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THE INTERTWINING OF

AFFINE KAC-MOODYAND CURRENT ALGEBRAS

by LOCHLAINN O’RAIFEARTAIGH

1. Introduction

Il faut féliciter l’IHÉS non seulement du grand succès de ses quarante années, mais
aussi de sa fidélité au rêve d’être un lieu de rencontre amicale entre mathématiciens et

physiciens. A ce propos, je voudrais présenter ici une brève histoire d’un développement
récent, la découverte des algèbres de Kac-Moody affines, où mathématiques et physique ont
bénéficié de leurs développements parallèles, et si enchevêtrés, qu’il est souvent difficile de
les démêler.

2. The Mathematical Path

The mathematical origins of affine Kac-Moody (AKM) algebras go back [1] to the
work of Killing, who first classified the simple Lie algebras. As was natural for a student of
Weierstrass, Killing considered the spectra of elements with respect to adjoint action, and
was thereby led to the well-known Cartan-Killing relations

where ai for i = 1...l are the roots, and to the Cartan-Killing matrices

where ci for i = 1... l are the simple roots (generators, with respect to addition, of the
positive root lattice). The elements of the matrices A are integer-valued, as indicated, and
satisfy the three conditions
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Coleman [1] describes the discovery of these matrices and their properties as one of the
great mathematical achievements. The matrices A are also positive definite in the sense that

for any real vectors f . Following earlier work by Chevalley [2], it was shown by Serre [3] that
the Cartan-Killing matrices satisfying (3) and (4) actually define the semi-simple Lie algebras,
which could be reconstructed from (3) (4) and the nilpotency condition

Kac and Moody

The Kac-Moody (KM) algebras were obtained [4] [5] byremoving the positive-definite
restriction on A i.e. requiring that it (be indecomposable) and satisfy only (3), and then
applying the Serre construction. The resultant algebras fall into three classes, namely, those
for which there exists a vector u with only positive components such that

These classes correspond to finite-dimensional Lie algebras, affine Kac-Moody (AKM)
algebras, and non-affine Kac-Moody (NAKM) algebras respectively. The non-affine algebras
are largely unexplored and, to my knowledge, no natural physical applications have been
found so far. The affine Kac-Moody (AKM) algebras are those of interest here. Remarkably,
they may be characterized by the fact that A is positive semi-definite and has exactly one
zero eigenvalue i.e.

The procedures adopted by Kac and Moody to obtain these algebras were rather
different. Moody considered the degeneracies of A, and in his first paper arrived at the
AKM algebras, including the twisted (tiered) ones. Kac considered the growth properties
of the algebras obtained by relaxing the positivity condition on A, using as measure
ln (d(s, n))/ln(n) where s is the dimension of any finite subspace S of the algebra, and
d(s, n) the dimension of the subspace spanned by the commutators of any m elements
of S for m  n. He found that the three classes corresponded to finite, polynomial and
exponential growth respectively.

The major breakthrough for AKM algebras came with the discovery that they have
many of the properties of finite-dimensional simple Lie algebras [4]. In particular, they can
be graded, the roots can be ordered, the Weyl group and Weyl character formula generalize
in a natural way, and the concepts of highest and lowest weight representations and of
Casimir operators carry through with only technical modifications. The Serre construction
for the AKM’s leads to algebras of the form
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where D is a grading element, fâb are the structure constants of a semi-simple Lie group
Go, with Cartan metric gab, K is a constant, and n, mare integers (multiples of 1 2, 1 3 in the
twisted cases). The Jao are the generators of the finite-dimensional Lie algebra Go. In physical
applications the value of K depends on the model.

The Loop Group

By considering the Fourier transform Ja(~) for 0  ~  203C0 of Jan the AKM algebra (7)
may be written in the form .

This form shows that for K = 0 the AKM algebras are the Lie algebras of the loop-groups,
defined as groups whose elements lie in Go and whose parameters are functions fa(~) on
the circle i.e.

the group multiplication being the usual Go multiplication with f and g treated as

parameters. Equation (9) also shows that for the opposite, abelian, case, when f03B8ab = 0
and K f 0, the AKM algebra reduces to the canonical commutation algebras (CCA) of free

quantum fields. Thus the AKM algebras have a dual interpretation as central extensions of

loop-group Lie algebras and as non-abelian extensions of CCAs. This is important for the

representation theory because the lowest weight concept for AKM algebras is a combination
of the lowest weights concept for finite-dimensional Lie groups and the vacuum for free

quantum fields.

3. Automorphisms of the AKM algebras

The automorphism groups A of an algebra are often of great importance, and the
AKM algebras are no exception, admitting at least two important automorphism groups,
namely, the Virasoro and Weyl groups.

Virasoro Automorphism
The loop-group formulation of AKM’s shows that they are diffeomorphic-invariant

and since the group-elements are diffeomorphic scalars the AKM generators Ja(~) are
vectors and thus under infinitesimal diffeomorphisms 80 03B5(~) have the variations

03B4Ja (~) = ~~ (03B5(~)Ja (0». These variations are generated by the charges Q f f d~03B5(~) L
provided the adjoint action of L(~) on the Ja(~) is

The integrability (Jacobi self-consistency) relations for (10) are
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where c is a constant. The algebra (11) is called the Virasoro algebra and is clearly a central
extension of the Lie algebra of the diffeomorphic group. By multiplying (11) by 03B5(~) and

integrating one sees that the Virasoro generators L(~) are diffeomorphic connections of
rank two. We shall see later that the Virasoro automorphisms are inner in the sense that
the L (0) can be constructed from the Ja (~). The Virasoro algebra first appeared in physics
in the context of string theory [6], and it is of central importance in all two-dimensional
conformal theories [7], where the Virasoro generators are actually the components of the

energy-momentum tensor density. It follows from (10) that the AKM grading element D can
be identified with f d~L(~).

The Weyl Group

The second important subgroup of AKM automorphisms is the Weyl subgroup, which
is defined in the same way as for finite-dimensional Lie algebras, namely as the subgroup
generated by reflections in the roots, or as the normalizer in 4 of the Cartan subalgebra.
The difference is that the AKM Cartan subalgebra is defined as the linear span of {D, Ho, K},
where Ho is the Cartan of Go and as this l+2-dimensional root-space has an indefinite metric
the Weyl group is infinite-dimensional. In fact it is the semi-direct product of the Weyl group
for Go and the Galilean-type transformations

where the paramaters vi are discrete, being restricted to the co-weight lattice in general,
and to the co-root lattice in the case of inner automorphisms.

An interesting feature of the transformations (12) is that they can be implemented

by the adjoint action of e’ where the X are new operators defined so that they commute
with all the AKM generators except

In string theory the operators X and Ho have a direct physical meaning as centre-of-
mass coordinates and total momentum of the string respectively. They also play an important
role in the so-called vertex construction of the E03B1n namely,

where the integration is around the origin,

and the 03B303B1 are elements of a Clifford algebra which generate the standard off-diagonal
Chevalley structure constants N,,,p of Go. In string theory these vertex operators are used to
construct the vertices of Feynmann graphs.
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4. Lowest Weight Representations

The representation theory of the AKM and Virasoro algebras has been studied
intensively in recent years but any detail [4] is far beyond the scope of this article. What 1
should like to stress here is the interplay between physics and mathematics in their study. For
physics, because of the existence of the vacuum and the link between probabilities and inner-
products, the interesting representations are the lowest weight, unitary representations. But
these are the ones that most resemble the representations of finite Lie algebras and are
therefore also the ones of primary interest for mathematics. Their natural modules are
Fock spaces, obtained by defining a vacuum state lA &#x3E; by

and acting an it with monomials in Ln and Jn for n  0.

Apart from the existence of null vectors, and the technical difficulty of the algebraic
manipulations, the theory proceeds very much as it does for the highest and lowest weight
unitary representations of non-compact Lie groups.

Weyl CharacterFormula

It will be recalled that for the unitary irreducible representations of highest weight jo
of compact simple algebras the Weyl character formula is

where jo is the highest weight, ()) are the parameters of the Cartan, the sum is over all
Weyl reflections Wo of parity 03B5(03C9o), and 03C1o is half the sum of the positive roots. This formula
generalizes almostwithout change to lowestweightAKM representations [4], the differences
being that the Weyl reflections are in the l + 2 dimensional (indefinite-metric) AKM root-
space and that the exp(i~, 03C9o(03BBo)) are replaced by formal exponentials e(03BB) satisfying
e(03BB) e(03BC) = e(03BB + Jl) that are invertible on the AKM Cartan.

5. Physical Path: Current Algebras

The physical path to AKM algebras originated in the discovery of the (flavour) SU (3)
symmetry of the strong nuclear interactions. A major part of the success of SU(3)-flavour
came from the fact that the weak and electromagnetic currents were linear combinations
of the SU (3) Noether currents j03B103BC(x), which are vectors with respect to space-time (indices
g = 0,1, 2, 3) and with respect to the Lie algebra of SU (3) (indices a = 1 ... 8). Thus
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where the Qa and the Fâb are the generators and structure constants of SU(3). Motivated
by this success, it was proposed [8] by Gell-Mann that the relations (18) be generalized to
local relations of the form

where the jo and ji denote the time- and space-like components of the currents and k is a
constant. Integrations of (19) reproduce (18) and the SU (3) algebra. An interesting feature
of (19) is the presence of a central term, called a Schwinger term [9]. This is a quantum
effect due to the normal-ordering of the fields (whose spins determine the value of k).

In contrast to (18), in which the charges Qa are conserved, the relations in (19) are
restricted to equal times and in this respect are quite limited. But, being phase-space rather
than dynamical relations, they are universal and reliable.

Although the algebra (19) is defined on four-dimensional Minkowski space, the

resemblance between it and the AKM algebras (8) is startling. In fact, when the dimensions
are reduced to two, so that the current has only one space-like component jl in addition
to its time-like component jo, the light-like combinations jo ± jl of these currents become
AKM algebras with opposite values ±k of the central charge.

Testing Current Algebra: PCAC

Relations similar to (19) are postulated for axial currents j503BC(x) also, and, in fact, the
best tests of current-algebra have come from the chiral-isospin, or SU (2) x SU (2), version,
which consists of the restriction of (18) to SU(2) plus the relations

The advantage of axial currents is that, at low energies, they can be approximated by
the neutral pion fields n(x), according to the partially conserved axial current (PCAC)
relation ~03BCj503BC(x) = f03C0(x) where f is a known constant. The decisive breakthrough for
current algebra came in 1965 when it was shown [8] that an experimentally satisfactory
value for the axial weak coupling constant gA, could be obtained by sandwiching the second
relation in (20) between proton states, using PCAC, and evaluating the resultant sum over
intermediate states from known pion-nucleon scattering results. This breakthrough initiated
a huge industry in which current algebra, the PCAC relation and S-matrix theory were
combined to obtain many sum rules and predictions for low energy nuclear and hadronic
scattering, most of them in excellent agreement with experiment.

The Success of Failure : Anomalies

There was one PCAC-current algebra prediction, however, that was in total disagree-
ment with experiment, namely the prediction of a zero rate for the decay of a neutral
pi-meson into two photons, 03C00 ~ 2y. The resolution of this discrepancy led to a major
discovery in quantum field theory, namely the existence of anomalies [9]. A careful analysis
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showed that axial vector current conservation was broken not only by PCAC but even by the
electromagnetic field F03BCv, through a divergence of the form

where n is Planck’s constant and e is the electromagnetic charge. The use of (21) in the
computation of the pion decay-rate led to the correct experimental value. This result was
surprising because (21) is purely quantum-mechanical and thus the resolution of the pion-
decay problem provided direct experimental evidence that classical symmetries do not
necessarily hold at the quantum level. The anomaly in (21), called the axial anomaly, solved
some other problems also, concerned with the ~ ~ 3n decay rate and the origin of the U ( 1 )
axial symmetry violation in strong interactions. The use of the anomaly also supported
the quark-based prediction of colour-SU(3) symmetry and predicted three colours, in
agreement with present experiments.

It soon became clear that the axial anomaly was only the first of many, and that the
origin of the anomalies lay in the quantization procedure itself. This was particularly evident
in the path-integral formalism, where the appearance of anomalies could be traced to the
measure. They occurred typically when no measure existed that respected all the classical
symmetries. The details may be found in most modern text-books, but there are two points
that should be emphasized here. The first point is that by 1969 current algebra had become
so well-established that its failure was regarded as a major problem. The second point is that
there is a feed-back in the sense that anomalies are very relevant for determining the centres
of AKM and Virasoro algebras. For example, the Schwinger term in (19), which becomes
an AKM centre in two dimensions, is an anomaly, and as we shall see, at least part of the
Virasoro centre for conformal field theories is due to anomalies.

The Sommerfield Sugawara (SS) Construction

Before leaving the subject of current algebra in four dimensions there is one other
development worth mentioning, namely the construction of the energy-momentum tensor

Tgv from the currents. In most field theories T JlV and the other Noether currents, such as
the electromagnetic current, are local functions of the fields but are not local functions of
each other. Inspired by current algebra, Sommerfield and Sugawara [10] proposed that in
some circumstances T03BC03BD might be a local function of the currents, namely

where x is a constant. The importance of this proposal was not immediately appreciated,
particularly when it turned out that for (22) the usual four-dimensional QFT short-distance
singularities are even more severe than usual [11]. Sommerfeld, in particular, was so aware
of these difficulties that he delayed publication and lost some priority.
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6. Down-Sizing to Two Dimensions

Had current algebras remained four-dimensional their intertwining with AKM al-
gebras might have remained marginal. However, some parallel developments in physics
led to a reduction from four to two dimensions. The first such development was string-
theory [6], in which the world-line of a particle is replaced by a two-dimensional world-
sheet, with a conformally-invariant Action. The second was the discovery of the importance
of two-dimensional conformal theories for phase transitions [12]. These discoveries, to-
gether with advances in specific areas, such as statistical and integrable models, and the
fact that two-dimensional conformal field theories provided a reliable testing-ground for
the various Ansatze of the four-dimensional quantum field theory, (such as the existence of
operator-product expansions) made two-dimensional conformal field theories a mainstream
subject of investigation. As the relevant two-dimensional current algebras corresponded to
conformally invariant theories, they split into the direct sums of one-dimensional (light-like)
AKM algebras, as described on page 157.

The Virasoro Algebra

One of the most striking properties of two-dimensional conformal field theories is
that the generators of the Virasoro algebra coincide with the components of the energy-
momentum tensor density T03BC03BD(x). This happens because, in two-dimensional conformal
field theories, the component T03BC03BC of T03BC03BD is zero and the components T++ and T- - are chiral
i.e. are functions of the light-like variables x± = xo ± xl respectively. These chiral components
are the Virasoro generators. Thus, in strong contrast to higher dimensions, where only a
(small) finite number of moments of the energy-momentum tensor T JlV generate space-time
symmetries, here every component of T JlV generates a space-time symmetry, and together
they generate the whole conformal group.

The Sommerfield Sugawara construction of Tgv was a particular beneficiary of the
down-sizing to two dimensions because in two dimensions the short-distance singularities
disappear. Thus the four-dimensional SS ugly-duckling became a two-dimensional swan,
and today the SS construction is used extensively in both the physical and mathematical
literature.

Weyl Anomaly and Virasoro centre

It was mentioned in the previous section that, for two-dimensional conformal field
theories T03BC03BC = 0. Strictly speaking, this is true only at the classical level and in a flat

background. In the quantum theory the diffeomorphic-invariant path-integral measures
for fields of spin other than one-half are not conformally-invariant and this introduces
an anomaly that violates the corresponding quantum relation  T03BC03BC &#x3E; ~ 0, where the
bracket denotes quantum mechanical expectation value. The effects of the anomaly can be
cancelled, and the relation  T03BC03BC &#x3E; = 0 recovered, by making some some subtle adjustments,
called improvements, to the energy-momentum tensor. An elegant way to make the
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adjustments is to embed the theory in a curved background. Then at the classical level
T03BC03BC = 0 is replaced by T03BC03BC = cR, where c is a constant and R is the scalar curvature, and
at the quantum level the effects of the anomaly may be cancelled by a coupling the fields
to the background metric in a suitable manner. When this is done, not only is a relation
 T03BC03BC &#x3E; = cR recovered but the constant c may be identified as the central constant of the

Virasoro algebra!

Wess-Zumino-Witten (WZW) Actions and AKM Algebras
The archetypal class of two-dimensional conformal field-theories is the Wess-Zumino-

Witten (WZW) class [7] [13]. Indeed practically all two-dimensional conformal field theories
are special cases of the WZW class or can be derived from it. The interesting property of
the WZW theories is that they have AKM algebras as symmetry algebras and their energy-momentum
tensors are of the SS form. Thus they are physical embodiments of the AKM algebras and the
SS construction. The WZW Actions are

where 6 are the coordinates, and gJ.1V (6) is the metric, of the background Minkowskian two-
space,11 = ±1, k is an integer-valued coupling constant and the fields h(6) take their values
in a Lie group Go. An unusual feature is the appearance of the three-dimensional integral,
where the 3-space is understood to have the 2-space of interest as boundary. This integral
is the winding number for the map h(x) of the 3-space into Go and its variation is a total
divergence that can be converted into a boundary term. The boundary term contributes to
the two-dimensional field equations, and simplifies them to

for T) = 1 (and the same equations with J and j interchanged for ~ = -1). Thus the field
equations reduce to the statement that the currents are chiral i.e. depend only on 03C3±

respectively, and their general solution is easily seen to be hs(03C3) = l(03C3+)r(03C3-) where l

and r are arbitrary matrices in Go. The Action (23) is invariant under the transformations
h(6) ~ h, h (a) and h(03C3) ~ h(03C3) ho where ho E Go is a constant matrix, and the currents

J and j are just the Noether currents for these symmetries. They commute, and, being
Noether currents, they satisfy closed algebras, which turn out to be AKM algebras with central
constants :f:k respectively. The system is conformally invariant and the energy momentum
tensor is given by the SS construction. In the path-integral formulation of the quantum

1
version the diffeomorphic-invariant measure is d(g4h) where g is the determinant of the

1

background metric, and the factor g4 produces a Weyl anomaly. This, in turn, produces the
Virasoro central constant
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where y is the Coxeter number of Go. The renormalization of k ~ k + 1ïy for non-abelian

groups is due to a further anomaly, called the WZW anomaly.

String Theory

The first widely studied example of a two-dimensional conformal field theory was
bosonic string theory [6]. As this theory is widely described in the literature we shall present
here only two particularly relevant features. The path-integral takes the form

where the 6’s are coordinates in the two-dimensional space of the Action, the X03BC are a set
of N scalar fields which are identified as the coordinates in an N-dimensional Minkowskian

target space and the j03BC(03C3) are external currents. The Action is an abelian version of a

WZW Action but the theory differs from WZW in that the components of the metric are
allowed to vary, and act as Lagrange multipliers. The Action is diffeomorphic and Weyl

1
invariant but, as in the WZW theory, the factor g4 in the measure produces a Weyl anomaly.
This produces a Virasoro centre proportional to (N - 26), where the 26 comes from two
ghost fields associated with the Lagrange multipliers, and the existence of this anomaly
means that the theory is conformally-invariant only in 26-dimensions. If the theory is made

supersymmetric by introducing fermionic fields to match the bosonic ones the number of
dimensions required to make it conformally-invariant reduces to 10. But in no case does the
number reduce to the familiar 4 dimensions of everyday physics.

The other relevant feature of string theory is that the modern supersymmetric
versions, in particular the heterotic (chirally asymmetric) string version, have AKM algebras
as symmetry algebras. What happens in these theories is that 16 of the 26 bosonic coordinates
are compactified to a torus, Xi(03C3) ~ ~i(03C3) for 0  oi (a)  203C0 and i = 1... 16, and
the 32 Majorana-Weyl fermions which can be constructed from their normal-ordered

exponentials, 03C8a(03C3) =:exp(~i(03C3)):, form the supersymmetric partners of the remaining
ten bosons. The Action of the supersymmetric theory may be written as the sum of the
bosonic Action (26) restricted to ten fields Xi and the fermionic Action

It turns out, however, that the compactification and conversion to fermions is

consistent only if the lattice that defines the 16-dimensional torus is even and self-dual. It is
well-known that there are only two such lattices, called D16 and Eg +Eg, with automorphism
groups SO (32) and Eg x Eg respectively. Accordingly, it is not surprising that these two groups
are the Lie groups associated with the AKM algebras. The SO (32) group corresponds to the
case in which all the fermions have the same periodicity conditions and the AKM algebra
is just the algebra generated by the Noether currents 03C8(03C3)03B303BC03C403C8(03C3), where the T’s are the
generators of SO (32). The Eg x Eg algebra corresponds to the case in which the fermions
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are divided into two sets of sixteen fermions with different periodicity conditions. In this
case only the SO(16) x SO(16) subalgebra of Eg x Eg is represented by Noether currents
of the form just shown. The remaining currents are obtained from these by commutation
with the generators of the rigid coset Eg x E8/SO(16) x SO(16) group, the rigid generators
being constructed in a rather complicated manner by a vertex construction similar to that
given in [15].

Statistical Mechanics

Many of the standard models of 2-dimensional statistical mechanics such as the Ising
model, the Pott’s model and various tri-critical models, owe their solvability to the fact that
they are conformally invariant, and in some cases AKM invariant. The advent of Virasoro
and AKM algebras has allowed the treatment of such models to be simplified and extended.

A particularly interesting feature of these models is that the Virasoro central constant
c lies in the range 0  c  1. It is known that for unitary representations of the Virasoro

algebra with c in this range, the values of c are quantized in the sense that they are limited
to certain national values. For this reason the models in question are called rational models.

An interesting feature is that although these values of c seem to be unrelated to the
values c  1 obtained from WZW models and their AKM algebras in (25), they can, in fact, be
related to them by the so-called coset construction [13]. This consists of taking a subalgebra H
of an AKM algebra G and considering the differences VG -VH of the Virasoro generators for
G and H. Remarkably, these differences generate Virasoro algebras, whose central constants
c are just the differences of the constants for VG and VH, and it turns out that all the rational
constants 0  c  1 can be constructed from such differences.

W-Algebras as Constrained AKM Algebras

Natural generalizations of [14] of the Virasoro algebras are the W-algebras, which are
graded, differential polynomial algebras of the form

where the base elements Wn (apart from the Virasoro, W2) are supposed to be primary
fields of conformal weight n, âx and 03B4(x) each have weight 1, and Ps is a polynomial in the
W’s of weight s = m + n - r - 1. Thus the W-algebras are grade-preserving. In general, W-
algebras are difficult to find, but a large class of them may be obtained by constraining AKM

algebras in the following way: Consider any SL(2,R), with standard generators {Mo, M±},
embedded in the rigid Lie algebra Go of an AKM algebra, and apply the linear constraints

J+ (~) = M+ andj- (~) = M- to the AKM generators, where the grading is with respect to Mo.
These constraints are first-class in the sense of Dirac and thus generate a gauge-group. The

W-algebras are then the Poisson-bracket (or commutator) algebras of the gauge-invariants
induced by the AKM algebras.
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7. Integrable systems

The WZW model is a trivial example of an integrable system, as is evidenced by the
simple solution of the field equations. However, two-dimensional conformal field theory
contains a much larger variety of integrable systems, and many of these, such as (abelian
and non-abelian) Toda systems [15] and KdV hierarchies [16], are intimately connected
with AKM algebras. For example, the Toda systems may be obtained from the WZW systems
by applying the constraints described in the previous section to the AKM generators of the
WZW systems. Thus the Toda systems may be regarded as constrained AKM systems and
there are many advantages of regarding them in this way. For example, the reason that Toda
theories are associated with Cartan-Killing matrices becomes obvious, the general Toda
solutions are easily obtained by algebraic reduction of the (trivial) WZW solutions, and the
symmetry algebras of the Toda systems are immediately seen to be the W-algebras.
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