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TRANSPORT IN THERMAL EQUILIBRIUM,
GAPLESS MODES, AND ANOMALIES

*

by JÜRG FRÖHLICH

1. Recollections of good, old times

When 1 was a young man fate was very generous towards me. 1 got my education as a
theoretical physicist at ETH-Zürich, where 1 had excellent teachers. After graduating from
ETH, 1 had the great opportunity to go out into the world. After a year at the University of
Geneva 1 became a postdoc at Harvard, a little time after one of the golden ages of theoretical
physics had begun. I then received an offer of an assistant professorship at the mathematics
department of Princeton University. Of course, 1 was not and am not a pure mathematician.
But, at Princeton, mathematical physics had jobs in the physics- and in the mathematics
department - like at ETH - and 1 happened to get my job from the mathematicians (who,
incidentally, appear to have played some rôle whenever 1 received a goodjob offer). By the
way, one of the great things about IHÉS is that it does not have departments - it’s unified!

That fate was very generous with me did, unfortunately, not prevent me from missing
lots of opportunities. For example, 1 did not understand that, sometimes, it is better to spend
time on learning something new from erudite colleagues, especially in an environment like
Harvard or Princeton, rather than on writing too many not quite important papers. And 1
did not properly realize that it is during one’s younger years that one ought to become a real
professional in one’s field of interest. 1 was very lucky in coming across a certain number of
reasonably interesting problems from physics that, often in collaboration with some of my
friends, could be solved mathematically, but without requiring broad, professional knowledge
of mathematics; (this little note may be an example). - Unfortunately, there is no guarantee
that this kind of luck persists in later years, when natural talent and creative juices are

declining.
There were quite a few opportunities that 1 did not miss, though. 1 still remember an

afternoon in the spring of 1977 when Pierre Deligne visited me in my office, on top of the

* 

This note was written while the author was visiting the School of Mathematics of the IAS at Princeton, NJ.
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Fine Hall tower. He brought the mysterious message that the director of IHÉS, Professor
Kuiper, would like to meet me at Princeton. We agreed on a date - and Niko Kuiper showed
up at our apartment in the junior faculty ghetto, as promised. 1 remember that 1 was slightly
disappointed when I first saw him. I had imagined that a mathematician directing the IHÉS
would be tall and impressive looking and have worldly manners. - However, what Niko
brought along was most impressive: an offer of a permanent position at IHÉS ! My wife and
1 were dreaming. When we were assured that this offer was not just a dream, but was real
we asked some friends to take care of our two daughters; and off we went for a splendid
week-end in New York City. -1 did not miss this opportunity, namely to accept the offer from
IHÉS, after some polite hesitation.

Of course, the offer from IHÉS had something to do with the circumstance that one
of my teachers, supporters and friends from ETH, Res Jost, was a member of the "comité

scientifique" at that time. Sometimes one has got to have good friends and to be lucky.
In January 1978, perhaps the happiest period of my adult life started: We moved to

Bures-sur-Yvette! Life at Bures was simple and pleasant. The atmosphere at the institute was
inspiring, yet quite intimate and human. My research efforts were reasonably successful - I
maintained close ties to my friends from Princeton days. And Paris is only a forty minutes
RER-ride away.

Had I not missed some of those opportunities and developed a little more self-confid-
ence, we would most probably not have left Bures, anymore, and certainly not after just
four and a half years. As one grows older and a little more detached from the successes and
failures of the day, life at an institute like IHÉS would certainly feel good; (such institutes
are great for young researchers at the peak of their creativity and for elder statesmen, but
not great for people in between). - Perhaps, the best things in life are not meant to last
for ever.

At IHÉS, 1 had delightful colleagues. Some of them are married and have wonderful
wives, who greatly enriched social life at Bures. It was natural that we tried to contribute our
share, and we liked to do so.

1 was collaborating with various colleagues; among others, with David Brydges, Erhard
Seiler and, in particular, with Tom Spencer. (I found it somewhat difficult to get in closer
touch with French colleagues from neighboring institutions.) Some of our joint work of that
period was, 1 believe, pretty good.

The IHÉS is unique as an institution where mathematical and theoretical physicists,
on one hand, and pure mathematicians, on the other hand, meet each other daily, at lunch,
at tea, in the discussion room, during games of Volley ball, in seminars. They discuss science
together in a relaxed atmosphere - to find out how different their perspectives and their
way of thinking tend to be and how difficult it is to understand each other; (Pierre likes to

complain that, not only do physicists usually not prove their claims, but they fail to come up
with precise définitions). But we have all learnt that, under favorable circumstances, such a
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dialogue can be tremendously inspiring and fruitful! 1 have made the experience personally,
at IHÉS

It is with thankfulness that 1 remember the great times at Bures, and it is with gratitude
that I contribute this little note to the "Festschrift" commemorating the 40th anniversary of
IHÉS This institute has been a focal point of extraordinary mathematical creativity. I cannot
think of a more successful institute of fundamental research. 1 wish the IHÉS a vigorous
continuation of its unique success story into the future - and generous support!

2. Quantized conductances ( 1 ) 

The original motivation of the work described in this note has been to provide simple
and conceptually clear explanations of various formulae for quantized conductances, which
have been encountered in the analysis of experimental data. Here are some typical examples.

Example 1. Consider a quantum Hall device with, e.g., an annular (Corbino) geometry. Let
V denote the voltage drop in the radial direction, between the inner and the outer edge,
and let IH denote the total Hall current in the azimuthal direction. The Hall conductance,
GH, is defined by

One finds that if the longitudinal resistance vanishes (i.e., if the two-dimensional électron gas
in the device is "incompressible") then GH is a rational multiple of e2, i.e.,

In (2.2), e denotes the elementary electric charge and h denotes Planck’s constant. Well
established Hall fractions, 6H = d , in the range 0  03C3H  1 are listed in Fig. 1; (see [ 1 ] ; and

[2, 3] for general background).

Example 2. In a ballistic (quantum) wire, i.e., in a pure, very thin wire without back scattering
centers, one finds that the conductance Gw = I/V (I: current through the wire, V: voltage
drop between the two ends of the wire) is given by

under suitable experimental conditions ( "small" V, temperature not "very small", "adiabatic

gates"); see [4, 5].

Example 3. In measurements of heat conduction in quantum wires, one finds that the heat
current is an integer multiple of a "fundamental" current which depends on the temperatures
of the two heat reservoirs at the ends of the wire.

(1) The material sketched in this note is the result of collaboration with A. Alekseev and V. Cheianov [0],
in continuation of earlier work with T. Kerler, U. Studer and E. Thiran [ 1 ].
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Fig. 1

If electromagnetic waves are sent through an "adiabatic hole" connecting two half-
spaces one approximately finds an "integer quantization" of electromagnetic energy flux.

Our task is to attempt to provide a theoretical explanation of these remarkable
experimental discoveries; hopefully one that enables us to predict further related effects.

Conductance quantization is observed in a rather wide temperature range. It appears
that it is only found in systems without dissipative processes. When it is observed it is

insensitive to small changes in the parameters specifying the system and to details of sample
preparation; i.e., it has universality properties. - It will turn out that the key feature of sys-
tems exhibiting conductance quantization is that they have conserved chiral charges; (such
conservation laws will only hold approximately, i.e., in slightly idealized systems). Once one
has understood this point, the right formulae follow almost automatically, and one arrives
at natural generalizations.

3. Transport in thermal equilibrium through gapless modes

In this section we prepare the ground for a theoretical explanation of the effects
described in Sect. 2. We consider a quantum-mechanical system S whose dynamics is

determined by a Hamiltonian H, which is a selfadjoint operator on the Hilbert space H

of pure state vectors of S with discrete energy spectrum. It is assumed that the system obeys
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conservation laws described by some conserved "charges" NI, ..., NL. Hence

(e.g. in the sense that the spectral projections of H and of Nl, Nk commute with each other,
for all k and l). The system S is coupled to L reservoirs, R1, ...,RL, with the property that
the expectation value of the conserved charge Nl in a stationary state of S can be tuned to
some fixed value through exchange of "quasi-particles" between S and Rl, i.e., through a
current between S and Rl that carries "Nl-charge", for all l = 1,..., L.

We are interested in describing a thermal equilibrium state of S, coupled to Rl,...,
RL, at a temperature T = (kB (3) -1. According to Gibbs, we should work in the grand-
canonical ensemble. The reservoirs Rl, ..., RL then enter the description of the thermal

equilibrium of S only through their chemical potentials 03BC1, ..., 9L. The chemical potential gl
is a thermodynamic parameter canonically conjugate to the charge Nl; in particular, the
dimension of 03BCl · Nl is that of an energy. According to Landau and von Neumann, the
thermal equilibrium state of S at temperature (kB 03B2)-1 in the grand-canonical ensemble,
with fixed values of 03BC1,..., 03BCL, is given by the density matrix

where the grand partition function , is determined by the requirement that

(It is assumed here that exp [-03B2 (H - 03A303BCl N 1) is a trace-class operator on H, for ail P &#x3E; 0; we

are studying a system in a compact region of physical space.) The equilibrium expectation
of a bounded operator, a, on 71 is defined by

Let (x) = (J0(x),J(x)) be a conserved current density of S, where x = (x, t), t is time
and x is a point of physical space contained inside S. We are interested in calculating the

expectation values of products of components of 7 in the state 03C103B2,03BC ; in particular, we should

like to calculate (x)&#x3E;03B2,03BC. Of course, if the dimension of space is larger than one (x)&#x3E;03B2,03BC
vanishes unless rotation invariance is broken by some external field. If (x) is a vector

current then J(x)&#x3E;03B2,03BC vanishes unless the state 03C103B2,03BC is not invariant under space-reflection
and time reversal. This happens if some of the charges NI,..., NL are not invariant under

space-reflection and time reversal, i.e., if they are chiral.
To say that J is conserved means that it satisfies the continuity equation
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where xO = t denotes time, and aJl = ~/~x03BC. If the space-time of the system S is topologically
trivial ( "star-shaped") then eq. (3.5) implies that there is a globally defined vector field ~(x)
such that

Let us suppose that ~(x) is an operator-valued distribution on H, whose time-dependence
is determined by the formal Heisenberg equation

[Technically, we are treading on somewhat slippery ground here; but we shall proceed
formally, in order to explain the key ideas on a few pages.] From (3.6) and (3.7) we derive
that

Formally, the r.s. of (3.8) vanishes, because (·)&#x3E;03B2,03BC is a time-translation invariant state.

However, the field ~ turns out to have ill-defined zero-modes, and it is not legitimate to

pretend that [H, ~(x)] = H~(x) - ~(x)H, because both terms on the r.s. are divergent, due
to the zero-modes of ~. What is legitimate is to claim that

and that the expectation value

vanishes. This can be seen by replacing the Hamiltonian H by a regularized Hamiltonian H(03B5)
generating a dynamics that eliminates the zéro-modes of io. One replaces the state pp, g by
a regularized state 03C1(03B5)03B2,03BC proportional to exp [-03B2(H(03B5)-03A3 gl NL and we set 

for any bounded operator a on H. Then
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Obviously

and one might be tempted to expect that lim ([N,, (x)]&#x3E;(03B5)03B2,03BC vanishes, for all l, because the

charges Nl are conserved. However, as long as the regularization is present (03B5 ~ 0), these
charges are not conserved, and there is no guarantee that the second term on the r.s. of
(3.10) vanishes!

We conclude that

Eq. (3.12) might be called a current sum rule.
Let us assume that the conserved charges Nz, l = 1, 2, ..., are given as integrals of the 0-

components of conserved currents over space. Then the current sum rule (3.12) implies that
if J(x)&#x3E;03B2,03BC f 0 there must be gapless modes in the system. The proof (see [0]) is analogous
to the proof of the Goldstone theorem in the theory of broken continuous symmetries. [We
omit a more detailed discussion.]

The sum rule (3.12) is the main result of this section. A careful derivation of equation
(3.12) and of our analogue of the Goldstone theorem could be given by using the operator-
algebra approach to quantum statistical mechanics [6], which, under the good influence of
David Ruelle, had a strong presence at IHÉS, during the sixties, and, mainly through the
fundamental work of Alain Connes, has made inroads into pure mathematics. But, in order
to reach our punch line on a reasonable number of pages, we refrain from entering into a
careful technical discussion.

Instead, we turn to a story that may remind Louis Michel of some good old times:
current algebra, and...

4. Anomalous commutators

We start by considering a one-dimensional system of chiral fermions, e.g. an electron
liquid in a quantum wire. The system has a conserved vector current Y, with

Since the fermions are assumed to be chiral, there must also exist a conserved pseudo-vector
(axial) current, J03BCa, with
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In 1+1 space-time dimensions, JJi and are related to each other by

where 03B500 = 03B511 = 0, col = -03B510 = 1 . As explained after eq. (3.6), eq. (4.1) can be solved by
introducing a scalar field (p(x) such that

where q is the charge of a fermion; (q = -e, where e is the elementary electric charge, for
ordinary électrons). Eq. (4.3) then implies that

and, consequently, (4.2) yields

Thus, if the vector- and the pseudo-vector currents are conserved then the potential (p of
the vector current is a massless free field. This is an example of a Lagrangian field theory. It
has an action functional, S, given by

As usual, we define the momentum, 1t(x), canonically conjugate to (p(x) by

After quantization, (p and Tt become operator-valued distributions satisfying the equal-time
canonical commutation relations

In view of (4.4), (4.5) and (4.8), we find that

but

Using that J0(x) = q(~x~)(x), we see that eq. (4.11) is equivalent to the well known
anomalous commutator
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It may be useful to recall how eqs. (4.3) through (4.7) are related to the chiral anomaly in two
space-time dimensions. We imagine that the system is put into an external electric field E(x).
In two dimensions, the electromagnetic vector potential A03BC(x) (in the Coulomb gauge) is
related to E(x) by

The action functional S((p) defined in eq. (4.7) must now be replaced by

The field (Euler-Lagrange) equation derived from (4.14) is

The standard equation for the chiral anomaly in two space-time dimensions is

Equations (4.15) and (4.16) are equivalent if and only if

which is equation (4.3), (and eqs. (4.1) through (4.3) ultimately lead to (4.12».
Apparently, according to (4.16), the usual pseudo-vector current of a system of

chiral fermions in two space-time dimensions fails to be conserved when the system is put
into an external electric field. However, one may define a modified pseudo-vector current,
by setting

Then

but 03BCa fails to be gauge-invariant. Nevertheless, the conserved charge associated with 03BCa is

gauge-invariant. We notice that the anomalous commutator between J0 and J2 is still given
by (4.12).

From the conserved currents J03BC and 03BCa we can construct two conserved charges
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measuring the total electric charge of "left-moving" - and of "right-moving" modes, respec-
tively. Moreover, normal-ordered exponentials of integrals of JO -0 i.e., vertex operators,
represent left- or right-moving charged fields.

There is a similar story about anomalous commutators and their relation to the chiral

anomaly in four- and higher-even-dimensional space times. It dates from the late sixties and
early seventies. An excellent reference is [7]. We just summarize the main results.

We consider a relativistic quantum theory of charged, massless fermions. Such a theory
is expected to have a conserved vector current, J03BC, and a conserved axial current, il.
Suppose that the fermions are now coupled to an external electromagnetic field with field
tensor F = (F03BCv). Then if J03BCa is chosen to be gauge-invariant it is not conserved:

where F is the dual field tensor. One says that the axial current has an "anomalous divergence"
( chiral anomaly) ; while

See [7] for a discussion and derivation of (4.20).
Introducing a non-gauge-invariant axial current, 03BCa, by setting

one finds that

but the price to be paid is a loss of gauge-invariance!
The second term on the r.s. of (4.22) is dual to the Chern-Simons 3-form, which

plays a fundamental rôle in the theory of secondary characteristic classes and differential
characters. Mathematically, eq. (4.20) is related to the fact that the argument of the
determinant

where PA is the covariant Dirac operator, is not gauge-invariant. Its variation under gauge
transformations is given by the gauge variation of the five-dimensional Chern-Simons form

integrated over a five-dimensional manifold whose boundary is the four-dimensional space-
time of the system considered here. Eq. (4.20) is also related to the anomalous commutators
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See [7] for a derivation of (4.24), (4.25).
Next, we recall that J0(x, t) = div ~(x, t), where ~ is the "vector potential" of J9

introduced in the last section. Then eq. (4.24) and the fact that divB = 0 imply that

for some vector field fi. [The reasoning leading to (4.26) outlined here is somewhat cavalier,
but our main application of (4.26) will be correct, nevertheless!]

In the next section we shall use the theory of the chiral anomaly and anomalous
commutators, together with the general results of Sect. 3, to develop a general "theory of
transport in thermal equilibrium’: It is worth mentioning that, besides the chiral anomaly, one
can also consider the gravitational-, the conformal- and mixed anomalies and work out their

consequences for our general theory of transport in thermal equilibrium; but we shall not

pursue this idea here.

5. What ballistic wires and stars may have in common

In this section, we combine the results of Sects. 3 and 4 to arrive at physically interesting
statements.

We start by considering a ballistic wire, i.e., a very thin, clean one-dimensional

conductor without back scattering centers. The ends of the wire are connected to two
reservoirs at chemical potentials gl and 03BCr, respectively, with

where V is the voltage drop.
A real wire is a three-dimensional object with a tiny cross section in the two directions

transversal to its axis. For simplicity, we may assume that the wire is arbitrarily long. At
low enough temperature, the three-dimensional nature of a real wire can be retained in a
theoretical description by saying that the electrons in the wire form several independent, but
interacting Luttinger liquids [8], e.g. K such liquids, each of which has a conserved vector current,
J03BCi, and a conserved axial current, 03BCa,i i i = 1, ..., K. The charge of an elementary quasi-particle
in the ith liquid is given by 

where Qi is some real number, and Qi = -1 if the quasi-particle is an electron. The total
electric current operator, J03BC, is given by
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and the total axial current operator, J03BCa, by

The total electric charge operator of the left- (right-) moving modes in the wire is the
operator Nz (Nr) introduced in eq. (4.18) (eq. (4.19». Its expectation value in a thermal
equilibrium state of the wire is tuned by the chemical potential gl (Jlr) of the reservoir at
the right (left) end of the wire. We suppose that the wire is kept at an inverse temperature P.
[Our description captures the basic physics of a ballistic wire only if 03B2-1 and eV are very
small compared to an intrinsic energy scale of the wire.] Our goal is to calculate the total
electric current through the wire, given the potential drop V.

The basic current sum rule (3.12) says that

where tp is the potential of the current J03BC. Since all the currents J03BCi, i = 1,...,K, are

conserved, every one of them can be derived from a potential, and

Using eqs. (5.6), (5.5), (4.18), (4.19) and the key equation (4.11) for the anomalous
commutator, we find that

where we have used that

and
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Thus we have derived the formula

In a conventional ballistic wire, all the quasi-particles are electrons. Hence

Moreover, every electron state in the wire is doubly degenerate, because of electron spin,
(assuming the wire is not in a magnetic field). Thus, conserved currents come in pairs (spin
up and spin down), so that K is even, i.e.,

In conclusion,

This is what was claimed in eq. (2.3).
The theory of the Hall conductance of an incompressible Hall fluid in a Hall sample

with e.g. the Corbino geometry is very similar to the theory of ballistic wires outlined above,
with the following differences. Let V denote the potential drop between the outer and the
inner edge. We assume that eV and kBT are very small compared to /ïQe, where ne is the
cyclotron frequency. Under these conditions, the Hall current in an incompressible Hall
fluid with the Corbino geometry is the sum of the diamagnetic edge currents at the two edges
of the sample. These edge currents are chiral. Ifwe define the left and the right currents by

then Ji is localized at one edge and Jf is localized at the other edge. The two edges are
macroscopically separated, and the probability for tunnelling of charges from one edge to
the other one vanishes for all practical purposes. The conservation of the charges NI and
Nr is therefore valid with very high accuracy.

As in the example of the ballistic wire, we make the ansatz

with
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and similarly for ..J’t! i. Calculations very similar to the ones shown above yield the equation

where gl and Jlr are the chemical potentials of electrons at the outer edge and inner edge,
respectively; (the variable e is an angular variable parametrizing the outer and the inner
edge) .

It is notorious that incompressible Hall fluids may exhibit quasi-particles (at the edges)
of fractional charge and fractional statistics. Therefore one cannot claim that Qi = ±1, for
all i. In ref. [1], a connection between electric charge and quantum statistics ({electric charge =
even (odd) integer multiple of e} ~ {quantum statistics = Bose (Fermi) statistics}) has
enabled the authors to prove that Q: = (QI, ..., QK) must be a visible vector in a lattice dual to
an odd-integral lattice of rank K. It follows from this result that

Of course, the question immediately arises which pairs (r, Q), with r an odd-integral
lattice and Q a visible vector in r*, may be encountered in the study of real incompressible
Hall fluids. Progress in answering this question arose when some of the authors of [ 1 ] were

visiting the IHÉS, back in 1993, and were able to bother Louis Michel and several visiting
mathematicians with questions on lattice theory. Although Louis discovered that the authors
of [ 1 ] were lacking mathematical culture in the area of lattice theory (at least one of them
still is), he was willing and able to provide veryvaluable advice and help; help that (somewhat
in contrast to the one offered by some mathematicians) was so useful, because it was very
concrete. - Unfortunately, the story about how lattice theory solves some of the puzzles posed
by the fractional quantum Hall effect is neither very simple, nor very short. We therefore
refer the reader to the literature, [1, 3] and refs. given there; see also [9].

We have completed our sketch of the theories underlying Example 1 and Example 2
described in Section 2. The theory underlying Example 3 (quantized heat currents) is quite
similar; it is known among specialists in the field. So let us proceed to systems in four space-time
dimensions. For example, imagine that we study a young, rotating star containing a dense,
relativistic electron (-positron) plasma. It may be legitimate to neglect the mass of electrons
(and positrons) and assume that "handedness" is (approximately) conserved. The plasma
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then has two (approximately) conserved charges

The expectation values of Nl and Nr in the state of the star are determined by the chemical
potentials, gl and Jlr, ofleft- and right-handed electrons, respectively. Since weak interactions
may play some rôle in the genesis of the plasma, it is plausible to suppose that Jlz f Jlr.

Moreover, it is likely that there is a reasonably strong magnetic field, B, inside the star.
Making use of our basic current sum rule (3.12), using expressions (5.19) for

the conserved charges, and applying eq. (4.26), integrated over all of space, we find
the equation

for the electric current density

in a thermal equilibrium state, inside the star. Current conservation then leads to the
prediction of surface currents on the surface of the star. [I hope that Thibault Damour will
soon explain to me whether eq. (5.20) describes some virtual reality about stars, or some
significant effect in realstars.] Equation (5.20) is the 3+ 1 dimensional analogue of the basic
equation

describing the Hall effect of an incompressible Hall fluid; (recall that aH is the dimensionless
Hall conductivity). Equation (5.22) can be viewed as coming from the equations

in (2 + 1) space-time dimensions, which summarize some of the transport theory for
incompressible quantum Hall fluids; (see [1, 3] and refs.). Likewise, equation (5.20) can be
viewed as coming from the equations

in (4 + 1) space-time dimensions, (with F5j = 0, j = 1, 2, 3). They would lead to an

interpretation of the difference of the chemical potentials of left- and right-handed charged
particles, 03BCl - 03BCr, as originating from a non-vanishing electric field (oc F04) pointing in a
direction transversal to the four visible dimensions of our world.

Equations (5.23) and (5.24) can be derived from the three- and five-dimensional,
abelian Chern-Simons actions, respectively. Their non-abelian cousins have been recognized
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to play a fundamental rôle in algebraic topology, in particular in knot theory. It is regrettable
that there is no space, here, to describe this story, which, in what concerns my own, modest

contributions, would be a nice illustration of the usefulness of interactions between physicists
and mathematicians at IHÉS (see [10]).
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