K, co(J^") denotes their convex
hull. For w € K7 we will use the standard notation w^ (or the equivalent w\^) to
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designate the b — a + 1 coordinates of w at places a, ..., b. This notation will also be
used for functions from X to K^. Recall also the related notation

a^V^a
z=a

for open covers a of X introduced in Section 2. If \\'\\ is a norm on the space
containing K, we define a seminorm on K7 as follows

We use these notation also for finite products K^, where we index the coordinates
of K^ starting from 0. Finally, as the standard metric on K7 we will use the metric
D(-, •) defined by

D(^)=E 2-'^ -JC
iez

The following lemma is useful in that it allows us to estimate mdim(Iy(X), D) working
with seminorm \\x\[ := \\X\\°Q on K7, instead of the somewhat awkward metric D.

Lemma 4.4. — Let (Y, o) be a dynamical system embedded in (K7, a), K as above, and
[ I •|| be a norm on the Banach space containing K. Then S(Iy-(X), e, D) ^ S(Iy-(X), e/10, H - H ' ) .

Proof. — For any x, y € K^, and integer n, if

,. ^ ,,%+log2(diam(K)/£)
\\x ~M\-\og^di3im{K)/E} £5

then D^ (^5^) < 10e. Hence for any open cover a

mesh(a, D^-1) ^ lOmeshfr^^^^a, [[.^^^(^(KVe^

Thus for any e

S(Iy(X), e, D) = lim inf^ lo^oq : a covers Iy(X) and mesh(a, D^1) < e}
w—^cx) ^ 7Z J

^ lim infl10^"1 : a covers I,(X) and mesh(a, H'1^2^^) < ̂  10^
n-^oo [ ^ j

=S(I^(X),e/10,||.||/).

D
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Lemma 4.5. — Let K be compact and convex, ^ C K^ finite. Then there is an open
cover y of co(J^) with

mesh(Y, |H|^~1) ^ £ and

lYl^Ce-1^

z^A^ C depends only on ̂ .
Proof. — Suppose J^= {/(O), ...,/(r)}. Cover co(J^) by the f4rdiam(K)/£ + 1]^

sets

(/(O) + E»(.)(/(.) -/(O)): V,, 1 <,) e ('——•——, W^-) I
I ,=i ^2rdiam(K) 2rdiam(K)y (

where each n(i) G Z is in the range

-f2rdiam(K)/£l - 1 ^ n(i) < f2rdiam(K)/e1.

An easy calculation shows that these sets have H 'H^" 1 diameter ^ e. D

Lemma 4.6. — Let P be a cover of X with ord(P) < A. Suppose we are given for every
U € P two points pu C U and v^j € K^. Then it is possible to find a continuous function
F: X —> K^ with the following properties:

1. FO&u)=^j /^/ /UGp,
2. /or ^// A: C X, F(x) € co(F(^u) : ^ € U € P).

In particular, F(X) ^ contained in a finite union of ^-dimensional polytopes.

Proof. — Let {<|)u(^)}uep be a partition of unity subordinate to P — that is, a
collection of continuous functions X —> [0, 1] such that

^ ̂ (x) = 1 for all x C X
uep

and supp ((|>u) C U, and we can further assume that (|)u(^u) = 1 for all U G P. Then,
the function F defined by

F^-EM^U.
uep

clearly satisfies conditions of the Lemma. D

Theorem 4.7. — Let K be compact and convex, D the standard metric on K71. Then/or a
dense G§ set off^ G(X;K),

mdim^(Iy(X), D) ^ mdim(X).
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Proof. — Let A(£, 11) C C(X;K) be the set

A(£, n) = {/ : 3eo < e s.t. S(Iy(X), £o, IMF) < | log(£o)|(mdim(X) + r\)}.

Using Lemma 4.4, we see that

{/ : mdim (̂X), D) < mdim(X)} = Q A(-^ i)
r,Ji ^ r

so it suffice to prove that the A(£, T)) are open and dense.
That A(£, T|) is open is very easy — assume that

S(I^(X), £o, HI') < [ log(£o)|(mdim(X) + n).

Then there is an open cover a of Iy(X) and a k G N such that

(4.5) |oc| < ̂ -{mw+^, and

(4.6) mes^aJl.llS-^^.

By extending the sets in a (which are open in the relative topology on I/(X)) to open
sets in K7, we can find a collection 6c of open sets in K7 that satisfies the above two
conditions, and covers I/(X). If/' is sufficiently close to/then a will also cover Iy/ (X).
Using (4.3) we immediately deduce that

S(Î  (X), £o, IMF) ^ IOM- ^ | log(£o)|(mdim(X) + ̂ ),

hence/' G A(£, T|).

It remains to be seen that A(£, T|) is dense. Let^ be any function in G(X, K),
and take any £ > 0. Take a to be an open cover of X such that

VU € a diam(7(U)) < £.

Take M big enough so that

(4.7) ^(o^"1) < (mdim(X) + -n/4)M.

Let P > a^~1 be such that ord(P) = ^(a^~\ and use Lemma 4.6 with (arbitrary)
j&u G U for every U e P and

^-(JM^TAJ),...,/^-^))

to find an F:X -^ K^ such that

(4.8) FQ&u) = ̂  for every U G P,
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(4.9) F{x) e co(F(^j): ^ e u e p ) Vxex.

According to Corollary 3.4 there is a level function TZ:X —->• R such that the set

E = { x : n^Tx) ^ n(x) + 1 or n(x) ^ Z }

satisfies

^ocap(E) <
(8M+ 100)(l+2ord(P))'

Set n(x) = [_7z(;c)J mod M, n(x) = f^)] mod M and n^x) = {^)}. We can now define
/:X~-^Kby

(4.10) /(^) = (1 - ̂ ))F(T-^^ + ^(^F(T-<^)|^.

At every x such that 7z(^) ^ Z the function / is continuous, for in this case in a
neighborhood of x the functions n(x) and n(x) are constant and TZ^^) is continuous. At
x with n(x) G Z, if ^ is sufficiently close to x, then either n(x) — e' < TZ^) < yz(^), in
which case n(y!) = TZ(^) and n'(^ > 1 — e', or n(x) ^ n^) < n(x) + e', hence n^) = 7z(^) and
n^xf) < e7. In both cases, we can estimate \\f[x) —J^QII (for x with 7z(^) € Z) as follows:

||yV) -f{x)\\ < ediamK + HF^^QI^ - F(T^)|̂ |
^e(diamK+ 1)

(the second inequality holds for all y! in some sufficiently small neighborhood of x).
Thus / is continuous. Notice that if n(x) = 0 and x ^ U=o T~'E (hence in particular
n'(x) = 0), then

-r / \ |M— 1 T~I/ \W\o = T{x).

Claim 1. — We have sup^ I I fW -7(^)1 < e.

Indeed, by equations (4.10) and (4.9),

(4.11) f(x) C co ({F0&u)|^ : T-^x G U} U {F(^)|-^ : T-'^x G v}) .

But each of the elements of K. on the right hand side of (4.11) is within e of j[x).
Indeed, for any 0 ^ n < M, if T-"A: € U,

(4.12) ||FM,, -7(^)|| < \\F(put - ̂ \\ +
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The first term of the right hand side of (4.12) is 0 by equation (4.8). Recall that by
definition D}J\^ =/(Tj^j). Now T^^j) and x are both in T"(U), and hence

||< -7M|| ^ diam(7CPU)).

As U E P >- oc^"1, there is a LL C a such that U C T-^(Ly. This shows that

diam(7(T"U)) ^ max diam(7(UQ) < £.
u^oc

Thus the left hand side of (4.12) is < £.

Claim 2. — The function f belongs to A(e_, T[) for all £.

It clearly suffices to show that if e is small enough, I/(X) can be covered by an
open cover y with

M ^ pN(mdim(X)+Ti)
^ c

mes^YjI.lir^e.

Naturally we can assume T| <e mdim(X).
By (4.7) and (4.9), F(X) is contained in the union of a finite number of

(ord(P) ^ (mdim(X) + ll/4)M)-dimensional polytopes in KM. By Lemma 4.5, for any
£ > 0, there is an open cover y^e) of F(X) with

ly'fe)! ^ C;'g-(mdim(X)4-T1/4)M

mesHY^JI.Iir^^.

Using this we can bound the number of sets with diameter at most e needed to
cover/(X) C K. Indeed,

M-l

fW^ U^-^^l^^^l^i-dM: ^ex, ^e[0, i)} ,

soy(X) is a subset of a finite union of (2ord(P) + l)-dimensional polytopes in K. Again
using Lemma 4.5, we see that there is a cover Y^8) °ffQQ with

IY^E)! ^ C'^-20'^-1

mesl^eU-ll)^.

By slight abuse of notation we can consider y^e) and Y^8) as collections of open sets
in K^ (instead of open sets in K^ or K respectively), by replacing every U G y^s) with

OeK^^- 'eU}, etc.
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Take N > 10(2ord(P) + l^M such that for every x G X
, N-l

M ^-^ Ev / ^ (Q\K -L ^nvo^,4/n\ _L i \ 'N ̂  £A .' (8M + 50)(2ord(P) + 1) •

Consider now a point lf(x) € I/(X). Set

] = { j ' ' 0^<N-1 , /z(T^)=0 modM and n^x) = k-j for a l l j < y f c < y + M } .

Then

M TIN| N \ ( J + M ) [ ^ | { 0 ^ < N : T^C J TE}|+M <
^ J l 2(2ord(P)+l)

(we recall that N = { 0 , . . . , N - 1 } . ) Furthermore, for anyjEj,
''+M-1(4.13) I/^t; M-l = F(T^).

Using equation (4.13), we see that there is an element of

YCL^-V^V^ V ^V^)
XT jeN\(j+M)

that contains ly(^). Let

r J C { 0 , . . . , N - M } : J U ( J + z ) = 0 for all 0 < z < M, and

^ = } |N \ ( J+M) |^ T1N

2(2ord(P) + 1)
We now take

Y(£) = U Y(J- £)
Je^

and claim that y(£) is the sought after cover of I/(X).
That y(e) is indeed a cover is clear, since we showed that for an arbitrary x C X,

there is a J € ^ and a U C y(J,e) such that Iy(x) G U. Also, by construction, any
set ofy(J, e) (and hence any set ofy(e)) has \\'\\^~1 diameter at most e. It remains to
bound |y(£)h

|Y(J^)1 = \7^ x ly^)!1^^'
< Ge"1111^1"1^^1174^"1^^1^^201'̂ ^1)
< ^;c-(N+M)(mdim(x)+T^/4)-Nrl/2 ^ ^p-^t^d^W+^ri/S)

and so

|Y(e)| ^ci^le-^^1111^7^/8).
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As long as e is very small,

|y(e)| < g-(mdim(X)+r|)M^

D

Proof of Theorem 4.3. — Let K == [0, 1̂  (the Hilbert cube). As X is separable and
metric a dense G§ set of functions y:X —> K are an embedding, hence in particular
for a dense G§ set of functions y:X —> K, I/:X —> K7' is an embedding (see Hurewicz
and Wallman (1941), Theorem V4).

From Theorem 4.7 we know that for a dense G§ set of functions y:X —» K,

mdim^(Iy(X), D) ^ mdim(X).

If we take f to be an embedding, then D on I/(X) gives rise to a metric D on X
defined by

D(^)=D(I^),I^)),

and hence

(4.14) mdim^(X, D) ^ mdim(X).

On the other hand, we already know by Theorem 4.2 that mdim(X) ^ mdim^(X, D).
Thus equality holds in equation (4.14), and the theorem is proved. D

5. AN EMBEDDING THEOREM

The main result of this section is that if mdim(X) < CD then (X, T) can be
embedded in (([0, l]1^,^). Like Theorem 4.3, this theorem has an analogue in
dimension theory — the theorem that every space M of topological dimension d can
be embedded in [0, l]2^. This dimension-theoretic result is proved by showing (using
the Baire Category Theorem) that embeddings are a dense G§ subset of the space
G(M;[0, l]^4"1) of all continuous functions from M to [0, l]2^1 with the uniform
convergence topology.

As in the previous section, we will work with the maps ly-: X —>• K7 where K
is compact and convex, and what we shall prove is that if dim K is larger than some
constant G times the mean dimension of X, then for a dense G§ set of functions
f € C(X, K), the map ly is an embedding.

Theorem 5.1. — Let (X_, T) be an extension of a minimal system, K a convex set with
non-empty interior. T^mdimX < dimK/36^, then (X, T) can be embedded in K7. Indeed, in this
case for a dense GQ set of functions f 6 G(X;K)_, the map If is an embedding.
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We begin by providing the abstract framework for applying the Baire Category
Theorem. This part is nearly identical to the corresponding part in the proof of the
well known dimension-theoretic embedding theorem.

Notice that if ly is an embedding, the inverse image of every point in I/(X)
is, of course, a single point. Hence If will be a compatible for every open cover a.
Conversely, if a(i) is any sequence of covers such that the mesh of a(z) tends to zero as
i —> (X), and if ly is a(z) compatible for all i, then clearly ly is an embedding. Indeed,
in this case for any x € I(y)(X) its inverse image I^)"^) must be a subset of some
U(z') G oc(z). As diamU(z) ^ mesh(a(z)) —> 0 we conclude that I^)"^) is a single point,
hence I{f) is an embedding. For any open a, let

^={/€G(X;K): I^a}.

Lemma 5.2. — Let X and Y be compact metric spaces, and a an open cover o/"X. Then
{ / G G ( X , Y ) : f>a} is open in C(X, Y).

Proof. — Assume f >- a. Let P be an open cover of Y such that/"^) >- a. For
any open V C Y we define

V _ e = { ^ : <Q,Y\V)>e}.

For small enough e, the collection of open sets

p(e)={v-e: v e p }
covers Y.

Now assume d(f{x),f(x)) < £ for all x. We show that/' > a. Indeed, \Sf(x) G V-e
then f(x) G V, so

/'-^(^/-^a.

D

Lemma 5.3. — Let (X^ T) be a dynamical system, a{i) be some sequence of open covers of
X with mesh(a(z)) —> 0. Then the set of all f € C(X^ K) such that If is an embedding is equal
to f^i ̂ af^ an^ ^^V ^ad) u ^^ m G(^? ̂ ) (^cording to the uniform convergence topology).

Proof. — We have already seen in the discussion preceding Lemma 5.2 that
00

{/ (= C(X;K), ly is an embedding} = H^aw

It remains to show that for any finite open cover a of X, j^ is open. The set of
F € C(X, K7) such that F >- a is open, and the map

v^i/
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is a continuous map from G(X, K) to C(X, K7), and so the set ofy's such that ly >- a
is also open as the inverse image of an open set. D

We now begin to prove the harder part of showing that J^ is dense. If a is
an open cover of X, we set §(a) = S(a, d) to be the Lebesgue constant of the cover a
(with respect to the metric d which will often be implicit). Recall that the Lebesgue
constant of a cover is the largest S > 0 such that for every x G X there is a U G a
such that d(x, X \ U) ^ 8.

Lemma 5.4. — Let a be an open cover of a compact metric space \, and P a cover with
mesh finer than S(a). Let F be a continuous function from Y to some space Z such that for any x
and y in Y with ¥(x) = F(̂ ) there is an element of ft containing both. Then F >- a.

Proof. — Since Y is compact, we only need to prove that F"^) is contained
in some U (E a. We know that there is some U' G a that contains a ball of radius
S(a) around x. Every y € Y with F{x) = F( y) is in some V € P with x € V. Since
mesh(P) < 8(a), V C U', and hence y C U'. D

Lemma 5.5. — Let n> m and r be integers, M an n X m matrix with entries in { 1 , ..., r }
such that no value appears twice in a row or in a column. Then for almost all t\, ..., tr G.R, the
columns of

A(^...^):= (^M. , ) . .\ ^ij / i,j

are linearly independent.

Proof. — First, notice that it is enough to prove this for the case m = n, for we
can simply ignore the last n— m rows of A. Thus, we need to show that for almost all

[ , ... , try

det(A(^, . . . ,^)) tO

which will follow if we prove that the polynomial det(A(^i, ..., tr)) is non-zero. We now
use induction on n. Let a = Mi^ i, and assume that a appears exactly s times in M. To
simplify notations, we shall assume a = 1. We can write

det(A(^i, ..., tr)} =fo{t^ ..., tr) + Vi(^, ..., tr) + ... + ̂  fs(h, ..., tr).

Notice that fs is, up to sign, the determinant of the minor of A that remains after
throwing away all columns and rows in which ta appears, or 1 if no rows are left.
In the former case, the minor thus formed is a smaller matrix that also satisfies
the assumptions of the Lemma and so by induction fs{k? ""> tr) ^ 0 (and hence
det(A(^i, ..., tr)) ̂  0); in the lattery = 1 and again det(A(^i, .... tr)) ^0. D
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Recall that we use the notation v\5, also for vectors in K^ for finite N, with the
convention that the coordinates are numbered from 0 to N — 1.

Lemma 5.6. — Let A be an integer, let P be a cover ofX with ord(P) < Adim(K), and
let £ > 0. Suppose we are given for every U G P two points pu € U and v^ € K^. Then it is
possible to find a continuous junction F:X —> K^ ^A the following properties:

L [(P^u) - ̂ u)L| < £/^ ̂  ^ = 0, .... N - 1.
2. ^r ^// ^ e X, F(^) e co(F(^u) : ^ e U € P).
3. ^/OT- some 0 ̂ j < N - 4A, aW ?l, K1 € (0, I],

^ir^ + (i - w)^ = ̂ F^f'-1 + (i - w^
^^z ^y^ z j ^ U e p ^cA that both x and y! C U.

Pro<9^ — Let {(j)u(^) }uep be a partition of unity subordinate to P — that is, a
collection of continuous functions X —^ [0, 1] such that

^ (t)u(^) = 1 for all x € X
uep

and supp((|)u) C U, and we can further assume that (|)u(^u) = 1 for all U € P. We
choose for every U G P a value Fu e K^ such that

||(Fu-^)|^|| < £ for / ;=() , .., N- 1,

and define F by

F^EM^FU.
uep

This function F clearly satisfies the first two conditions of the Lemma. We claim that
for almost every choice of values Fu, it also satisfies the third condition.

First notice that for any S,, S^ C P with |S,|, |S^ Adim(K), the following three
collections of vectors in K^ obey the conditions of Lemma 5.5, where 0 ^ t < M—4A
and t + 1 ^ k < M - 4A:

1st collection. — All the vectors of the form Fu -l^^"1^ where i is 0, 1, and
u, e s, u s,'.

2nd collection (only for £ < M-4A- 1). — All the vectors of the form Fy \[^~^1

where i is 0, 1, 2 and U, 6 S,, Us C 83 U S[ and Ug £ S^.

3rd collection. — All the vectors of the form FuJ^"^ or Fy^^"1^ where i
is 0 or 1, the set U, G S,, and V, G S^.
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Indeed, these collections contain at most 4A dim(K) vectors of K^ which is 4A dim(K)
dimensional. Also, for every U € a and 0 < k ^ N — 1 the variable Fu|^ appears at
most once in every row and column. Thus, from Lemma 5.5, for almost every choice
of Fu's, both of the above collections of vectors are linearly independent for every
choice of S^, S^. We can assume that the Fy we have chosen satisfy this property.

Assume that for 0 ^ H ^j < N - 4A, ?l, K' G (0, I],

(5.1) WiF^ + (i - W)!̂  = W)^-1 + (i - W)^.
Ifj > £ + 1 set

S o = { u e p : ^eu}, S i = { u e p : j / eu}
S o = { u e p : ^eu}, s ' i = { u e p : yeu}.

We now use property 2 in the statement of the Lemma which we have already proved
to deduce from (5.1) that the 3rd collection above is not linearly independent — a
contradiction. Similarly, we use the fact that the 2nd collection is linearly independent
to deduce that j = i + 1 is impossible.

There remains the casej'= £. In this case, the linear independence of the vectors
in the 1st collection shows that for any U 3 x

W = (̂ ')

for otherwise we again get a non trivial linear relation. Thus if we take some U such
that ^v{x) =t= 0, both x and y! are in this U. D

Lemma 5.7. — Let M be an even integer, and TZ:X —> R a Junction such that

{ x : n(Tx) f n(x) + 1 } H {x : n^x) f <T^) + 1 } = 0

for all 1 ^ k < 5M. Then for any x\ and x^ G X,, there is an 1 < r < 4M such that for
r ^ s ^ r + M/2 - 1 and i = 1, 2

(5.2) <T^) mod M = «T^) mod M) + s - r.

Remark. — Notice that the mod operation in the right hand side of (5.2) is
performed before adding s — r. Hence, in particular, this implies that

n{Txi)modM^M/2+ 1.

Proof. — By the condition on N there is (for i = 1, 2) at most one j} such that

n^x,)^ <P^)+1.

We extend this to the case that j} is undefined by setting ji = — 1.
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At least one of the intervals

{0,. . . , minQ'iJz)- 1},
{ """C;i ,J2) + 1, ..., maxO'i ,j2) - 1 }, or
{max(j i j2)+l , . . . ,9M/2-l}

is of size 3M/2 - 1. We denote this interval as {a, ..., b}. There are now two cases:
• If there is no^'e {b -M/2 + 1, ..., b} such that w(T^)modM e [M- 1, M) for

either i = 1 or 2, then we can take r = b - M/2 + 1.
• If there is j <E {b - M/2 + 1, ..., b} such that (for example) ra(T-'^)modM e

[M - 1, M) then either r=j-M+ I or r =j - M/2 + 1 will work. D
The following lemma finishes the proof of Theorem 5.1.

Lemma 5.8. — 7/'mdim(X) < dim(K)/36, then for any open cover a of'X the set ̂
is dense in C(X, K).

Proof. — Assume/ € C(X, K) and e > 0 are given. Let P be an open cover of X
fine enough so that diam(7(U)) < e/2 for every U € p and such that mesh(p) < 5(a).
Let e' > 0 be chosen so that 36(1 + £')mdim(X) < dim(K).

Choose N so large that

^(P^) < N mdim(X)(l + e')

and

Nfl-SGO+e^"11^^!
V v / dim(K) ; ̂  •

We take p' > p^~1 to be an open cover of X with ord(P') = Q^{^~\ Let
M be a positive even integer roughly proportional to N which we will fix later,
A = \ord{y)/d}m(K)]. For every U € ?' fix some pu € U, and set

^ = (7(pv), 7(Tj&u),.... /(T^A;)).

We now construct a function F:X —> K^ using Lemma 5.6, for the cover P' and the
parameters A and e/2.

From this function F we now construct an/:X —>• R as follows. Use Lemma 3.3
to find an n: X —> R such that

{ x : n(Tx) ̂  n(x) + 1 } n {x : n^x) ̂  n^x) + 1 } = 0

for all 1 ^ k ̂  100N. Set n(x} = [n{x}\ modM, ~n(x) = \n{x)\ modM, and n\x) = {n{x)}.
Now define f by

(5.3) j[x} = (1 - ̂ ))F(T-'̂ )L + n'{x)F(T-^x}\,,.
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It is rather straightforward to see that/is continuous and sup^^ ll/W —7(^)11 < ̂  and
as we have given a detailed proof of the analogous claim in the proof of Theorem 4.7,
we omit the details.

It remains to be shown that/C J^.
Suppose that If(x) = ly(x'). We will show that ifM has been defined properly this

implies that there is an U G P such that both x and y! € U, and so using Lemma 5.4
If >- a, which establishes the claim.

Let C be an integer that will also be determined later. By Lemma 5.7 there
are r and s satisfying C ^ r < j ^ G + 9M/2 such that s - r > M/2 - 10 and for any
r ^ j ^ s

n(Tx) mod M = (n{Tx) mod M) +j - r
<P^) mod M = (n{Tx) mod M) +j - r,

so if we take ^ = n^Tx), a = TZ(T^) and b = a + s - r - 1

i^« = (i - ̂ Ffr-^-1 + ̂ (T—^I^ ,
and a similar equation holds for ^, with parameters 67, ^/ and A/'. As long as
(5.4) 6 - ̂  4A,

we can use property 3 in Lemma 5.6 to find a U G ?' >- R^"1 so that both x,
y! € T-^U. We know that 0 ^ a < M/2 + 10, and C ^ r ^ G + 4M + 10 hence
G - M/2 - 10 ^ r - a ^ C + 4M + 20. Now, since U € P7 > P^~1 there is some
U' G P^~1 such that
/C c\ •-r—r+a-TT ^- rj^—r+ajrf ^- •-r—r+aQN—1 _ r»N—l+y-—fl QN+G—M/2—10
\^9^) 1 ^ ( - ! U e i Po - \^r-a >~ PC+4M+20

If we choose G and M so that

(5.6) G + 4 M + 2 0 ^ 0 ^ N + G - M/2 - 10,
then (5.5) implies that there will be a V e P containing both x and xf.

It only remains to find adequate M and C. Since b — a ^ M/2 — 10 and

A = forcD/ dim(K)1 ^ N1^111 !̂ + £') + 1,
dim(JY)

the inequality (5.4) will be satisfied if

(5.7) M/Z^O^N1"^!^)
dim(rL)

and we can find G that satisfies (5.6) if N ^ 9M/2 + 30. Use (5.7) (with equality sign
instead of >) to define M. Then in order to satisfy the second inequality it suffices that

N^GN^^a+eQ+lOOO
dim(K)

and this is satisfied when 36(1 + e7)———— < 1 and N is big enough. D
dim(IC)
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6. SOME THEOREMS REGARDING SYSTEMS WITH mdim(X) = 0

In this section, we consider zero mean dimensional extensions of minimal
dynamical systems. We recall that in Lindenstrauss and Weiss (1999) we have seen
that the collection of systems (X, T) with zero mean dimension is rather rich, and
contains all dynamical systems with finite topological entropy, all dynamical systems for
which X has finite topological dimension and all uniquely ergodic systems.

The basic tool in investigating these systems is the notion of uniformly small sets,
which we defined in §3.

Definition 6.1. — A dynamical system (X, T) has the small-boundary property (SBP)
if for every point x € X and every open U 3 x there is a neighborhood V C U of x with uniformly
small boundary.

Our first structure theorem on systems with mdim(X) = 0 is the following:

Theorem 6.2. — 7^(X, T) is an extension of a minimal system with mdim(X) = 0 then
(X, T) has the SBP.

We note that as shown in Lindenstrauss and Weiss (1999), §5 the converse is
also true — any dynamical system with the SBP must have zero mean dimension.

Just as in the previous proofs, we shall use the Baire Category Theorem to prove
this result. Again, we can find an analogy to the proof of a standard result in dimension
theory. Recall that there are two standard definitions of topological dimension: one
using covers, the so-called Lebesgue cover dimension, and an inductive definition. Our
proof is similar to the harder direction in the proof that the Lebesgue cover dimension
is the same as the inductive dimension (Hurewicz and Wallman (1941), Theorem V5).

Indeed, this is not so surprising, since our definition of mean dimension is based
on the definition of the Lebesgue cover dimension, and the SBP is similar to the
inductive definition of zero dimension — a space has zero topological dimension if for
every point x € X and every open U 3 x there is a neighborhood V C U of x with
empty boundary.

Our basic strategy is to consider for/G G(X, [0, 1]) the image I/(X) C [0, I]7'
which we know is isomorphic to (X, T) for a dense Ga subset of functions in
C(X, [0, 1]). A natural countable basis for the topology of [0, I]7 consists of the
cylinder sets

G^_, , . . . ,A;?_, , . . . ,^)={^€ [0, I]7: V - ^ ^ / z ^ C ^ , ^ ) } ,

for all 72 € N and rational j&_^, ..., pn, q-n, ...5 qn' The intersection of these sets with
I(/)(X) form a basis G^_,, ...,pn\q-n. ..., qn) for the topology of I(/)(X). We show
that for a dense G§ set of/'s, the boundary (in I/(X)) of G^-^, ...,pn;q-n, ..., qn) is
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uniformly small (as subsets of the dynamical system (I/(X), o)). If, in addition, ly- is an
embedding of X in K2, then this gives us a basis for the topology of X with uniformly
small boundaries, hence X has the SEP. To show that 9C"(^, ...,j^;y_,, ..., ^) is
small for all n and p^ q, € Q it is clearly sufficient to show that for any t G [0,1]
(hence also for all q G Q), for a dense G§ set of/'s

(6.1) l^n^ep),!^: x o = t } ^ { x ^ x : f{x)=t}
is uniformly small. Thus the main part of the proof is to show that indeed, the set in
(6.1) is uniformly small for a generic^

We will again use the notation N for the set { 0, ..., N — 1 }.

Lemma 6.3. — Let E C X be closed, e > 0 arbitrary. Then there is an open U D E such
that

ocap(U) ^ ocap(E) + £

Proof. — Let N be large enough so that for all x € X

& IE(T^) ,
———^——— < ocap(E) + e.

What this means is that the intersection of every N' = |_N(ocap(E) + e)J + 1 sets from
the collection

{T-^E: 0 ^ < N }

is empty. Let

p(^)=min^<r^E).
ICN z'ei\W ^L

This function is strictly positive and continuous, and so there is some 8 > 0 such that
p(x) > 5 for all X. Set

U={^-^,E)<^}.

If there was an I C N with |I| ^ N' such that [J^T-V ^ 0, we would take
x G Uzel T^U, and then for all i G I we would have rf(T^, E) < §/N'. Summing
over i £ I we would get p(x) < 8, a contradiction. Thus

E^o1 lu(T^)
sup ~"° _ _ — - < N(ocap(E) + e)
xex M
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and since sup^^^^o lu(T^) is sub-additive in n

/-^ • r S5)1 IU(T^)ocap(U) = mfsup ——————— < ocap(E) + £.
r(=V 72^ex ^

D

Lemma 6.4. — Z^ (X, T) be any dynamical system, t G [0, 1]. TA^ set of functions
y:X —^ [0^ 1] such that the set {x G X : f (x) = t} is uniformly small is a G^ subset of
G(X, [0, 1]).

Proof — First note that

F 1 °°
(6.2) {f : {f(x) = t} is small J = f^/ : ocap({^: /(^) = (}) < !/«}.(x}=t\ is small ^ = f ]{/ : ocap({ x : f(x) = (}) < \fn\

n=\w== 1

The sets {^ : ocap({^ : y(^) = <}) < !/«} are open. Indeed, suppose that for some
/€ G(X, [0, 1]) the set

E : = { x : f(x)=t}

has ocap(E) < l /n . Use Lemma 6.3 to find a U D E that is open with ocap(U) < \/n.
Let

8= min \f(x) - t\ > 0.
^€X\U

For anyy with sup^. |y(^) ""y^)! < §? we see that

{ x : 7{x)=t}cU

hence ocap({^ : J(x) = t}) < l/n. D
We recall that if v C [0, 1]̂  we use the notation v\k to designate the A;'th

coordinate of v, where the coordinates of v are numbered between 0 and N — 1.
The following lemma is quite similar in many respects to Lemma 5.6, and is

used in a similar way.

Lemma 6.5. — Let P be a cover ofK with ord(P) < A. Suppose we are given a t G [Oy 1]
an^ for every U € P ,̂ a point pu C U and a point v^ C [0, 1]^ Then it is possible to find a
continuous function F :X—^ [0, l]1^ with the following properties:

1. ||(F^u)-^u)|, <^forallk=0, .., M- l .
2. For all x C X, F(^) C co(F(^u) : x € U G P).
3. For ^y^ x € X^ yzo mor^ ^/z A o/'^ coordinates ofF(x) are equal to t.
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Proof. — Let {^\](x) }uep be a partition of unity subordinate to ? — we recall
that this means that each (|>u belongs to C(^y [0, 1]), that

^ ̂ {x) = 1 for all x C X
ucp

and supp ((|)u) C U, and we again assume that (])u(^u) = 1 for all U € P. We choose for
every U G P a value Fu C K^ such that

||(Fu-^u)L| <e for / ;=( ) , . . , M - 1 ,

and define F to be

F(A:) = ]>>u^Fu.
uep

The function F clearly satisfies the first two conditions of the Lemma.
We now show that for almost every choice of values Fu, this function also satisfies

the third condition. Each point in F(X) is contained in a at most A-dimensional affine
subspace of RM spanned by at most A + 1 of the vectors Fu. Generically each one of
these subspaces will not intersect any of the (M — A — l)-dimensional subspaces

{ v € R^Vz G I v,= t} where I C { 0, ..., M - 1 } with |I| ^ A + 1.

D

Lemma 6.6. — If (VLyT) is an extension of a minimal system with mdim(X) = 0, then
for any e > 0 the sets

{/ :ocap({^: f(x)=t})<e}

are dense in C(X^ [0, 1]).

Proof. — Let^ ^ G(X; [0, 1]) and £ > 0 be arbitrary. We show there is an/such
that the orbit capacity of {x : f{x) = t} is less than e, and such that f is within e of
J . Take a to be a cover such that

diam/(U) < e/2 for all U C a.

Let M be large enough so that ^(a^"1) < eM/4, and let P >- oc^"1 be such that

ord(P) = ^(o^-1).

Pick for every U, a point p^ G U and set

^-(/^./(TAj),...^^-1^)).
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Let F:X -^ [0, 1̂  be a function as in Lemma 6.5 for P, e/2, A = Me/4, j&u, v^
and t.

Find a level function n:X -^ R (using Corollary 3.4) so that the set E defined
by

E = {x : n(x) ̂  Z or n^x) ^ n(x) + 1 }

satisfies ocap(E) < e/4M, and let n{x) = [n(x)\ modM, n(x) = f^)]modM, and
n'(x) = {n(x)}. Define/€ C(X, [0, 1]) by

f{x) = (1 - ̂ (^F^-^^l^ + ̂ (T-^) ^)-

Now, as in Theorem 4.7 and Lemma 5.8, it is easy to see that properties 1-2 (in
the statement of Lemma 6.5) of F imply that

SUP \f(x) -7(^)1 <£.
x^X

It remains to verify that ocap({^ : f(x) = t}} < £. Take N ^ lOOM/e so that for
every x C X

^(rx)<^-
We show that for all x G X,

(°) ^EW<<£,
1 ' z=0

proving the lemma. Let

T ^ f ° ^^' ̂  N - M : <P^)modM = 0 and 1
J t n^x) = n{Tx) + k for k = 1, .... M - 1 J •

Two things are clear: first, for every j and/ G j the distance \j-j/\ > M. Second,
from the condition on the function /z(-),

U + M | > N - M - eN/4 > (1 - e/2)N.

Now for every j Cj, by the third property of F from Lemma 6.5, t can appear at most
A = eM/4 times in the finite sequence

/(T^),/^^),...,/^™-1^.

Hence the number of times t can appear in

/(^/(T^, ..../(T )̂
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is at most

NeM £N| j | (eM/4)+|N\(J+M)|^^+^<£N

which is exactly what is required in equation (6.3). D
The proof of Theorem 6.2 is now straightforward:

Proof of Theorem 6.2. — Let (X, T) be an extension of a minimal system with
mdim(X) = 0. By Theorem 5.1, for a dense Ga set of/€ G(X, [0, 1]) the map ly
is an embedding. By Lemmas 6.4 and 6.63 for every t (E Q,n (0, I), for a dense Ga
set of^G C(X, [0, 1]) the subset {XQ = t} nly(X) is small. Hence there is an f such
that If is an embedding, and such that for every t € Qft (0, 1), and every z, the set
{ Xt; = t} D I/- (X) is small. As finite intersections of the sets

{ x e ! f ( X ) : t < x , < s }

for i G Z, and ,̂ s G Q, form a basis for the topology of ly- (X) ^ X we are done. D
We now present applications of this result. In Lindenstrauss (1995), section 4,

the SBP property is used to construct small entropy factors. The argument, at least in
the case we are most interested in where there are no periodic points, is also given
(somewhat implicitly) in Shub and Weiss (1991). We can summarize the result we need
from Lindenstrauss (1995), section 4, in the following theorem:

Theorem 6.7 (Shub and Weiss (1991), Lindenstrauss (1995)). — ^(X,T) has the
SBP, then for any a =|= b C X and e > 0 there is a factor map ^ such that Atop(<l>(X)) < £ and
W f ^).

One important observation used in the proof is the following lemma that is
needed to relate our definition of the SBP to the discussion in Lindenstrauss (1995),
section 4.

Lemma 6.8. — If(X, T) has the SBP, then for any open sets U, U' C X with U C U',
there is an open U C V C U' with ocap(<9V) = 0.

Proof. — By the SBP, for any x G 9V there is an open set V^ C U' with 9V^
uniformly small (i.e. ocap(c)V^) = 0). A finite number of these, say V^, ..., Vx^ suffice
to cover 9V. Set

N

v=Jv^uu.

Then 9V C U^i 9V^-, and so as the finite union of uniformly small sets is easily seen
to be uniformly small. D
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Rough sketch of Proof of Theorem 6,7. — We only treat the simpler case that a and
b are non-periodic. In this case, using Lemma 6.8, and Lemma 6.3, one can construct
a countable collection of sets

^ = { U i , U 2 , . . . }

such that
• ^ e U i , ^u7,
• for every U C W and every open V D 9V, there is V € W with 9V C V C V,
• ocapLJ^ —-» 0 arbitrarily fast.
We define an equivalence relation ~ on X as follows:

x r^y 4=^ \fn e Z and U € ^, IT-"U^) = ^-"uM-

One needs to verify that ^ is a closed equivalence relation — that is

{(x,y)\ x ^ y }

is a closed subset of X X X. In this case, X/~ can be given in a natural way a nice
topology, such that the map x ^—> x / ^ is continuous (we note that in Lindenstrauss
(1995), p. 248, the definition of the quotient topology is faulty; however, this is used
nowhere in that paper). Notice also that a 9^ b. Since in addition ~ is T-invariant, i.e.
Tx ~ Ty if and only if x ~jy, it is possible to define a continuous T: X/~ —> X/~ so
that (X/ - , T) is a factor of (X, T).

Finally, one needs to estimate Atop(X/ ~). For any U 6 ^, define ̂ j C { 0 , 1 }z

by

y^ = {(..., iu(T-^), luM, lu(T^),...): x e x}
(where the closure is taken according to the usual product topology on { 0 , 1 }2), and
take a to be the shift operation on { 0 , 1 }z. One bounds Atop(X/ ^ , T) by showing

^op(X/-,T)^]>>op(^u^).
i

The sum on the right-hand side can be made arbitrarily small if the ocap(U;) are very
small and tend very rapidly to zero. D

Corollary 6.9. — If (X^ T) is an extension of a minimal system with mdim(X) = 0 then
for any two distinct points a, b G X and e > 0 there is a factor map ^ such that Atop((|>(X)) < £
and ^(a) ^ ^)(A).

This Corollary has a rather strong converse, which is our next aim. Before stating
it, we first prove some auxiliary results.
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Definition 6.10. — Let (X,, T,) for i = 1, 2, ... be a sequence of dynamical systems, and
assume that for every i >j ̂  1 we have a factor map n(ij): X, —> X^ with n(j, k)on{i,j) = n(i, K)
for every i >j > k. The inverse limit lim(X^ T,) is a dynamical system (X, T) defined as follows:

X= {(x^x^, ...) : Xi e X, and n{i,j)Xi = xj },

with the topology inherited from Xi x Xs x ... and T:X —> X is simply

T:(^i, ^2, ...) ̂  (Ti(^i), T^), ...).

A A A
Notice that if all (X,, T,) are factors of some (X, T) with factor maps (|)(z): X -> X,

such that for i >j

^J)0(^)=^),

then lim(X^ T^) is also a factor of (X, T).

Proposition 6.11. — ^(X,, T,) ar^ dynamical systems with mdim(X,) = Q for all i, and
T^(iyj) are as above, then

mdim(limX,) = 0.

Proof. — Let

(X,T)=Hm(X,,T,),

and take to a be a finite open cover of X C Xi x Xs x .... Then a has a refinement
a' of the form

a'^V^71^)).^(
i=\

where a(i) is an open cover of X, and n € N. Then for large enough N,

^(<-') ^(V^o^r')
N " N

v^(a(C"')
^ N

< Y^ mdim(X^) + e = e.

D
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Proposition 6.12. — Let (X^ T) be a dynamical system. Then X has a universal
zero mean dimensional factor, i.e. a factor (Y, S) with factor map ^: X —> Y such that
mdim(Y) = 0, and such that for any factor map \|/:X —> Z with mdim(Z) = 0 there is a factor
map \|/ : Y —> Z J^A ^A^ \y = \|/ o <|).

Proof. — For any factor map \|/z : X —^ Z with mdim(Z) = 0 denote

N(Vz) = {(^): ¥z(^) + Vz^)} C X x X.

As N(\|/z) is open, we can find a sequence Z^ such that

U N(vz)=ljN(¥z,).
mdim(Z)=0 i= 1

Take

W = ¥zi x Vz2 x ... ¥z,
Y. = (̂ )(X)

and for i >j, let 7c(i,j):Y, ^- Y^ be the projection on the first j coordinates. Now take

Y=lim(Y,)

which is also a factor of (X, T). By equation (2.2) we cited from Lindenstrauss and
Weiss (1999), mdim(Y,) = 0 for all i, and so mdim(Y) = 0. It is easy to see that Y has
the required universality property. D

The universality of the above factor implies the following result, which can be
regarded as a strong converse to Corollary 6.9.

Theorem 6.13. — Let (X^, T) be any dynamical system, x,j/GX. If there is a finite entropy
factor map o/^X that distinguishes between x and y then the images of x and y in the universal ^ero
mean dimensional factor o/^X are distinct.

Remark. — For minimal systems, the universal zero mean dimensional factor will
also be minimal, and so in this case any two point of X that project to distinct points
in the universal zero mean dimensional factor can be distinguished by factors with
arbitrarily small entropy.

We conclude this section by two interesting observation.

Proposition 6.14. — ^(X, T) is an extension of u minimal system, then X is the inverse
limit of systems with finite entropy if and only ^mdim(X) = 0.

Proof. — Suppose mdim(X) = 0. Since we know that finite entropy factor maps
ofX separate points, we can take the Z^ in the proof of Proposition 6.12 to be finite
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entropy factors of (X, T), and then the resulting factor Y will be the inverse limit of
finite entropy systems. However, since mdim(X) = 0, from the universality property of
Y, the factor transformation X —> X factors through Y, so Y ̂  X.

The converse follows from Lemma 6.11. D
Recall the definition of S(X, £, d) used to define mdim^(X, d) in Section 4:

S(X, £, d) = lim - inf log |a|.
°̂° n mesh(OC, ^-^E

If mdim(X) > 0, then for all metrics d on X, we know that S(X, e, d) is eventually
bigger than (mdim(X)—o(l))| loge|. One might ask whether lower rates of increase are
possible. For extensions of minimal systems, there is a clear dichotomy:

Corollary 6.15. — Suppose (X, T) is an extension of a minimal system. 7^mdim(X) = 0,
then for any monotone function ^'.{0, 1) —> R+ with (|)(e) — ^ o o a s e — > 0 , there is a metric d
such that

Ita^-^^O.
£-0 <K£)

If mdim(X) > 0, then for all metrics d

linig^o—i—?—L— ^ mdim(X).
"- |log£|

Proof. — We only need to prove the first part, as the second one is a restatement
of the fact that mdim^(X, d) ^ mdim(X) for all metrics d.

If mdim(X) = 0, then we know that X = lim^ooX^ with Atop(X^) < oo for every i.
By definition of inverse limits, we have factor maps n(i): X —> X^- and, for i > jy
7i(i,j):X^ —^ X^. Let d^ be a metric on X^, then d^(n(i)x, Tl(i]y) is a semi-metric on X,
which we will denote by d^. We can assume that d^{x,j)i) ^ 1 for every ^, y and i. Set
^ i = l , and choose inductively, for k > 1, a^ < ̂ -i/2 such that

(6.4) <K4^) > ^op(X,).

We now take D to be the metric
00

H^J^Z^M^^)
^=1

on X. We will denote by D(^ the semi-metric

k

D(^(^) = ̂ z4)(^).
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This semi-metric D(^) can be identified with the metric D(^) on X^; defined by

k

^W^) = ̂ a^{n(k, i)x, n(k, i]y).
2=1

Let £ > 0 be given. We claim that

S(X,£,rf)^op(X,),

where k is the smallest integer such that

(6.5) f^a.<e/2.
i=k+\

Indeed, any open cover a of X.with mesh(a, D(^~ ) < £/2, satisfies mesh(a, D[^ ) < £.
Thus

S(X, £ , r f ) ^ S(X,, £/2, G(,)) ^ A,op(X,).

Since A; is the smallest integer such that inequality (6.5) holds,
00

2^^^^ ^£/2,
i=k

hence (|)(4^) ^ ())(£). Using (6.4), we conclude that ^top(X^) ^ (|)(£), or

S(X,e^ ^^ 1^ ^
<))(£) " <))(e) "/;

D
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