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REMINISCENCES ON SCIENCE AT IHÉS
A PROBLEM ON HOMOCLINIC THEORYAND A BRIEF REVIEW

by GIOVANNI M. GALLAVOTTI

Abstract. - On the occasion of the 40-th anniversary of IHÉS I present a few scientific
reminiscences: most of my scientific life has been marked by my visits and I run through them concluding
with the analysis ofa problem that originated during my last visit. The problem is to develop a convergent
perturbative algorithm for the construction of ’’Eliasson ’s potential "for the stable and unstable manifolds
of an invariant torus: and to study its properties. A brief reviewfollows.

1. Reminiscences

In 19661 came to IHÉS as a young "professor": I was in factjust a Ph.D. student, by all
standards. On the recommendation of Sergio Doplicher I was taken in the group of Ph.D.’s
of Daniel Kastler. Of course I was fully aware of "being out of place": no time, however, was
spent on this fact and soon I was eagerly working with Salvador Miracle-Solé on problems
posed by David Ruelle. He went away for a few weeks and we met all possible difficulties
so that we decided to write down the details of a proof that the problem given to us was
not soluble: to realize, when the proof was complete, that we had in fact solved it. This
was extending to many body interactions the Kirkwood-Salsburg equations (also known as
"cluster expansion") for lattice system: it was a tremendous encouragement. It was for me
the opening of a new world; that of perturbation theory: suddenly we had in our hands a
most powerful instrument. We began using it to prove, with Dereck Robinson, that the Ising
model had no phase transitions at high temperature, uniformly in the density (1). At about
the same time Jean Lascoux arrived with several papers from the Russian school; we saw that
our work made them transparent to us and we could explain them around: in particular
the work of Minlos and Sinai on phase coexistence appeared as a great achievement and
as proof of the flexibility of perturbation theory which could even yield the analysis of the
deep two-phase region. I kept thinking to the matter until, quite a few years later, 1 could

(1) We realized later that Dobrushin had preceded us.
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understand the theory of the fluctuations of the interface in the 2-dimensional Ising model
at low temperature.

Leaving IHÉS in 1968 (1 mean after May) 1 had met so many people (for instance Joel
Lebowitz) and absorbed so many ideas and techniques that 1 was mature enough to pose
problems without the help of Ruelle or of my collaborator and close friend Miracle-Solé.

Saying farewell to Ruelle 1 saw on his blackboard (that he kept as black and powderless as a
blackboard can possibly be until, much later, he gave it up, inexplicably) the Navier-Stokes

equations: that he commented by stating that he was abandoning statistical mechanics for
fluid mechanics "that seemed more interesting".

1 brought along my copy of the fluids ofLandau-Lifschitz and a few days later, in the US,
1 started studying it as 1 was sure 1 would soon need it. Even though 1 was discouraged by the
difficulties (very transparent in spite of the book style which presents every problem as simple
and as completely solved) 1 kept following Ruelle’s work getting updates on the occasions

of my frequent visits to IHÉS. Until, in 1973,1 suddenly realized and was fascinated by his

proposal of the existence of a probability distribution associated with chaotic motions in a

conceptual generality comparable to the one, familiar in equilibrium statistical mechanics, of
the Boltzmann-Gibbs distribution: this was, in myview, a development much more significant
than the (timely and necessary) critique of Landau’s Ptolemaic theory of fluid mechanics
(1) stemming out of the Ruelle-Takens paper.

Ruelle’s viewpoint on strange attractors made them simple objects via the Markov

partitions and Sinai’s theory of Anosov systems. But 1 could not go further: nevertheless the

problem ("how to obtain some directly observable consequences" from Ruelle’s principle)
remained hunting me and 1 thought that it was the right approach and kept lecturing on the

subject every year since, while attempting even some numerical experiments (2) but mostly
following other people’s experiments.

In the meantime I tried to understand Quantum Field Theory (I had cultivated the

feeling of a deep connection between renormalization theory and the Kirkwood Salsburg
equations since the work with Miracle-Solé) : in one of my visits to IHÉS 1 had met Francesco
Guerra and in a few words, explaining his own basic work on Nelson’s approach, he managed
to make suddenly clear what 1 considered until then impenetrable (the works of Nelson and
of Glimmjaffe and renormalization theory). So 1 started thinking to the matter and, also
after a memorable lecture of Eckmann on the use of the cluster expansion in field theory, 1
was able to see the connection between the renormalization group of Wilson, constructive

field theory and the cluster expansion developing a new interpretation of the mathematical
works done until then in 2 and 3 dimensional field theory. 1 exposed the results at IHÉS

(1) Unfortunately Ptolemy has become the villain of science: I do not share at all this superficial conception
and I consider his work as great as possible. Hence a Ptolemaic theory is very respectable in itself and one needs
work to criticize it, if at all possible.

(2) Learning programming on an archeological computer located in a little room of IHÉS, which had
a marvelous object, a plotter, linked to it: if Oscar Lanford, then a member of IHÉS, considered numerical
investigation of chaotic motions worth of devoting time to it then 1 should know too.
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with several people around (there by chance, because Gelfand and Sinai were visiting also)
and I will never forget Niko Kuiper calling me in the Director’s office and telling me that my
talk had been successful: the first time 1 had been in that office was when Léon Motchane, a
few months after my arrival and a few days after completing the first paper with Miracle-Solé
(before the KS-equations), told me that I was given a 15% raise in my salary.

After the work in field theory 1 kept visiting regularly IHÉS where 1 was attracted
also by the new young member Jürg Frôhlich: the policy of IHÉS started by Motchane of
hiring young people at the highest rank ("member"), in spite of the obvious risks, is in my
view what made the place so exceptional and so interesting and productive. But 1 was never
able to collaborate with Frôhlich. Instead 1 worked with Henri Epstein in spite of the age
difference: together with Pierre Collet we studied smooth conjugacy between flows on a
surface of constant negative curvature stimulated by opinions by other visitors that what we
wanted to do was "proved" to be impossible. The effervescent atmosphere around Dennis
Sullivan always frightened me: his synthetic and powerful approach was in a way opposite
to my nature. But of course I was among those who were impressed and attracted by his
view on the theory of interval maps and Feigenbaum’s theory and tried (without success) to
imitate it in the theory of the tori breakdown in conservative systems: a subject into which
I was drawn by Joel Lebowitz’ request, while we were both at IHÉS, to explain in a talk the
KAM theory that I had boasted, in refereeing a paper for him, to have understood from
Arnold’s celestial mechanics paper (the seminar took place a few days later at the École
Polytechnique) .

A long gap in my visits followed: which more or less coincided with a period in which
1 did not really work on new problems but looked at consequences of previous ones. I kept
nevertheless thinking to the old questions and in my next long visit, in 1993, 1 was ready to
attack a problem that E. G. D. Cohen (also a visitor at the time) proposed me to jointly work
out the connection between the experiments and theoretical ideas that he and his coworkers
had been developing, in parallel with the works of Hoover and coworkers, on nonequilibrium
statistical mechanics. Two exciting years followed: irtretrospect all that could have been done
in one afternoon; but for us it was very hard work and at the end of the two years we could
make a precise proposal (the "chaotic hypothesis") for the application of Ruelle’s principle
to some simple but concrete dynamical problems. My last visit to IHÉS was in 1997: 1 went
there with bellicose projects to continue working on nonequilibrium statistical mechanics.
But as usual I was taken away by other intervening projects (1) which ended having to do
with the theory of homoclinic orbits and the transversality of their intersections: for this
reason, although this is not a problem of the same size of the previously mentioned ones, I
will devote to it the technical part of this note. I am sure that, as all problems that 1 started
at IHÉS, this too will be fruitful and linked tightly with the previous works on the cluster
expansion.

( 1 ) One was not a project but nevertheless took a lot of time: understanding the basics of Linux.
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1 also must remember here Mme Annie Rolland-Motchane: she, the first general
secretary to IHÉS, clearly shared the merit of conceiving the structure of IHÉS and of
making it work.

It is a structure that during the last 33 years always made me feel that IHÉS was an ideal
place as a source of inspiration and of systematic work and it has been for me a privilege to
be able to work there. 1 took this literally, as privileges must be earned: 1 was so absorbed in
my work, taking up most of the nights (the day being reserved to wandering around trying
to get the most out of the people present, with a few trips to the small library just to remind
myself that even though it was small it was still completely full of things that I ignored) : to
the point that I could always manage avoiding the frustration due to my feeling of being
there out of place among colleagues far more knowledgeable than I could possibly hope
to be.

2. Homoclinic intersections in Hamiltonian systems. A "field theoretic" approach

Consider a Hamiltonian system:

where 03C9 = (03C91, 03C92) ER, A = (Al,A2) e R2, a = (al, a2) ET, 1 e R, (p e Tl and
f(03B1 , (p) is an even analytic function of the angles a, (p which is a trigonometric polynomial
in (p; its analyticity domain is supposed to be 1 Im ail  03BE. Therefore (2.1) represents a quasi-
periodically forced pendulum.

What follows can be easily extended to the system obtained from (2.1) by adding to

it A, A) where J is a positive diagonal matrix. The case (2.1) is the limiting case as

J ~ +00 of the latter extension. The more general model is called anisochronous or Thirrings
model as its peculiar properties were pointed out by Thirring, [T].

Supposing that M verifies a Diophantine property |03C9·03BD|&#x3E;C-1|03BD|-1 for all v E Z2
integer components nonzero vectors, it follows that for E small enough and for each Ao
there is an invariant torus 7(Ao) which has equations parameterized by y E T2 of the
form A = Ao + H (y), a = B)/ + h (y), 1 = R(03C8),~ = S(y). The motion on T(Ao) is
03C8 ~ B)/ + 03C9t, the average of H over B(/ (hence over time) vanishes and h (03C8) is odd.

Hence we have a natural parameterization of the invariant tori by the (time) average
value A o of their action variables. In the more general Thirring’s model there is also a
relation between the rotation vector M o on an invariant torus and the (time) average action

Ao of the motion on it: namely 03C90 = 03C9 + J-1 A0 (this is a remarkable property which

prompted the appellative of "twistless" for such invariant tori).
Let E(A0) be the energy of the motions on the invariant torus 7(Ao). The torus

T(A0) is unstable and its stable and unstable manifolds Wu(A0),Ws(A0) will consist of
points with the same energy E(Ao); the intersection of Wa(A0), a = u, s, with the plane
(p = 7T and with the energy surface H = E(Ao) consists of points that can be denoted as:
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X(03B1) = (03C0, 03B1, I03B1(03B1), Aa(03B1)), fora= u, s and a e T2. In general we denote a point in
phase space X = ((p, a, I, A ).

Therefore on the 4-dimensional "section" (p = 03C0, H = E(Ao) the manifolds have
dimension 2. The vector Q(03B1) = A/s03B1) - Au(03B1) defines the splitting. It has been

remarked by Eliasson that the vector Q ( a ) is a gradient: this means that there is a function
0(a) such that Q(03B1) = ~03B103A6(03B1). I will call 03A6(03B1) the Eliasson’s potential.

Hence, since a varies on T2, there will be at least one point oc 0 where Q ( 03B10) = 0.
The corresponding point X(03B10) will be, of course, homoclinic, i.e. common to both

manifolds. In the case at hand the parity properties of f imply that (X 0 = 0 is one such

point, see for instance [G3].
It follows from the general theory of the tori T( Ao), due to Graff, which is very close

to KAM theory (particularly easy in the case (2.1), see for instance [G2]; see §5 of [CG] for
the general anisochronous case), that the function 03A6(03B1) is analytic in E for E small, and
such are the functions Aa(03B1), Ia(03B1), for a = u, s.

Therefore we must be able to find the coefficients of their power series expansion in E:
in fact the expansion of Aa(03B1),Ia(03B1) has been thoroughly discussed in all details in [G3],
in the case of a polynomial f. It would be easy to derive from it the expansion for 03A6 ( 03B1).

However here, §3, I will give a self contained exposition which leads to the expansion
for 0( (X ) borrowing from [G3] only a few algebraic identities that it would be pointless to
prove again. And 1 will dedicate §4 to a brief review of the results that are known (to me)
on the matter or that can be easily derived from existing papers (which usually do not deal
with Eliasson’s potential but rather with its gradient). A conjecture will be formulated at the
end of this work.

The expansion below is the best tool, to my knowledge, to achieve a unified proof of
various theorems dealing with the homoclinic splitting. the latter will be defined here as the
Hessian déterminant A of 03A6 ( oc) evaluated at the homoclinic point at a = 0 (in our case).
Evaluation of the latter determinant was begun by Melnikov who gave a complete solution
(in spite of claims in other directions) in the "simple" case in which M is regarded as fixed.
The quasi-periodic case was treated in the spirit of the present work, i.e. with attention
to the Arnold diffusion problem, in [HM] (together with the important realization of the
usefulness of improper integrations analysis).

Considerable interest has been dedicated to the problem by various authors. The
results are not easily comparable as every author seems to give his own definition of splitting:
the most remarkable results have been developed in the Russian school approach (based
on the key works of Melnikov, Neishtadt, Lazutkin, [Ge] ). And sometimes it has even been
difficult to realize that some papers were just plainly incorrect (like the result in §10 of
[CG] ) .

The interest of the above definition is its direct relation with the problem of

showing the existence of heteroclinic strings, i.e. sequences of tori 7-(Ai) such that

Wu(Ai) ~ Ws (Ai+1) ~ 0. Given a curve f ~ A(~), with T(A(f» being equienergetic
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tori (i.e. such that M ’ A (~) = const in the simple case (2.1), as one realizes from symmetry
considérations), and calling Aa(03B1,~), a = u, s, the equations of the manifolds of T(A (~)),
one finds such a string if one can show that Au(03B1;~) - As(03B1;~’) = Q admits a solution
for f’ close enough to f. Therefore one has to apply the implicit functions theorem around
!! = 0 and f’ = f: the determinant of the Jacobian matrix controlling this problem is,
clearly, the splitting defined above. Hence proving that the splitting is nonzero implies the
existence of heteroclinic strings.

In the anisochronous case not all the A (f) are necessarily the average actions of
an invariant torus (because of the resonances always present when the rotation vectors do
depend on the actions) so that it becomes important to measure the size of the splitting
compared to the size of the "gaps" on the curve parameterized by f. Hence we need to know
quite well the dependence on M of the splitting and of the gaps and their relative sizes, see
[GGM2].

1 know of no paper in which the above definition of splitting is used in the case of
quasi-periodic forcing models, other than [HM] [CG] and the later [G3], [GGM1], [GGM2],
[GGM3] or the related [BCG] : I will not discuss the papers using other definitions.

3. Feynman’s graphs for Eliasson’s potential

We set Jo = 1 for simplicity. Let a = u, s and Xa (0) = (1t, 03B1, Ia(03B1), Aa(03B1)); and let
Xa(t) = (~a(03B1,t), a + 03C9t, la ( t), Aa(03B1,t) ) be the solution of the equations of motion for
(2.1): ~ = I, 03B1 = 03C9, i = -~~f0(~)-03B5~~f1(03B1,~), A = -03B5~03B1f1(03B1,~) where fo = g2cos~
and fl = /((X,(p). In the case 8=0 the stable and unstable manifolds of the torus with
(average) action A 0 coincide and the parametric equations of their stable and unstable
manifolds are at (p = 7t simply X = ((p = 7C, oc,I = -2g, A = Ao) and the motion are
X(0)(t) = (~0(t) = 4 arctg e-gt, a + w t, I (t) = -g2(1-cos~0(t)), A = Ao).

Hence if Xa ( a t) = X(0) (g t) +03B5Xa,(1) (03B1, t) +E2Xa, (2) (03B1, t) +... we can immediately
write the equations for X(k) = (~a, (k), 0, Ia, (k) A a, (k)), k  1, where the angle components
vanish identically because the equations for a are trivially solved by the order 0 solution. The
latter is a property of the isochrony of (2.1) and it does not hold in the anisochronous case,
which is however equally easy to treat, see [G3]. The equations are, dropping for simplicity
the label a:

and the functions Fo, F are deduced from the equations of motion; recalling that
fo = g2 cos ~ and fl = f ( a, ~):
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It is convenient to rewrite the above expressions in a more synthetic and symmetric form:

where of course in the second relation only the 03B4 = 1 term does not vanish.

Hence if W(t) (03C900(t)03C910(t) 03C901(t)03C911(t)) is the solution of the 2 x 2-matrix equation

W = L(t)W,W(0) = 1 we find (~(k)I(k)) = W(t)(X(k)(0)+t0W(03C4)-1( F(k)0(03C4) ) d03C4).
The matrix W(t) can be easily explicitly computed: the matrix elements are holomor-

phic for glIm tl  2 and woo, 03C910 tend to zero as t ~ ±~ as e-gltl while the other column
elements tend to oo as egltl. We shall only need the matrix elements "0, 03C901 which have a
simple pole at ±i03C0 2g. It is 03C900(t) = 1 cosh gt and zupl ( t) 29 (gt cosh gt + sinh gt) .

Since we need only (p(h), h = 1,..., k-1, to evaluate F(k) we spell out only the expressions
of ~(k) (t) and A(k) ( t) :

We want to determine, for each choice of oc, the initial data I(k) (0), A (k) (0) so that
the motion is asymptotically quasi periodic, because we want to impose that the motion
tends to the invariant torus T(A0). This means that the initial data must be determined in
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a different way depending on whether we impose this condition as t ~ +00 or as t ~ -~:
in the first instance we determine the stable manifold and in the second the unstable one.

This condition is imposed simply by requiring A(k)(0) = -03C3~0 F (k)(03C4)d03C4 where
03C3 = + ifwe impose the condition at t = +00 or 03C3 = - ifwe impose the condition at t = -~
and, likewise, I(k) (0) = - 03C3~0 03C900(03C4)F(k)0 (03C4) d03C4 provided the integrals converge. Therefore (3.4)
become:

and we have a simple recursion relation provided the integrals converge.
The above expressions however may involve non convergent integrals and eventually

they really do, in general. This has the consequence that (for instance) it is by no means
true that As, (k) ( t) 0 as the (3.5) would imply if the integrals were proper. Of course
there will be no ambiguity about the meaning of such improper integrals. The meaning is

uniquely determined simply by the requirement that the asymptotic form of (3.4) be a quasi
periodic function.

Since the functions in the integrands can always be written as series of functions of

the form 6x (03C3tg)j j!e-g03C303C4he03C9·03BD t for some X = 0, l,j, h, v with o = signï, it is easy to see that
the rule for the evaluation of the integrals of such function is simply that of introducing
a cut off factor e-Rcr’t with Re R large enough so that all the integrals converge, then one

performs the (now convergent) integrals and then one takes the residue at R = 0 of the
result: see §3 of [G3] for a more detailed discussion. To derive this rule one should try a few

simple cases (like evaluating the second order explicitly).
Improper integrals are very familiar in perturbation theory of quantum fields where

they are normally introduced to obtain compact and systematic representations of the
coefficients of perturbation expansions. Typically a Feynman diagram value is given by an
improper integral: the algorithm is so familiar that it has become usual not to even mention
which are the rules for the evaluation of such integrals.

Since the rules for the evaluation of the above improper integrals are discussed in
detail in [G3] 1 shall not dwell on them and, instead, 1 proceed immediately to use the

improper integrals in the same way they are used in quantum field theory: i.e. to find a simple
diagrammatic representation of the iterative scheme described above. It is remarkable that
such a scheme was found by Eliasson in his breakthrough theory of the KAM series, [E],
without any reference to field theory: he has independently developed a diagrammatic
representation of the KAM series.
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We represent (p() ( t) as:

and, with the same "logic":

Fig. 2

where it is 03A3jkj = k - 8,, see (3.3); the label 03B4v can be 0 or 1: the first drawing represents
the term with 8 = 03B4v in the expression for F (k) in (3.3), and the second drawing represents
the contribution to F(k)0 with 03B4 = 8v.

The node v represents -~h+1~f03B4v times h, in the second graph and - ~h~f1 times 1 h!
in the first. Because of the a!! derivative we can imagine that in the first graph the label âv
on the node v is constrained to be 1.

We can in the same way represent (p(k) ( t) and A (k) (t): we can in fact change the
labels t on the lines merging into the node v into labels T and interpret the node v as
representing an integration operation over the time T; one gets in this way the following
graphs: 

Fig. 3

The node v with the label 8,, which we noted that it must be 1 in the first drawing and
that can be either 0 or 1 in the second, has to be thought of as representing the operations
acting on a generic function F:

where o=+ifwe study the stable manifold and 03C3 = - if we study the unstable one.
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In this way the graphs of Fig. 3 represent respectively the values:

where an argument in square brackets means a dummy integration variable, inserted just
to remind of the integration operation involved; here f03B4 [t] abbreviates fi ( oc + CD t, ~0 ( t) ) .

Clearly I(k), A (k) can be expressed simply by summing over the labels and S the
values of the graphs in Fig. 3: the summations should run over the same ranges appearing
in (3.2), i.e. h between 2 - 03B4 and k, and kj  1 such that 03A3jkj = k - 03B4 and 8 = 0, 1). If we
study the stable manifold we must take 0 = + and if we study the unstable one we must take
6 = - and I(k), A (k) become respectively Is, (k), As, (k) or lu, (k), Au, (k).

We now iterate the above representation; simply recall that each symbol:

Figure 4

represents ~(kj) (t) and that (3.7) is multilinear in the (p (kj) (t). This leads to representing
A (k) ( t) as sum of values of graphs ~ of the form:

Fig. 5

A graph ~ with pvo = 2, pvl = 2, pv2 = 3, pv3 = 2, pu4 = 2 and k = 12, and some labels. The lines’ length is drawn
of arbitrary size. The nodes’ labels 03B4v are indicated only for two nodes. The lines are imagined oriented towards
the root and each line X carries also a (not marked) label Tv, if v is the node to which the line leads; the root line
carries the label t but its "free" extreme, that we call the "root", is not regarded as a node.
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The meaning of the graph is recursive: all nodes v, see Fig. 5, represent Ocr operations
except the "first" node vo which instead represents a I operation; the extreme of integration
is +00 if we study the stable manifold and -oo if we study the unstable one. Furthermore
each node represents a factor -1 pv! ~pv+1~f03B4v Ic if pv is the number of lines merging into v
except the "first" node vo which represents -~03B1 PV f03B4v [03C4v] instead. The product 03A0v 1 pv! is the
"combinatorial factor" for the node v. 

The lines merging into a node are regarded as distinct, i.e. we imagine that they are
labeled from 1 to pv, but we identify two graphs that can be overlapped by permuting suitably
and independently the lines merging into the nodes.

It is more convenient to think that all the lines are numbered from 1 to m, if

the graph has m lines, still identifying graphs that can be overlapped under the above
permutation operation (including the line numbers). In this way a graph with m lines will
have a combinatorial factor simply equal to 1 m! provided we define 1 instead of 03A0v 1 pv! the
combinatorial factor of each node: we shall take the latter numbering option. Hence in Fig. 5
one has to think that each line carries also a number label although the line numbers,
distinguishing the lines, are not shown.

The endnodes vi should carry a (ki) label: but clearly unless ki = 1 they would represent
a (p(ki) which could be further expanded; hence the graphs in Fig. 5 should have the labels
(ki) with ki = 1: this however carries no information and the labels are not drawn. The

interpretation of the endnodes is easily seen that has to be: O03C3 (-~~f03B4vi) (03C4v’i) if vivi is the
line linking the endnode vi to the rest of the graph. An exception is the trivial case of the
graph with only one line and one node: this represents (-~03B1f03B4v0) (t) and it will be called
the Melnikov’s graph.

In this way we have a natural decomposition of A a,(k) (a, t) as a sum of values of
graphs. It is now easy to represent the power series expansion of the trajectories on the
manifolds Wa (7 (Ao»: one simply collects all graphs with labels bv with 03A3v03B4v = k  1

(they can have at most 2k lines, if one looks at the restrictions on the labels) and adds
up their "values" obtaining the coefficient A a, (k) (t). The O03C3 and 03C3 operations involve
integrals with cyoc as an extreme and one has, obviously, to choose a = + if a = s and 0 = -
if a = u.

Since all the integration operations 0 or T are, in general, improper we see the
convenience of the graphical representation and its analogy with the Feynman graphs of
quantum field theory: in fact this is more than an analogy as the above graphs can be regarded
as the Feynman graphs of a suitable field theory: see [GGMO] for the discussion of a similar
case (i.e. the KAM theory representation as a quantum field theory).

An essential feature is missing: namely the graphs have no loops (they are in fact tree
graphs). This major simplification is compensated by the major difficulty that the number
of lines per node is unbounded (i.e. a field theory that generated the graphs would have to
be "non polynomial").
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Noting that the value of each graph is a function of a we now have to check that each
A a, (k) (0) has the form A a, (k) (0) = ~03B103A6a, (k).

For this purpose we consider graphs like Fig. 5 but with the root branch deleted keeping
however a mark on the first node vo to remember that the line has been taken away. We call

such a graph a rootless graph.
It is convenient to define the value Val03C3 (~) of such rootless trees: it is defined as before but

the marked node now represents the operation I03C3, 0(F) ~ 003C3~ d03C4F(03C4) with 03C3 = + for the

analysis of the stable manifold and o = - for the unstable, and the function ~pv0f03B4v0 [03C4]
(keeping in mind that the marked node must have 8vo = 1, by construction) . 

The key remark is now the identity ("Chierchia’s root identity", see [G3]):

which is an algebraic identity as our improper integrals only involve functions F, G linear

combinations of "monomials" of the form 6x (03C3tg)j j!e-g03C303C4hei03C9·vt for some X = 0, 1, j, h, v with
0 = sign 03C4, see above, for which both sides of (3.7) can be explicitly and easily evaluated.

This identity can be used to relate the values of different graphs: it means that the
values of two rootless trees differing only because the mark is on different nodes and
otherwise superposable are identical: this can be seen easily by successive applications of
the identity (3.7), see [G3].

Therefore if we define:

we see that the gradient with respect to a of 03A603C3, (k) ( a ) is precisely A a, (k) (03B1). And the
splitting Q ( a ) is the gradient of 03A6(03B1)=03A6+(03B1)-03A6-(03B1).

One can get directly a graphical representation of 03A6(k) as:

where 6(t) = sign (t) and Wala(t) (~) is just the integrand in the 03C3, 0 integral with respect to
the first node variable T = 03C4v0 appearing in the evaluation of Val03C3(~). This concludes the
construction of Eliasson’s potential.

4. Properties of the potential

Many properties of the gradient Q(g) = ~03B103A6(03B1) have been studied in [G3],
[GGM1], [GGM2], [GGM3]: they are immediately translated into properties of the po-
tential C, either by integration or by following the proofs of the corresponding statements
for Q (03B1). We just summarize them:
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(1) If M is fixed then, generically, the first order dominates:

this is the well known Melnikov’s result. We shall say that there is "dominance of Melnikov’s

term" for some quantity every time that the lowest order perturbative term gives the
dominant asymptotic behavior for it in a given limiting situation. Hence in (4.1) domination
refers to e ~ 0.

In the "one dimensional" case not explicitly treated above, but much easier, of
a periodic forcing in which there is only one angle a and one action A, Melnikov’s
domination remains true even if the parameter g becomes small provided thé 8 is chosen
of the form Jlgq for some q &#x3E; 0 (proportional to the degree No of f as a trigonometric
polynomial in (p) and |03BC| small enough.

This is somewhat nontrivial: in [G3] there is a proof based on the above formalism;
other proofs are available as the problem is classical. The nontriviality is due to the

necessity of showing the existence of suitable cancellations that eliminate values of graphs
contributing to C((x) higher order "corrections" (corresponding to special graphs) which
are individually present and, in fact, larger than the first order contributions.

(2) The next case to study is the same case of g small but with the Hamiltonian (2.1)
(i.e. quasiperiodically, rather than periodically, and rapidly forced) : let g2 = 11 and 11  1 be

a parameter that we want to consider near 0. In this case, too, convergence requires that
03B5 = Jll1q for some q &#x3E; 0 (proportional to the degree No of f as a trigonometric polynomial
in (p) and IJlI small enough.

The problem is discussed already in [G3] and, following it, we consider the graphs
~ that contribute to 03A6(k) and at each node we decompose fi into Fourier harmonics
f03B4(03B1,~)=03A3vfv(~)eiv· 03B1. This leads to considering new graphs e in which at each node
v a label v v is added signifying that in the evaluation of the graph value the functions
fit ( g, ~) are replaced by f03B4v, v «p) ei03B1·v. Of course at the end we shall have to sum over all
the "momentum labels" v E Z2. We call F(k)~ the contribution to 03A6(k) from one such more- 

decorated graph. Then from §8 of [G3] one sees that:

1 
where g = 112 the sum over v’runs over the nonzerovalues of the sums of subsets of v l, ..., Vk.
The constants B, D are bounded by an inverse power of 11 and p &#x3E; 0 is constant (depending
on the degree of f in (p) ; the constants b, q can be bounded in terms of the maximum of [f |
in a strip 1 lm 03B1j|, 1 lm (p | 03BE on which the maximum is finite. The first property follows from
the analysis in §8 of [G3]; the second is simply the statement that the stable and unstable
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manifolds are analytic function ofswith radius of convergence proportional to llq for some

q (essentially a result of Graff, see §5 of [CG] ).
(3) A consequence of (4.2) is that 03A6(03B1) can be represented, see [GGM3] for details

on the corresponding statement for the gradient of C, as:

which allows us to say, very easily, that Eliasson’s potential is "in some sense" dominated

by Melnikov’s value at least in the special cases in which fv, n are positive and "as large as
possible", i.e. fv, n = c e-03BA|v| 1 for c &#x3E; 0, and 03C9 has good Diophantine properties, e.g. if

03C91/03C92 is the golden mean (here 1 v 1 = Ivi + |v2|).
In the latter instance one verifies that, for all a, IDy’ ( a, 03B5) |  ~-q’Mv for all v|  il

which together with the analyticity in 8 of 03A6(03B1) allows disregarding the contributions to
0( oc ) from the v’s exceeding ~-1. The properties of the golden mean allow us immediately
to see that in the sum only one pair d= v dominates at oc = 0 : it is the pair v 0 = ( fk, - fk+1 )
if fj is the Fibonacci sequence and k such that KI y 0 1 + 03C0 1|03C9· v0| is minimum; apart

211 «2
from exceptional intervals of values of T) in correspondence of which there may be two

pairs (or more) (see §2,6 of [DGJS]). The domination persists for all the a’s such that

1 sin v0·03B1|&#x3E;b where b &#x3E; 0 is any prefixed constant (the smaller b the smaller has 8 to be
to insure dominance).

Also the gradient of 03A6 ( oc ) , and in fact any derivative of 03A6 is dominated by the Melnikov
term, by the same type of argument. But this is somewhat trivial: the real question is, in view
of the remarks in §2 about the possible applications to heteroclinic strings and to Arnold’s
diffusion, whether the homoclinic splitting is dominated by Melnikov’s integral. This seems
to be, in the generality considered here, still an open problem. The reason is very simple; from
(4.3) one easily deduces that:

hence one realizes that the term that should be leading, v = ± v’ = ± v 0, is missing in the lowest
order part. Therefore the main contribution comes, or may come, from the remainder dv,v’
on which we have little information besides the above bounds (which would be plenty if the
Melnikov main term did not vanish). Curiously the above exceptional cases, i.e. when the
value of 11 is taken along a sequence 11j ~ 0 such that for each j there are two minimizing
vectors y 0 and y 0 can be, instead, easily solved because (v0^v’0)2  1 as no two Fibonacci’s
vectors can be parallel.
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In the literature there are various claims about "proofs" of dominance of Melnikov’s
contribution to the splitting: they however seem to be always proofs of the "easy part"
namely of the dominance of the Melnikov term in some components of the splitting vector
Q ( a ) (implied by the above analysis).

The only known case of generic dominance of the Melnikov term for the splitting is the
one discussed in [GGM1], see (5) below. And its analysis is already far more subtle than the
above.

(4) In general the estimates (4.2), called "quasi flat" in [G3] are optimal (see [GGM4]):
hence one cannot hope to have bounds on the Fourier transform of 03A6 of the form, for some
r &#x3E; 0: l(D, | cons~-re-03C0 2g |03C9·v|e03BA|v|. Such estimates are called "exponentially small" and,
occasionally, have been claimed to be possible.

(5) The above results are very easy compared to the ones that can be obtained by

taking g2 fixed and M = (~1 203C9,~-1 203C9’), discussed in [GGM1] and called the three time scales

problem, because the system has three time scales of orders respectively ~- 1 2 2 , 1, ~1 2. In this
case we consider the values of T) for which M verifies a Diophantine property of the form
1 03C9 · Y ! &#x3E; ~03B3| 1 YI-t with some y, T &#x3E; 0 and we take E equal to a suitably large power off so that
the small divisors problems can be overcome and the invariant tori do exist.

The quasi flat estimates hold (for small 11) but they do not imply that the matrix

~03B1,03B103A6(03B1)|03B1=0 has three matrix elements of size exponentially small as ~ ~ 0. In fact all the
four matrix elements are of the order of a power of T) : this is so in spite of the fact that the
Melnikov term M(g) generates a contribution to the 2 x 2 splitting matrix with three exponentially
small entries.

In other words neither 03A6 nor the Hessian matrix ~03B1,03B103A6| 03B1=0 are dominated by Mel-
nikov’s "first order" contribution. Nevertheless Melnikov’s contribution to the Hessian determinant

gives the leading term in the limit ~ ~ 0! (generically in the perturbation).
Of course if the above mentioned exponential estimates could be correct this would

follow immediately from them: but they are not valid (as they would imply the wrong
statement that the splitting matrix has 3 exponentially small entries) and the result holds
only because remarkable cancellations take place. Hence, contrary to what is sometimes stated, the
above case requires a delicate analysis, compared to the one in [G3] which solves easily the
problems (1) (4) above at least as far as the domination of the first order in the derivatives
of the Eliasson function (hence the splitting vector) is concerned. In particular this means
that 03A6 is not a good measurement of the splitting.

It is in the theory of this "three time scales problem" that the analogy with field
theory and renormalization theory turns out to be particularly useful and the methods
characteristic of such theories apply very well and turn into a rather simple matter the
check of the infinitely many identities that are necessary in order that all terms in the
Hessian determinant that dominate the Melnikov contribution cancel each other leaving
outjust the Melnikov contribution as the leading one as ~ ~ 0.
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(6) The just described graphical technique seems not only very well suited for the
questions analyzed or mentioned above but it seems quite promising also with respect to
the solution of one of the main standing problems, namely: what is the asymptotic behavior
of the splitting as g ~ 0 and M fixed? The case mentioned in (3) above requires that all the
Fourier components of the perturbation do not vanish: a finer analysis shows that this can be
somewhat weakened but not to the extent of allowing polynomial perturbations. Hence such
cases seem to have a rather limited interest: they appear in fact too special. But even so the

only thing we know is the Melnikov dominance in Eliasson’s potential and in its derivatives.
On the other hand the theory discussed in [G3], [GGM3], and in §3 suggests the

following conjecture. First of all let us define an extension of Melnikov’s function to higher
order. We simply consider the function 03A60 ( 03B1) which is obtained from the diagrammatic
representation (3.9) but replacing the operators 0 associated with the nodes of 03C4 by the operator.

then, supposing M with golden rotation number (or any number with very good Diophan-
tine nature) :

Conjecture. - In model (2.1) and assuming that g = ~1 2, the Hessian of 03A60 (03B1) will give the

leading asymptotics as ~ ~ 0 of the splitting determinant at et = 0 "generically " in f .
Here generic means both genericity in the space of trigonometric polynomial

pertubations of fixed degree (arbitrary) and in the space of the analytic perturbations,
possibly with the constraint that the perturbation is of positive or negative type. However
we require that the perturbation be polynomial in the (p variable, see (9) below. As far as
I know there is no proof even of the convergence of the series defining 03A60 (which is well
defined only as a formal series and which may have to be regarded as an asymptotic series,
see [G3], [GGM1]).

The conjecture can be extended to the case of three time scales considered in (5): in
that case it is affirmatively answered in [GGM], where, however, one also sees that Eliasson’s
potential and its derivatives is not dominated by the first order. It is only the splitting
determinant that is dominated by the first order: not surprisingly as this is the only quantity
among the ones discussed which has a direct physical meaning.

The conjecture could be strengthened by adding, for instance, that 03A60 can be replaced
by the function po obtained from 03A60 by developing in powers of 03B5 its Fourier coefficients 03A60v
and retaining only the lowest non vanishing order 03A60v of each Fourier coefficents to form the
Fourier transform of 0. In this stronger form it becomes, in the assumptions of (2) above
(fast forcing and "maximal size" of the Fourier coefficients of the perturbation), simply
the statement that the splitting determinant can be computed by the first order Melnikov
integral: an open problem (as mentioned above). However in this form the conjecture is
not really stronger than above because using 03A60 instead of 0 amounts to saying that the
03B5dv, v’ in (4.4) has the form 03B5(v /B v’)2 d’v,v’.
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Clearly in order that the answer to the question be affirmative one has to show the
existence of suitable cancellations: I have checked that they are indeed present at the order
beyond the lowest (since the lowest order for the homoclinic determinant is the second, this
means that the answer is affirmative to third order). The check requires using the results in
[GGM1], which might already imply a positive answer to all orders.

Denoting 0 the operator O(F) ( t) def O03C3(t) (F)(t) (with a(t) = sign (t» one remarks
that in all the expressions involved in the graphs evaluations one always really uses 0; then
it is useful to note the (algebraic) relation between the operator 0 and 00:

and, as it is clear from [GGM1], the G, Go factors play the role of "counterterms" in the
field theory interpretation of the diagrammatic expansion of 0. Hence the above question
suggests that the leading behavior of the splitting determinant is due to graphs without
counterterm contributions (1). Here the "counterterms" contain non analytic functions
and they are responsible for the impossibility of exponentially small estimates in the sense
of (4) above. A positive answer to the above conjecture would state that they only give rise
to subleading contributions to the splitting.

An explicit expression for the value contributing to 03A60 can be found in [GGM1]:
see (6.2), for the isochronous case (2.1), and see the paragraph preceding (7.4) for the
anisochronous case.

(7) The above theory can be immediately extended to anisochronous cases: one just
has to consider a few new types of graphs, [G3], that contribute to the splitting vector Q ( 03B1)
and to the splitting potential 03A6( (X ).

(8) Most of the considerations above do not really use that the dimension of the quasi-
periodic motion is 2: if it is supposed larger it is however difficult to see what will be the
leading behavior of the splitting. One reason is that even the analysis of the Melnikov term
is itself a quite difficult task: Diophantine approximation theory is in a very rudimentary
stage if the dimension of the quasi periodic motion is &#x3E; 3.

A glimpse of the difficulties that one should expect to meet is given by the three time
scales problem (5) above. In this problem we can think that the slow frequency of order

1

112 is in fact obtained because the perturbation by a three dimensional quasi periodic motion
1

with three fast frequences 03C91,03C92,03C93 of order il contains an almost resonant harmonic
1

v such that 03BD103C91 + 03C9203C92 = O(~2). One would then naively think that in this case the

(1) Called in field theory "most divergent" graphs: rather improper an expression because in any
reasonable field theory there should be no divergences at all; as it is the case in the theories that have been
actually shown to exist on a mathematical basis.
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homoclinic splitting can become "large" because we can have Co - 03BD small of order il 2 with
not too large Vi, 03BD2. But this is illusory precisely because from the results of the case (5) one
sees that, although we could expect a large splitting vector and matrix, its Hessian at the
homoclinic point will be exponentially small as ~ ~ 0. Therefore in the three dimensional
case we should expect that the resonances do not enhance the splitting: they can make large
the splitting matrix but not its déterminant! This remark also explains why the problem (5)
above is so unexpectedly difficult to analyze (see [GGM1]).

(9) Finally there seems to be no reason whatsoever for having a small homoclinic
splitting when the perturbation is not a polynomial (but ’Just" analytic) in the ~ variable,
not even when the rotation vector M is very fast.
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