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LOCAL TAME LIFTING FOR GL(N)
I: SIMPLE CHARACTERS

by GOLIN J. BUSHNELL and GUY HENNIART
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Let F be a non-Archimedean local field (of any characteristic whatsoever) and
N ^ 1 an integer. Let K/F be a finite separable field extension. The local Langlands
conjectures demand the existence of a process n \-^ ^K/p(w) which associates to an irre-
ducible smooth representation n of GL(N, F) an irreducible smooth representation
^K/p(w) of GL(N, K). This is to be strictly analogous to the more obvious one of res-
tricting a Frobenius-semisimple representation of the Weil-Deligne group H^Qfy of F
to its subgroup H^Q^.
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106 COLIN J. BUSHNELL AND GUY HENNIART

Our aim here is to make the first substantial step towards defining l^y in explicit
local terms when the extension K/F is tamely ramified, but not necessarily Galois. We
start from the classification of the irreducible smooth representations of the group
GL(N, F), in terms of explicit local data, given in [BK1]. Our approach is thus in the
spirit of [K], [KM], [Pa], and very different from the globally-derived " base change "
methods of, for example, [L], [AC]. This makes our task here a dual one. We must first
give a rigorous (albeit partial) definition of local tame lift, and then connect it with the
theory of base change. This is reflected in the structure of the paper.

The central concept of [BK1] is that of simple type. This is constructed in three
stages, starting with a simple stratum, which is basically a field-theoretic object. The second
step is a simple character, which is an arithmetically defined abelian character of a certain
compact open subgroup of GL(N, F) determined by the underlying simple stratum.
The final step will not concern us in this paper. An irreducible supercuspidal repre-
sentation TC ofGL(N, F) must contain a simple character 6p, say. Its lift ^/p^), whatever
that may be, is not necessarily supercuspidal. However, it will be built, via a familiar
process of parabolic induction [Ze], from a uniquely determined collection of irreducible
supercuspidal representations p^ of groups GL(N,, K), with S,N,=N. Each of
these p^ will contain a simple character 6^. We proceed on the tentative hypothesis
that the collection { OK } is in some way determined by the original character 6p (and,
we might add, conversely).

We therefore seek a way of lifting simple characters. There are, however, a number
of other factors which need to be taken into account. First, our original supercuspidal
representation n will contain many different simple characters. Any two of these will,
of necessity, intertwine in GL(N, F). A fundamental result of [BK1] then shows that
they will be conjugate in GL(N, F). However, they may arise from quite different cons-
tructions. In particular, they can be attached to distinct simple strata, and it is not
straightforward, given two explicitly defined simple characters, to determine whether
or not they are conjugate. See [BK3], [BK2], [KP] for some discussion of this matter.
Further, we have families of relations between simple characters in GL(N, F) and simple
characters in GL(N', F) for any integer N'. These relations reflect, among other things,
the connections between simple types and parabolic induction. They must therefore
be respected by any lifting process. There is a further complication. If we have two
conjugate simple characters in GL(N, F), it is not obvious a priori that the related cha-
racters in some GL(N', F) will be conjugate. This problem has to be resolved first, and
then we have to show that our definition of lift respects all of these relations. To do this,
we must first invent an object which encapsulates all the relevant relations.

We describe this briefly in the language of [BK1]. To define a simple character,
we first need a simple stratum [91, n, 0, [3] in Endp(V), for some finite-dimensional
F-vector space V. Thus 91 is a hereditary Op-order in Endp(V), n is a positive integer
determined by % and the element (3 eAutp(V), and (3 is such that the algebra F[(3] is
a field whose multiplicative group normalises 91. There is also the technical condition
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(c ^0(^5 91) < 0 " of [BK1] (1.4) which we ignore in this overview. These data give rise
to a pair of open subgroups ?((3, 91) C J^P, U) of the parahoric subgroup U(9l).
(Unexplained notations have their standard meanings, summarised below.) There is
then a distinguished finite set (̂91, 0, (B) ofabelian characters ofH^p, 91), and these are
what we call simple characters.

The constructions of [BK1] (3.6) tell us how to assemble these simple characters
into what we clumsily delineate potential simple characters, or ps-characters for short. A
ps-character is a pair (©, (B). The component (B is an element of some finite field extension
of F, of negative valuation and subject to a technical restriction <( Ap((B) < 0 ". The
other component © is a simple-character-valued function as follows. Let 93 be a hereditary
Op^-order in Endp^j(V), for some finite-dimensional F[(B] -vector space V. The lattice
chain in V which defines SB also determines a hereditary Op-order 91 in Endp(V), and
there is a unique integer n^ > 0 such that [21, n^, 0, [3] is a simple stratum. The func-
tion © then gives a simple character ©(91) e (̂91, 0, p) and the characters ©(21), as SB
varies, are subject to a strict coherence condition. We call ©(91) the realization of (©, (B)
on 91. Two ps-characters (©', (3J are then endo-equivalent if there exist realizations on
the same order 91 in some Endp(V) such that the characters ©'(91) are conjugate in
Autp(V). This notion of an endo-class of simple characters (i.e., endo-equivalence class
of ps-characters) is formally set up in § 8, and relies heavily on the counting results
of [BK3], A more straightforward version of it applies to simple strata (under the appel-
lation " equivalence class of simple pairs ") and this is described in § 1.

It is dme to introduce our concept of lifting. The underlying idea is extremely
simple. We are given a fixed, finite tamely ramified field extension K/F. If we have a
finite field extension F[(3]/F, we can form the algebra K®pF[(B]. This is a product of
fields E,, and E, == K[(3J, where ^ is the canonical projection of (B into the z-th factor.
The (3, are what we call the K/F-lifts of p. If (B satisfies the crucial condition ^p((B) < 0,
we then have k^{^) < 0 as a consequence of our tameness hypothesis on K/F. This
trivial notion of lift, (B h-> { (3,}, is the foundation on which we erect our theory of lifting.
However, it takes § 2-6 to establish that it has the qualities necessary for this role. Note,
however, that it is self-evidently transitive in the field extension K/F.

For simple characters too, the basic idea behind the definition of lift is very easy.
We start with a simple stratum [91, n, 0, [3] over F and a simple character 6p e ^(91, 0, (B).
This is the realization ©(91) of some ps-character (0, (B). Let ^ be some K/F-lift of (B,
and let V be a K[(?]-vector space. In particular, V is an F[[3]-vector space. We choose
a hereditary o^-order (£ in End^(V) which is normalized byKQSF.We then get a simple
stratum [(£,m,0,PJ. Let 91' be the hereditary Op-order in Endp(V) defined by
the same lattice chain as (L The stratum [91', m, 0, [B] is then simple (we need
not distinguish between (B and ^ when working over F) and (©5 j3) determines a
character 8' = 0(91') e ̂ ^^ 0, (B). Two remarkable facts now reveal themselves. First,
we have

Hi((B,9r)nAut^(V)=H^,C).
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We can thus restrict the character 6' to a character^ of H1^, (£), and we find

e^^o,?).

This is the starting point of § 7, where we investigate the correspondence 6p h-> 6^ in
detail. The character'6 defines a ps-character (§,?), and the set of endo-classes of these,
as 'p ranges over the K/F-lifts of (3, is defined to be the set of K/F-lifts of the endo-class
of (©, (B). Of course, the first main result is that this definition does not depend on the
many choices made in the construction. The other properties are quick to state:
(i) the endo-classes (§, p) are distinct (as ̂  ranges over the KIF-lifts of ̂ );
(ii) the endo-class of any one of the (G),P) determines the endo-class of (©, (3) uniquely-,
(iii) any endo-class over K arises as a lift of some (uniquely determined) endo-class over F.

The lifting process is again transitive in K/F. All of this is proved in § 9.
This concludes the first half of the paper. At this stage, we have a coherent method

for lifting simple characters which respects the manifold relations between them. Our
next task must be to connect this abstract lifting with an operation on the set of irreducible
representations of some GL(N, F) ^ Autp(V) containing some realization of a given
endo-class over F. This is the subject matter of § 10, 11. We take a simple stratum
[21,72, 0, (B] in Endp(V) and a field extension E/F[(B] such that E/F is a maximal subfield
ofEndp(V). This allows us to identify V = E. There is then a canonical choice of here-
ditary Op-order %^ in Endp(E ®p K) and this gives rise to a simple stratum [91 ,̂ n^, 0, [B].
We fix a simple character 6p e (̂91, 0, (3). This defines, in an explicit manner via an
Iwahori decomposition, a character 6^ e ^(^IM? 0, (3). (The characters 6p, 6^ are realiza-
tions of the same ps-character.) The order %^ is constructed to be normalized by Kx,
so C == %M n End^(V®K) is a hereditary o^-order. We form the group

H^ = ?((3, ̂ ) n Aut^V ® K)

and the character

6 A I ITl
K == °M [ "K-

The pair (H^, 9^) is not, in general, a simple character: this happens if and only
if K®p E is a field. In the general case, it should be thought of as a " semisimple cha-
racter 59, in the manner of the semisimple types of [BK4]. The group Hg admits an
Iwahori decomposition, and the restrictions of 9^ to the diagonal blocks of this decompo-
sition are just the K/F-lifts (up to endo-equivalence and predictable multiplicity) of
the original 6p. This setup gives us a framework in which we can directly compare the
character 6p and its various lifts.

The situation becomes particularly interesting when we restrict to the case
in which K/F is cyclic. We fix a generator a of Gal (K/F). In this case, we
show in § 12 that the characters 6p, 9^ are intimately related via the ((twisted
norm 5? x i-̂  x == x.^x) .^{x) . . . a^-1^), x G GL(N, K), where d == [K : F]. More
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than this is true; we get a formal term-by-term comparison between certain sc character-
like " sums of values of 6p, 6^ over appropriate conjugacy classes. (In fact, we only
treat unramified and totally tamely ramified extensions K/F in § 12, in order to confine
the burgeoning technicality. Theses cases are adequate for our purposes, but it looks
likely that the results hold in greater generality.)

In the standard theory of base change, as developed in [Sa], [Sh], [L], [AC], it
is the map ^y (on appropriate conjugacy classes) which provides the link between a
representation ofGL(N, F) and its base change lift. Thus the results of§12 give us the
starting point for a comparison between our naive local (and partial) definition of lifting
and that given by base change. To make such a comparison, it is enough to treat super-
cuspidal representations of GL(N, F): one knows that base change respects parabolic
induction and the corresponding feature has been built into the local definition of lift.
An irreducible supercuspidal representation of GL(N, F) must contain a simple cha-
racter 6p e (̂91, 0, (B), for some simple stratum [91, n, 0, [B] in M(N, F). The incomple-
teness of our local definitions now imposes a restriction: we consider only supercuspidal
representations of GL(N, F) containing a simple character 6p e (̂91, 0, (B) for which the field
degree [F[(BJ: F] is equal to N. The general case requires further investigation and must be
postponed to another occasion.

Our main result comes in § 16. There we assume that K/F is a finite, tamely ramified,
Galois extension. We check that base change unambiguously defines a lifting process
relative to such extensions K/F, and then we prove:

An irreducible smooth representation n of GL(N, F) contains the simple character 6p if
and only if its K./F-base change contains the character 6^.

One caveat is needed here: we assume without formal justification an algebraic
property of the character 6^ defined above. This property (16.10) is a special case of
the more general considerations of [BK4], so it is appropriate to give the proof elsewhere.

This result is approached via a couple of special cases, treated (without recourse
to the unproven (16.10)) in§ 14 and § 15. The arguments of§14 apply to cyclic exten-
sions K/F which are either unramified or totally tamely ramified, and deal with the case
where the algebra K®p F[(B] is a field. This amounts to saying that our element (3 has
a unique K/F-lift, and that the character 6^ is in fact a simple character over K. Moreover,
any irreducible representation of GL(N, K) containing 6^ is supercuspidal. The tech-
nique of§ 14 is to compare the character relation defining base change with the relations
given by § 12. We get an equality, indeed a term-by-term comparison, between a finite
sum of characters of representations over F and a finite sum of twisted characters over K
(and hence a partial answer to a question of L. Glozel). In fact, the relations of § 12
imply more general results of this kind: see especially the intriguing identity (14.5).
However, it is only in the present case, where F[(B]/F has degree N, that we can inter-
pret (14.5) directly as a character relation.
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A different special case is treated in § 15. There, we assume that the extension K/F
embeds in F[(3]/F: one can think of this as the case where 6p <( splits completely "
over K. Owing to the presently opaque nature of the relation (14.5), we cannot directly
compare the local lift with base change in this case. We therefore compare it with the
c( dual " process of automorphic induction, as treated in [HH]. We are able to show, in a
sufficient number of special cases, that our local lift is compatible with automorphic
induction. The two cases of§ 14, 15 then combine with formal properties of base change
and automorphic induction to give the main theorem quoted above.

Some other points need to be made. First, given a little more work (largely omitted
here), the processes of base change and automorphic induction can be regarded as
different sides of the same coin. Thus our results show equally that local lifting is compa-
tible with automorphic induction. Further, the indirectly achieved comparison with
base change enables us, at this stage, to interpret (14.5) in more general cases.

Next, we have to recall that both base change and automorphic induction are
presently only available in characteristic zero, so our comparison results can only be
valid with that restriction. However, all our local arguments are entirely characteristic-
free. The restriction to characteristic zero is only ever invoked at the last stage of the
proofs, alongside the fact that characters of distinct irreducible supercuspidal repre-
sentations remain linearly independent on restriction to the elliptic regular set. This is
again only known in characteristic zero. However, when this result, base change and
automorphic induction become available in positive characteristic, along with some
unsurprising formal properties, our comparison results will become valid there. We give
a more precise description of the situation at the end of§ 16.

We conclude with an Appendix on basic properties of characters. We need these
rather standard results in arbitrary characteristic not only for GL(N, F) but also for
open finite-index subgroups ofGL(N, F) and for groups of the form GL(N, K) x Gal(K/F),
where K/F is a finite Galois extension. The required combination of hypotheses rarely
occurs in the literature. We found it more satisfactory to write these few pages than to
endlessly insert lame and automatically suspect statements along the lines of (< arguing
as in [Xx] (x.y.z) (which does not actually require the hypothesis...)... ". Apart from
a couple of minor observations (see especially the finiteness properties in (A. 14)), there
is nothing really new here. Rather similar comments apply to our § 13. We hope the
reader will indulge us in this small matter.

Notation. — Throughout, F denotes a non-Archimedean local field. We write
0 .̂ == the discrete valuation ring in F;
pp = the maximal ideal of Op;
kp = Op/pp == the residue field of F;
V p : F - ^ Z u { o o } i s the normalised additive valuation on F.

IfE/F is a finite field extension, we use similar notations relative to E. We also write
e(E | F),/(E | F) for the ramification index and residue class degree of the extension E/F.
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Let V be a finite-dimensional F-vector space, and 3? an Op-lattice chain in V.
Thus o^ defines a hereditary Op-order % in A = Endp(V): we have 31 == End^(oSf) in
the notation of [BK1]. The Jacobson radical of % is invariably denoted ̂ , and we put
u(9i)==9T;
11̂ 91) = 1 +^ for 7^ 1;
^(91) =-{>eAutp(V) :^-19h:=9l}.

There is a special case we shall frequently use. Let E/F be a finite field extension.
The set 3? == { p^ :j e Z } is an Op-lattice chain in E, and we usually write 9l(E) for the
order End^(,S?). Alternatively, 9l(E) can be described as the unique hereditary Op-order 91
in Endp(E) such that E^ C ^(91).

Finally, if x e R, we write [x] for the greatest integer ^ x.

1. Simple pairs

The simple pairs of the title of the section amount to an abstraction of the simple
strata of [BK1]. We start by recalling some of the salient features of simple strata, and
establishing a system of notation more convenient for our present purposes. Let V be
a finite-dimensional vector space over our non-Archimedean local field F, and let 91 be
a hereditary Op-order in A == Endp(V), with Jacobson radical }̂, attached to the lattice
chain S? in V. As usual, we write e == <?(9I | Op) for the Op-period of the lattice chain JS?.

Let E 3 F be a subfield of A, so that we may view V as an E-vector space. We
write B == Endjg(V). The Op-lattice chain ,Sf is then an o^-lattice chain if and only if
E>< C .ft (91). When this condition is satisfied, the ring

SB = % n B = End (̂̂ ),

is a hereditary o^-order in B. Moreover, its radical is Q == ^ n B, and

.(911 Op)
.(93 | o^) == .(E | F)

(All of this can be found in the first two sections of [BK1] Gh. 1.)
If JS? is an Op-lattice chain in V, say ,S? = {L, :j e Z}, L, 5 L,+i, we write

d,W == ^(JS?) = dim /̂L ,̂), i e Z.

(1 .1 ) Proposition. — Let V be a finite-dimensional 'F-vector space, and 91 a hereditary
Dy-order in A = Endp(V), defined by the lattice chain 2? in V. Let E/F be a finite field extension.
There exists an embedding <p : E -> A of V-algebras such that ^(E^ C ^(91) if and only if the
following conditions are satisfied'.

a) /(E | F) divides .̂(JS?) for all j e Z;
b) <?(E|F) divides .(9I|Op);
c) we have d^) === d^ <(JSf), for all j e Z, where t == .(911 Op)A?(E | F).
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Proof. — This is just a restatement of [BK3] (1.2). D
In practice, our finite field extension E/F will always come with a distinguished

element (3 eE" such that E === F[(3]. If E/F is also a subfield of A which normalizes %
we then use the notation

(1.2) ^K)=^B|OE).

Since, in this situation, we have p e^(9l), there is an integer n such that (B91 == <^~~n.
Explicitly, this is given by

n == - e,W v^(P).

It will here be more convenient to use the notation

(1.3) ^p(p) == - ̂ (p),

so that n = <?p(9l) %p(p).
Now let flp denote the adjoint map A -> A given by x ^-> f^x — x^. Recall ([BK1]

(1.4.5), (1.4.11)) the quantity ^(P? %) ez u { — °° L which can be defined as
follows: if (B e F, then Ao((B, %) = — oo, while, otherwise, Ao((3, 91) is the least integer k
for which

^n^(A)C^I).

We mention a special case of this setup. We view E as a vector space over F. The
set { PE ' ' j e Z } is then an Op-latdce chain in E, giving rise to a hereditary Op-order 9l(E)
in Endp(E),

%(E)=End^({p^}) ,

which is the unique hereditary Op-order in Endp(E) normalized by E^ We write

(1.4) Ap(j3)=W9l(E)).

IfV is any finite-dimensional E-vector space and 91 is any hereditary Op-order in Endp(V)
normalized by E^ we then have (see [BK1], (1.4.13))

W%) = W) e,W.

We also recall that ifAp(|B) is finite, then (see [BK1] (1.4.15))

^p(P) ^ - ̂ (P).

We therefore make the following definition.

(1.5) Definition. — A simple pair over F is a pair [m, p] consisting of a nonzero element (i
of some finite field extension of F and an integer m such that

m<min{^(p),-Ap((B)}.
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Two simple pairs [w,, p,], i == 1, 2, are isomorphic if Wi = ̂  and there exists
an F-isomorphism 9 : F[pJ -> F[pJ such that 9((Bi) = (Bg.

Let [w, p] be a simple pair over F, and set E = F[[B]. Let V be some finite-
dimensional E-vector space and SB a hereditary OB-01^ in End^V). Let 91 be the
hereditary Op-order in Endp(V) defined by the same lattice chain as®. Set n^ = 7Zp((3) <?p(9l),
and let m^ be some integer satisfying

.^pW.
w.

Observe that this implies m^ < - ̂ (P. 31) and w<a < n^ so [91, ^i, w<a, p] is a ^m^fe
^m^m in Endp(V), in the sense of [BK1] (1.5.5). We call this stratum the realization
of the simple pair [w, p] on the order 91. Obviously, isomorphic simple pairs have effec-
tively the same realizations.

Conversely, if we are given a simple stratum [91, n, m, (B] in Endp(V), for some vector
space V, then [[w/^(9l)], P] is a simple pair, of which [91, n, m, (B] is a realization.

Remark. — It is sometimes useful to view this situation slightly differently. Suppose
we are given only a finite-dimensional F-vector space V and a hereditary Op-order 91
in Endp(V). Let [m, (3] be a simple pair over F. A realization of [m, [3] on 91 is then a
simple stratum of the form [91, n\ m', <p((3)], where 9 : F[(3] -^Endp(V) is a homo-
morphism of F-algebras such that ^F^F) C ^(91) and m' is an integer such that
[^7^<p(p)(9l)] = m. Of course, we can view V as an F[(B]-vector space via the map 9,
and we are in the same situation as before. The following elementary result shows that
this concept is, in essence, independent of the embedding 9 subject to the stated conditions:

(1.6) Lemma. — Let V be a finite-dimensional V-vector space, and let 91 be a hereditary
Oy-order in A = Endp(V). Let E/F be a finite field extension and, for i == 1, 2, let 9,: E -> A
be an ^-embedding such that ^(E^ C ^(91). There exists u e U(9l) such that

92W =^ - 19lW^ xe^.

Proof. — Let us write V1 for V viewed as an E-vector space via the embedding 9^.
Let -Sf = { L, :j 6 Z } be the lattice chain which defines 91. This determines an o^-lattice
chain JS?1 == { L}} in V4, for each value of i. The lattice chain ,S?1 is determined up to
OE-isomorphism by dim^V1) and the sequence of integers

^ = dim^/L^,).

Of course, dim^V1) == dim^V2), while, in the notation of (1 .1 ) ,

^/(ElF)--^,^).

Thus there exists an E-isomorphism V1 -^V2 which maps L} to L2, for each j. This
isomorphism is given by an element u eAutp(V) such that 91 {x) = u~1 ̂ {x) u and

15
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uLj = L,, for all x e E^ and allj e Z. The second property here is equivalent to u e U(9I),
so this proves the lemma. D

We now recall some of the basic ideas associated with strata: see [BK1], especially
(1.5). For i = 1, 2, let [51, n, m, 6J be a stratum in Endp(V), for some finite-dimen-
sional F-vector space V. Thus m < n and ^ e ̂ ~ w, where ^3 is the radical of 31. We say
these two strata are equivalent, denoted

[91, n, m, &i] ̂  [91, n, m, b^],

if we have

^ + ^ r w = ^ + ^ w

We now summarize the implications of [BK1] (2.4.1) (ii) in this situation:

(1.7) For i == 1, 2, let [91, n, m, [3J be a simple stratum in Endp(V) and suppose that
[91, n, m, pj ̂  [91, n, m, (Bg], We then have

^(F[Pi]|F)=.(F[p,]|F),

/(F[M I F) =/(F[M F),

^o(Pi,%)=W^),

<wrf therefore

^w == ^(^)>
^(Pl) = ̂ (?2),

^(Pl) == ^(P2)-

On the other hand, we say that two strata [91 ,̂ n^ m,, 6J in Endp(V) intertwine
(formally) in Endp(V) if there exists x e Autp(V) such that

^\h + ̂ i""1) ^ ^ {h + ^2"W2) + 0.

Now we recall one of the main results (2.6.1) of [BK1].

(1.8) Let [91, n, my (3J, [91, n, w, (Bg] ^ simple strata in Endp(V), wA^A intertwine.
There exists u e U(9I) ^^A ^Afl^

[91, n, m, pj /- [91, n, m, u-1 ̂  u].

In particular, the elements (B, have the same arithmetical invariants, as in (1.7).
Thus intertwining is an equivalence relation on the set of simple strata with given

values of the parameters 91, w, m. Our immediate task is to unify this family of equivalence
relations into an equivalence relation on the set of simple pairs. First, however, we note
that one can often <c extend the range " of an intertwining relation between simple
strata.
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(1.9) For i = 1, 2, let [51, n, m, (B,] be a simple stratum, and suppose that these two strata
intertwine. We then have e^ (91) --= ̂  (91). Let

mo-^slw[^}-tc•m[^}•
The strata [91, n, m^ pi], [91, TZ, 77^, [B^] ̂  intertwine.

Proof. — The first assertion follows from (1.7), (1.8), and the second from (1.8)
and [BK1] (2.4.1), (2.2.1). D

We now investigate the intertwining relations between various realizations of
given simple pairs.

(1.10) Proposition. — Let [m, pi], [w, [BJ be simple pairs over F, and suppose that
[F[pi] : F] = [F^] ; F]. Let V be a finite-dimensional V-vector space, and 91 a hereditary
Op-order in A == Endp(V). For i == 1, 2, let [91, ̂ , m,, <p,((B,)] be a realization of [m, (BJ
on 91. Suppose that the strata [91, n^m^, 9i((Bi)], [91, ̂  ̂  92(^2)] intertwine in A. Tte

(i) We have

eW,] | F) = ,(F[(B,] | F),

/(F[M | F) =/(F[pJ | F),

^p(Pi) == ^(^2),

^(Pl)==^(P2).

(ii) Let V ^ jom^ finite-dimensional If-vector space and 91' a hereditary o^-order in
A'== Endp(V'). For i = 1,2, ^ [91', ̂ , ̂ , 9;(PJ] ^ fl realization of [w, pj on 91'.
77^ j^/a [91', ^5 m^ ^[{^~\ then intertwine in A'.

Proof. — The strata [91, n^ n^ — 1, <p»((B,)] are each equivalent to a simple stratum,
and certainly intertwine. It follows (see [BK1] (2.6.2)) that n-^==n^=n, say. By
symmetry, we can now assume that m^ ^ m^. We choose a simple stratum [91, n, m^ y]
equivalent to [91, n, m^, <pi((3i)], as we may by [BK1] (2.4.1). The simple strata [91, n, Wg, y],
[91, n, m^ cp^)] intertwine, so (1.7), (1.8) give us [F[y] : F] = [F[pg] : F]. By hypo-
thesis, we have [F[(Bi] : F] == [F^] : F], so [F[y] : F] == [F[pJ : F]. Appealing to [BK1]
(2.4.1), we deduce that the stratum [91, n, m^ <pi((3i)] is simple. The desired equalities
now follow from (1.8). This proves part (i) of the Proposition.

We turn to part (ii), the proof of which is considerably more intricate. We abbre-
viate E, = F[pJ, and consider the order

9I(EO == En<.({ p^. :j e Z }) C A(EJ == End^(E,).

This is a principal order, satisfying ^(9I(E,) | o?) = ^(EJ F). A principal order 91 in
some Endp(V) is determined up to isomorphism by the quantities dinipV, ^(911 Op). The
relations [E^: F] = [E2 : F], e{E^ \ F) == e(E^ | F) thus imply 9l(Ei) ^ 9l(Ea) as Op-orders.
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Therefore there exists an F-embedding ^ of Eg in A(Ei) such that ^(E^) C R(9I(Ei)).
In particular, we get

^(%(E,)) == 1 = ^(9I(Ei)),

whence we have simple strata

[%(Ei), n,, m, (3J, [%(Ei), ̂  ̂  WL

in which no = ^((3i) == n^).
At this point, we break off to recall another structure, described fully in [BK1] (1.2).

Let V\ be an E^-vector space and %i a hereditary Op-order in Endp(Vi) which is normalized
by E^. Set ®i == 9li n End^(Vi). By choosing an o^-basis of the latdce chain defining %i,
we get a (< (W^, E^)-decomposition 95 of 9Ir This is, in pardcular, an isomorphism

%i=9l(Ei)O^SB,

of (9I(Ei),93i)-bimodules. If ̂  is the radical of ̂  and ®(Ei) that of 9l(Ei), this iso-
morphism identifies ^(Ei)"®^ with 1̂, aeZ , where ^ = ^(%i). We also have
the property

^Ott(Ei))®lC^(%i).

Thus a simple stratum [9I(Ei), r, j, y] in A(Ei) determines a simple stratum

[Sli,r<?i,^i,Y®l]

in Endp(Vi). Indeed, we get a family of simple strata

(1.11) [5li,^,ji,Y®lL se^s^< (s+ 1)^.

It is easy to characterize the (< image " of this inflation process.

(1.12) Lemma. — Let ptti, t, u, 8] be a simple stratum, and put s == [^/<?i], where
e! = ^pi(Sli) = ̂ i I Op)^(5l(Ei) | Op) as above' The following are equivalent:

(i) there exists a simple stratum [%(Ei), r, s, y] in A(Ei) ^^ /Afl^ [SIi, t, u, 8] intertwines
with a stratum of the form (1.11);

(ii) we have:
/(F[8] : F) divides f^: F), and €(F[S] \ F) divides e^ | F);

(iii) the simple pair [[^§(9Ii)], 8] admits a realization on 3I(Ei).

Proof. — The implication (iii) => (i) follows from (1.6); (i) => (ii) is given by (1.7)
and (1.1), while (ii) =^ (iii) is given by (1.1). D

{i A3) Lemma. — For i = 1,2,^ [%(Ei), r, s, yj ^ a riw^ ^ra^w w A(Ei).
Tto^ too strata intertwine if and only if the strata [%i, re^ se^ y, ® 1] ^ Endp(Vi) intertwine.
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Proof. — Suppose first that the [9I(Ei), r, s, yj intertwine in A(Ei). Appealing
to (1.8), there exists x eU(9I(Ei)) such that

[%(E,), r, s, x-1 Yi x] - [9I(Ei), r, ,̂ Y2]-

This implies that x~l^x — ̂  e^(Ei)-8, where ^(Ei) denotes the radical of 9I(Ei).
We have A;0 1 eU(9li), and we have

^YlA?®! = (^®1)-1 (Yl®l) (A;®1).

This gives us
A T ' Y l A ; ® ! -Y20! e^(Ei)-8®!.

However, ^(Ei)-5® 1 C ^(Ei)-8®^ == ̂ 8€1, and this proves one implication of
the lemma.

We can extract more from this implication: it shows that the inflation process

[%(Ei), r,^, Y] ̂  Dili, re^ se^ y® 1]

induces a well-defined map from intertwining classes of simple strata [?((Ei), r, J1, y]
in A (Ei) to intertwining classes of strata [9Ii, ^3 ^, 8] in Endp(Vi) satisfying the equivalent
conditions of (1.12). Moreover, by (1.12), this map is surjective. The opposite impli-
cation of the present lemma is equivalent to this map being injective. However, these
two sets of intertwining classes of simple strata are finite and have the same numbers of
elements, by [BK3] (1.15), and the lemma follows. D

Now we return to the proof of (1.10), and the strata [9l(E^), HQ, m, (BJ,
[9l(Ei), ^o, w, ^((Bg)] which realize our given simple pairs [m, (BJ on 5l(Ei). By (1.13),
(1.9), these intertwine, and (1.10) (ii) now follows from (1.13). D

We now define our basic equivalence relation.

(1.14) Definition. — For i = 1, 2, let [k^ (BJ be a simple pair over F. We say these
pairs are equivalent, denoted

[Ai, (3J » [k^ pa],

if the following conditions are satisfied'.

(i) AI = Ass;
(11) [F[pJ:F]=[F[^]:F];
(iii) there exists a finite-dimensional V-vector space V and a hereditary Qy-order % in Endp(V),

together with realizations [91, n^m^ 9,(P,)] of the pairs \k^ pj on 91 which intertwine
mEndp(V).

(1.10) implies that « is indeed an equivalence relation, and (1.9) says that the
exact choices of the m^ are irrelevant. We write <9^(F) for the set of these equivalence
classes of simple pairs over F, and (^, (B) e e^^(F) for the equivalence class of [k, (BJ.
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Before proceeding, we record some immediate consequences of (1.7), (1.8) in
this language.

(1.15) For i = 1, 2, let \k, (3J be a simple pair over F, and suppose that [k, (3J w [k, (Sg].
Then

^(Pi) = ̂ (^2).
e{F[^] \ F) = .(F[pJ | F),

/(F[Pi] I F) ==/(F[M I F),

^(Pi) == ^(P2).

Temporarily write SP(F) for the set of all simple pairs over F. If we have a field F'
and an isomorphism 9 : F -^ F', then 9 induces a bijecdon SP(F) ^ SP(F'). Explicitly,
if [w, p] is a simple pair over F, the composition

F' -̂ > F -> F[p]

defines a simple pair [m, 9((B)] over F'. This preserves equivalence in the sense of (1.14),
so we get a bijecdon 9 : <$^(F) ^ <^(F').

As a particular case of this, suppose that F is a finite Galois extension of some
field FQ, and write 2 = Gal(F/Fo). If we have a simple pair [w, [B] and (T e S, the iso-
morphism o"1 : F -> F thus determines a simple pair [w, CT"''1^)], which we prefer to
denote [m, [B°]. We thus get an action

y^CF) x s -> y^CF),
(1.16)

((m, (B), G) ̂  (^ P°).

In more concrete terms, suppose we have a simple stratum [91, n, m, [B] in A == Endp(V),
for some finite-dimensional F-vector space V. This determines a simple pair [k, j3], say.
By choosing an F-basis ofV, we identify A with M(N, F) for some N, and hence get an
action of S on A. The stratum [%°, n, m, (3°] is still simple. The simple pair which it
determines is then [A, JB°], in the sense above.

2. Interior tame lifting

We now take a finite, tamely ramified field extension K/F of our base field F. In this
secdon, we make some preliminary investigations of the relations between simple strata
over K and simple strata over F.

Let V be a finite-dimensional K-vector space. We write G == End^(V) and
A = Endp(V). Let £ be a hereditary o^-order in C, and 91 the hereditary Op-order in A
defined by the lattice chain in V which defines (£. Thus K" C ft(9I) and (£ == % n C.
We write 9i for the radical of (£, and ^5 for that of 91, so we have

(2.1) 9^=^00, neZ.
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It follows that if [(£, n, m, c] is a stratum in C, then [91, n, m, c] is a stratum in A, and the
process [(£, n, m, c] i-> [91, n, m, c] respects equivalence of strata. Likewise, if we have a
stratum [91, n, w, 6] in A such that b commutes with K, i.e., b e G, then [C, n, m, b]
is a stratum in G.

Recall that a stratum [91, n, m, b] is called pure if the algebra F[A] is a field which
normalizes 91 and 691 == ̂ ~n.

(2.2) Definition. — Let [91, n, m, b] be a stratum in A such that 91 is normalized by K^,
fl̂  a6oz^. r^ stratum [91, ,̂ w, 6] is called K-pure if:

(i) beC;
(ii) MÎ -;
(iii) ̂  algebra K[b] ^ ̂ ^rf j^A that K^^ normalizes 91.

Immediately, a K-pure stratum [91, ^, m, 6] in A is pure, and the corresponding
stratum [(£, n, m, b] in G is pure. By (2.1), we have:

(2.3) In the situation above, the process [C, n, m, c] v-> [91, n, m, c] gives a bijection,
respecting equivalence, between the set of pure strata in G and the set of K-pure strata in A.

The situation with regard to simple strata requires more investigation. This brings
us to the main result of this section.

(2.4) Theorem. — Let K/F be a finite, tamely ramified field extension, and let V be a
finite-dimensional K-vector space. Write C == End^V), A = Endp(V). Let [91, n, m, (B] be
a K-pure stratum in A, and set £ == 91 n C. Then

W^W^l).
In particular, if [91, n, m, (B] is simple, then [C, n, m, [B] is simple.

Proof. — We start by recalling, from [BK1] (1.3), the notion of tame corestriction.
For the moment, let V be some finite-dimensional F-vector space and put A == Endp(V).
Let E/F be some subfield of A and write B = End^V). A tame corestriction on A relative
to E/F is then a (B, B)-bimodule homomorphism s : A -> B with the property

^(91) = 91 n B,

for some (equivalently, any) hereditary Op-0^611 91 in A such that 5^(91) ^E^ This
condition does not determine s uniquely: if s is a tame corestriction as above, and u e o^,
the map a h-> us{a) is also a tame corestriction on A relative to E/F, and they all arise
this way.

Immediately from the definition, we get

(2.5) Z^ Ei^E^^F be subfields of A == Endp(V), and write B, = End .̂(V),
i = 1, 2. Let s^ (resp. s^,^) denote a fame corestriction on A (resp. BJ relative to Eg/F
(resp. Ei/E .̂ Then î/Eg ° ̂ Ea/r ls a tame ^restriction on A relative to E^/F.
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We now return to the situation of (2.4), so that, in particular, V is a K-vector
space and 91 is a hereditary Op-order in A == Endp(V) normalized by 'K.X. We use the
following notation throughout the proof:

(2.6)

C == End^V), (£ == 91 n G,
E = F[(B], B == End^V), 93 = % n B,
D == End^(V), D == 91 n D,

^ ^P = rad(%), 9i == rad((£), (5 = rad(S)).

(2.7) Lemma. — Use the notation above, amf to .y /̂p (resp. s^^y) be a tame corestriciion
on A relative to E/F (resp. K/F;. Then:
(1) ^K/F I B ^ a tom^ corestriction on B relative to K[(3]/E;
(ii) ,$̂ p [ G ̂  a tame corestriction on C relative to K[(3]/K.

Proof. — We start with (i). Since any two choices ofj^p differ by a factor u e o^,
we see that (i) holds for one choice of s^y if and only if it holds for all. This enables us
to choose ,$gyp conveniently.

To do this, we write C1 for the orthogonal complement of G in A relative to the
(nondegenerate) symmetric F-bilinear form

(^,j/)i-^tr^p(^), x . j y e A ,

where tr^/p denotes the trace mapping A -^ F. Thus A == G ® C1, and the orthogonal
projection A -> C is a tame corestriction on A relative to K/F (see [BK1] (1.3.8)).
This is our choice for s^/y. It is characterized among the set of these tame corestrictions
by the property

^K/pM = ̂  c e a

Since D == B n C, the restriction ^/p ( B is indeed a (D, D)-bimodule homo-
morphism B -> G. We have to show that ^K/p(B) C D and that ^(S?) == ^>- For b e B,
we have (3& — A(3 == 0. Since (B e D, this implies

0 == s^b - &(B) = (3^/p(&) - ̂ /p(^) P. ^ B.

This shows that ^R/p(B) is contained in the G-centralizer of p, which is D. Thus we also
have

/̂p(») C ^K/rW nD=(£nD=D.

On the other hand, we have D C G, so s^y(x) == x for all x e D. Surely SB 3 3), so
^,p(S8) == D, as desired.

To prove (ii), we proceed with the same s^y. Let <$K[P]/E; be some tame corestriction
on G relative to K[(B]/K. By the choice of^/p, we have

^KEPl/K = ^KtPJ/K ° ^K/F I Ll*
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However, by (2.5), ^Kc3]/K ° ^K/F ls a tame corestricdon s^yy on A relative to K[(B]/F.
Thus ^IP]/K == •WI/F 1 c- Property (2.5) further implies that ^/p = -WE ° ̂ E/I^ for
our given .y^/p ^d some tame corestricdon ^K[P]/E on B reladve to K[(B]/E. This gives us

^KH&l/K == ^KCPl/E ° -^E/F I ̂

The field extension K[(B]/E is tamely ramified, so we can adjust our original choice
of ^K[3]/K (by a unit of OK[P]) to arrange that ^KIPI/E I ^ ls t^ idendty map.

The restricdon s^ | G is surely a (D, D)-bimodule homomorphism C -> B. We
show next that ^E/B'(G) C D. For x e K and c e C, we have xc — ex == 0, so

0 = ̂ E/l̂  — cx) == ^E/pM — <?E/F(C) ̂

since A? e K C B. Thus ^E/p(^) ls contained in the B-centralizer D of K. This gives us

•Wl/K^) = ̂ [Pl/E^E/I-M) == ^E/pM? ^ e ̂

since we have arranged for '$K[P]/E to be the idendty map on D. We have therefore shown
that s^-y | G == ^K[P]/K» as required. D

Before proving the Theorem, we need to recall another piece of the machinery
of [BK1], Stardng with our pure stratum [21, n, m, p] and an integer k, we define

W^)={xe^:a^x)e^}.

Here, flp is the adjoint map x »-> ^x — A:|3, as above. By [BK1] (1.4.5), we have

A>Ao(P ,2 I )o^ (P ,%)CS+^

using the notation (2.6).
We take k e Z, k > ̂ o(P? %)• We have to show that k > Ao(P? C), or, equivalently,

that
9^((B, £) C D + 91.

It is immediate from the definidon that 9V(B, (£) = 9^(|3, 91) n G, so it is enough to
show that

(2.8) (93 +W nC==D + SR.

We certainly have

(»+^ )nGD®nC+^nC==2)+9 l .

On the other hand, let j^/p be the orthogonal projecdon A -> G, as in the proof of (2.7).
Then for any addidve subgroup M of A, we have s^(M) D M n G. In particular,
W93) =^ ̂  ( 2 - 7 )^ while ^wW = ̂  ̂  [BK1] (1-3.4). Thus

(SB + ̂ ) n G C ̂ (SB + ̂  = ̂ (») + ̂ p(^) = 2) + 9?.

The desired equality (2.8) now follows. D
16
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(2.9) Remark. — In (2.4), it is easy to produce examples in which k^ ((3, (£) < k^ ((B, 91),
in other words, examples of simple strata [(£, w, m, [3] such that [91, n, m, (3] is not simple.
The generic example, in a certain sense, is given by taking m = n — 1, with (3 e K^
such that (B is not minimal over F. (We recall this concept below). However, one of
our main results below will show that a simple stratum [(£, 72, w, a] in G is equivalent
to some simple stratum [(£, n, w, a'] such that [91, n, w, a'] is simple.

It is worthy of note that (2.4) depends crucially on the tameness of the rami-
fication of the extension K/F. To illustrate this, write p for the residual characteristic
of F, and let K/F, E/F be totally ramified extensions of degree p such that KE/F is totally
ramified of degree p2: this is not difficult to arrange. We then have E = F[a], for
some element a which is minimal over F: it has only to satisfy the condition
gcd(v]g(a), e(JL \ F)) = 1. However, EK = K[a], and VEE^) = P^sW^ which is certainly
not relatively prime to p = ^(EK/K). Thus a is not minimal over K.

The property mentioned in (2.9) also fails for wildly ramified extensions K/F: a
simple stratum over K need not be equivalent to one which is simple over F. An enter-
taining example of this is provided by taking F == Q^ (cf. [W]). This field has a quardc
extension K/Q^ whose normal closure has Galois group A^. In particular, K/Q^ has no
quadratic subextension. We view K as embedded in Endq (K) ^ M(4, Q^), and norma-
lizing the principal order % = End^({ p^}) (which has <?(% | Op) = 4). We take a e K
with ^(v) == — n = 2 (mod 4). The stratum [o^, n, n — 1, a] is simple in K. If it were
equivalent to a simple stratum [o^, n, n — 1, p] with [91, n, n — 1, p] simple, we would
have:

a) p e K, since p must commute with K;
b) ^(%2(P) | <L) = ̂  I Op)/gcd(^, .(911 Op)) = 2.
Since K/Q^ is totally ramified, b) would imply [Q^P) '- 0,2] = 2, which is impossible.

3. Tame lifting of simple pairs

We now come to our main results concerning tame lifting of simple strata. Thus
we fix a finite, tamely ramified field extension K/F, and consider relations between the
sets ̂ ^(K), y^CF) of equivalence classes of simple pairs induced by the inclusion F -> K.

We start with a little elementary field theory. This corresponds to lifting field
elements, ignoring the metric considerations imposed by stratum structures. Let E/F be
a finite field extension, and a e Ex such that E = F[a]. We can form the K-algebra

a T? /-\ •V0 == JcL» Q9p IS..

Simply because K/F is finite separable, we get a canonical decomposition

<^= nE,
i==l

of S as a direct product of field extensions EJK. We write TT, for the canonical projection
7C, : § ->E,.
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We then get elements

a, == 7r,(a® 1) eE,

such that E, = K[aj, 1 ̂  i^ r. These a, we call the K/F-lifts of a. They are distinct
over K: if i^j, there exists no K-isomorphism K[aJ ^ K[a,] carrying a, to a,. One
can, of course, phrase this in terms of polynomials: if 0,(X) e K[X] is the minimal
polynomial of a, over K, then II, <D,(X) lies in F[X] and is the minimal polynomial <p<,(X)
of a over F. Thus the K/F-lifts of a are given precisely by the K-irreducible factors
of9a(X).

This lifting process a h->{ a,: 1 < i^ r ) is transitive in the field extension K/F.
Indeed, if L/K is a finite tamely ramified extension, and if { (B^.: 1 < j ̂  ^ } is the set
of L/K-lifts of a,, then { (3,,: 1 < j < r,, 1 ̂  i^ r} is the set of L/F-lifts of a.

(3.1) Let K/F be a finite Galois extension with F == Gal (K/F), and use the notation
above. We have9.

(i) r permutes the factors E, transitively, and the stabilizer of E, is the canonical image of
Gal(EJE) in F;

(ii) r acts transitively on the set {oci, ocg, ..., a,}, and the stabilizer of a, is Gal(E,/E);
(iii) ,(E, | K) = ,(E, | K) and /(E, | K) ==/(E, | K), for all i j .

This is standard. The situation is not so tidy when K/F is not Galois, but we do
get a useful property concerning ramification in the fields E^.

(3.2) Proposition. — Let K/F be a finite, tamely ramified, field extension, and use the other
notation above. The field extensions E,/F then all have the same ramification index, namely

e(E, | F) = lcm(,(E | F), ,(K | F)), 1 < i^ r.

Proof. — This follows readily from the standard structure theory of tamely ramified
extensions: see, for example, [F] § 8. D

In the situation of (3.2), where K/F is tamely ramified, it will be convenient to
have the notation

e^) = .(E | F),

t3'8' '^-^^wr'^-
r^W == ^(a) ^(K | F).

Here, 7^(a) is just n^{^) = — VE.((X,) in our earlier notation: it is in particular independent
ofi.

In general, the residue class degree/(E, | K) will vary with i, at least when K/F
and E/F are both ramified and K/F is not a Galois extension. For example, suppose
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that K/F is totally tamely ramified of prime degree t and not Galois. Thus F contains
no primitive f-th root of unity. Suppose also that / divides <?(E | F). Then one of the
factors E, has degree 1 over E, and the others are all isomorphic (over E) to the field E[^],
where ^ is a primitive /-th root of unity.

(3.4) Proposition. — Let [m, a] be a simple pair over F, and let K/F be a finite, tamely
ramified field extension. Let a, be a K/F-/^ of a, and M an integer satisfying

M
< m.

^a(K|F)J '

Then [M, aj is a simple pair over K.

Proof. — We have 7Zp(a) > m, so ^(a,) = ^(a) < M, as required by the definition
of a simple pair.

As above, write E, for the factor F[aj of S == K®p E. We view E, as a K-vector
space, so that we can form the algebras

A(E,) == End^E,),

G(E,) == End^E,).

We have a natural embedding F[a] ->E^ given by a i-> a,, which we may use here
to identify a, with a. Let 9I(E,) denote the order

End^({p^:jeZ}).

We then have <?(%(E,) | Op) = <?(E, \ F), so that <?a(W)) == e^K \ F). Thus
[%(E,), Wp(a) ^(K | F), m^(K | F), a] is a realization of [m, a] on 9l(EJ. Further,
this stratum is K-pure, in the sense of (2.2). The intersection 9l(EJ n C(EJ is just

6;(E,)=End^({p^:jeZ}).

Theorem (2.4) now tells us

Ao(a, (£(E,)) ^ Ao(a, 9l(E,)),

whence
^(a) ^ Ap(a) ^(K | F)

(see (1.4) et seq.). We are given the relation (m + 1) ^ — ^p(a), and the pair
[M, a] is simple over K provided (M + 1) < —^(a). This will hold provided
(M + 1) ^ {m + 1) e^K \ F), which is equivalent to [M/^(K | F)] ̂  m, as required. D

Thus the simple pair [m, a], together with a choice of integer M such that
[M/^(K/F)J ^ m, gives rise to a finite set [M, aj of simple pairs over K. We refer to
these as the K/F-lifts of [m, a] (relative to the choice of M). This dependence on M is
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somewhat spurious: see (6.1) below. The process [m, a] i-^{[M, aj} is again transitive
in K/F: this follows from the relation ^(L | F) == ^(K | F) ^.(L | K).

Our first result asserts that this lifting process preserves the relation of equivalence
between simple pairs, as in (1.14).

(3.5) Theorem. — Let K/F be a finite, tamely ramified field extension, and let [m, a] be a
simple pair over F. Let a^ . . ., oLy be the K/F'-lifts of y., and let M denote the integer

M = (m+ 1K(K|F) - 1.

The set
LK/H.(W, a) = {(M, aj : 1 ̂  i ̂  r }

of equivalence classes of simple pairs over K depends only on the equivalence class {m, a):
if [m, a'] is a simple pair equivalent to [m, a], then L^p(m, a') == 'Lj^^{m, a). Moreover,
we have (M, a^) == (M, a .̂) if and only if i =j.

Thus the process

(m, a) ̂  ̂ K/v(m, a) = {(M, a,)}

(in the notation of (3.5)) gives us a well-defined map from <^^(F) to finite subsets
of <9^(K). This process is, moreover, injective in the following sense:

(3.6) Theorem. —Let [m, a], [k, [3] be simple pairs over F. Suppose there exist K/F'-lifts a,
P of a, (B respectively, and an integer M satisfying

M + 1 ^ min{(m + 1) ^(K | F), {k + 1) ^(K | F)},

such that [M, 0'] w [M, ?]. We then have \l, a] w \l, [B], where i •=- min{ m, k }.

We also have a surjectivity property:

(3.7) Theorem. — Let [k, (B] be a simple pair over K. There exists a simple pair [m, a]
over F and a KIF-lift a, of a ,$^A ^A^

f_L_l
[.-.(RTF)!'"-

awrf [A, p] « [k, aj.

The proofs of these theorems occupy the next three sections. In the remainder of
this section, we present some corollaries. First, we answer the question left open by (2.4)
(see also (2.9)).

(3.8) Corollary. — Let [(£, n, m, (B] be a simple stratum over K. Let 91 be the hereditary
Qy-order defined by the same lattice chain as (L There exists a simple stratum [(£, n, m, ji'], which
is equivalent to [£, n, m, p], such that [31, n, m, p'] is simple.
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We will be able to deduce (3.8) from (3.7) once we have proved (4.3) below.
We can summarize our lifting theorems as a list of properties of a certain base-field

restriction or (c induction 5) map as follows.

(3.9) Corollary. — Let K/F be a finite, tamely ramified field extension. There exists a
unique map

Res^p : y^{K) -> y^(F)

with the following property: if (k, (3) e <$^(K), then ReSg:/p(A, P) = (m, a), where
[A/^(K | F)] = m and [k, p] w [k, o?], for some KIF-lift £' of the element a. Moreover,

(i) the map Res^p is surjective;
(ii) for (m, a) e <$^(F), ̂  ̂ r<? of Res /̂p o^r (w, a) is the set {(A?, a,)}, where k ranges

over all integers satisfying

L^(K|F)
m

and { a,: 1 ^ i ̂  r } is the set of KIF'lifts of the element a;
(iii) in (ii), we have (k, a,) == (A, a,) if and only if a, = a,, 1 ^ i, j ^ r.

If K/F is also Galois, with F == Gal(K/F), the fibre of Res^/p over (w, a) is the
union of Galois orbits {(A, o'°) : o- e F }, for a fixed lift 0' of a.

The transitivity property of the lifting process for simple pairs is a direct conse-
quence of the same property for lifting of field elements. However, it can be expressed
very tidily in terms of the map Res:

(3.10) Let L/K, K/F be finite tamely ramified field extensions. Then

Res^/p == Res^/p o Res .̂

Remark. — One can simplify the statements of the lifting theorems by specializing
to the following case. Write <9^°(F) for the set of equivalence classes of simple pairs o
the form [0, a]. Lifting gives us a map from <$^°(F) to finite subsets of e9^°(K), and
base-field restriction a surjective map ̂ ^(K) ^ <9^°(F) whose fibre above a given (0, a)
is the set {(0, a,)}, with a, ranging over the K/F-lifts of the element a. Once the basic
theory is established, this is the only case which will interest us. However, the extra
generality is essential, both for the proofs of the lifting theorems here and for the explicit
constructions of § 7.

The proofs of the results stated here occupy the next three sections. We prove (3.6)
in § 4, along with some general preliminary results. We also show how to deduce (3.8)
from the theorems. The theorems themselves are proved inductively. The first step is
given in § 5, and the general case of the induction occupies § 6.
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4. Preliminary reductions

We start with:

Proof of (3.6). — We use the notation of the statement. Also, for a finite
field extension L/K, we write

6;(L)==En<({p^}).

The hypothesis [M,a]«[M,(B] implies (see (1.15)) that ^(0)=^^) and
(£(K[aJ) ^ (£(K[53]). We can therefore find a K-vector space V of dimension
[K[a] : K] = [K[J3] : K], and a hereditary o^-order (£ in Endg^V), together with
K-embeddings 9 : K[a] ->Ends(V), ^ : K[(B] --^End^V) whose images normalize (L
Note that (£ ̂  <£(K[a]) ̂  (£(K[(3]) as ̂ -orders. Thus we have realizations [(£, n, M, 9(0')],
[(£, TZ, M, ((/(p)] of our simple pairs, with n = ^(a) = ^(p). By (1.10) and hypothesis,
these realizations must intertwine in End^(V). By (1.8), we can adjust 9, say, by a
U((£)-conjugation and assume we have an equivalence

[(£, n, M, 9(0')] - [(£, n, M, ̂ )].

Let % be the hereditary Op-order defined by the same lattice chain as CL This means we
have an equivalence of simple strata

[%, n, M, 9(0?)] - [%, n, M, ̂ )].

Of course, when working over F, we do not need to distinguish between a, o? and like-
wise for p. This last equivalence of simple strata implies 7Zp(a) = Wp([B). Combining this
with the equation n^(&) == ^(P), we get

^(K|F)=.p(K|F) .

The above equivalence of strata now further implies that [̂ , a] w [f, p], for any integer
^[MMK|F)].

This completes the proof of (3.6). D
Having proved (3.6), Theorems (3.5) and (3.7) when taken together are transitive

in the field extension K/F in the following very strong sense.

(4.1) Lemma. — Let L/K, K/F be finite tamely ramified field extensions. Suppose that (3.5),
(3.7) hold for two of the extensions L/K, K/F, L/F. They then hold for the third.

Proof. — We only prove one of the three assertions of the Lemma: of the others,
one is very similar and the remaining one easy. We assume that (3.5) and (3.7) hold
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for the extensions L/F, L/K, and deduce them for the extension K/F. Let [w, a] be a
simple pair over F, and let ai, . . . , a,. be the K/F-lifts of a. Define

M = (m + 1) ^(K | F) - 1,

M' = (M + 1) ^.(L | K) - 1,

M " = ( m + 1K(L|F)-1.

Note that the definition of e^(L \ K) is independent of the choice of i, and indeed

^ (L |F )=^(K[F)^ . (L |K) .

Let oc^., 1 < j < ^ be the set of L/K-lifts of a,, so that { a^ } is the set of L/F-lifts of a.
The classes (M", a,,) are all distinct, by (3.5) applied to L/F. Applying the first state-
ment of (3.5) to L/K, we see that the (M', aj are distinct.

Next, we take a simple pair [m, a'] over F equivalent to [m, a]. Applying (3.5)
to L/F, these pairs have the same sets of equivalence classes of L/F-lifts. Theorem (3.6),
applied to L/K, now shows that they have the same sets of equivalence classes of K/F-lifts.
This proves (3.5) for K/F.

To prove (3.7) for K/F, let [k, [3] be a simple pair over K. Let (3 be an L/K-lift
of (3, and let k' be the least integer for which [&7^p(L I K)] == k. Applying (3.7) to L/F,
there exists a simple pair [w, a] over F and an L/F-lift a of a such that [^'/^a(L I ^)] = m

and [^,a] w [^',P]. We finish the proof by applying (3.6) to the extension L/K. D
Our next result is a conditional one, relating the assertion of (3.7) to the more

concrete considerations of § 2. As always, K/F denotes a finite tamely ramified field
extension.

(4.2) Proposition. — Let V be a finite-dimensional K.-vector space, and [(£, n, m, p] a
simple stratum in C == End^(V). Let 91 be the hereditary Oy-order in A = Endp(V) defined
by the same lattice chain as (£. Suppose there exists a simple stratum [(£, n, m, 8] in G such that

a) [C, n, m, 8] - [(£, n, m, [B], and
b) [%, ̂  m, S] is simple.

There then exists a K/F-^ i of 8 such that the simple pairs [[^3(£)],8], [[^((S)], P]
are equivalent.

Proof. — The obvious embedding F[8] —^ End^(V) extends uniquely to a K-algebra
homomorphism F[8] ®p K -> End^V). The image here is a field (namely the field K[8]),
so this map factors through the canonical projection ofF[8] ® K to one of its field factors.
This factor is of the form K[8], for some K/F-lift i of 8. Our given map F[8] -> End^(V)
therefore extends to a K-embedding K[8] -> End^(V) which maps 8 to our
original element 8. Because of the equivalence [(£, n, m, [3] ̂  [(£, n, m, 8], we have
e^G) == ^((£). Thus [(£, n, m, 8] is a realization of the simple pair [[^/^(C)], 8],
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which intertwines with the given realization [£, TZ, m, [B] of [[w/^(£)], [3]. In other
words, [[m/<?p((£;)],?] » [[w/^(G;)], [3], as required, n

There is also a conditional result converse to this.

(4.3) Proposition. — Let [k, [B] be a simple pair over K. Suppose there exists a simple
pair [m, a] over F and a KIF-lift S of a J^A /A^
fl; We^K | F)] = 771 W
^ [^(B]^a].

Let [(£, 72, y, p] be some realization of [k, p], and let 91 6^ the hereditary Oy-order defined by the
same lattice chain as (L There then exists a simple stratum [C, 72, q, (3'], equivalent to [(£, TZ, q, [B],
•n^A ^to [91, TZ, y, p'] zj simple.

Proof. — The equivalence [̂ , a] « [A, p] implies, via (1.15), that
.(K[a] | K) = ,(K[p] | K),

and likewise for residue class degrees. Therefore there exists a realization [C, n, q, 9(0)]
of [k, a] on (£ by (1.1). Further, this must intertwine with [(£, TZ, q, [3] by (1.10). Thus,
by (1.8), we can replace 9 by some U((£)-conjugate and assume that

[£, T^, y, 9(a)] - [(£, TZ, q, |B].

We have

? < ( f t + i ) ^ ( e ; ) = ( ^ + i ) ^ ( ( £ )
== {k + 1) .((£; | OK^W] | K)
= {k + 1) .(% I Op)/.(K[a] |F)

=(^+1)^W/^(K |F)
< (77z + 1) ,,(K | F) ^W/^(K | F)

and this is ^ — ^o(a, 91) because [m, a] is simple. Thus [91, n, q, 9(0')] is simple, and the
result follows. D

Theorem (3.7) asserts that the hypotheses of (4.3) are satisfied for any simple
pair over K. Thus (3.8) is a consequence of (3.7).

We now need some technical results concerning the extrastructure available when
the lifting extension K/F is Galois.

(4.4) Proposition. — Let K/F be a finite Galois extension^ and F[a]/F a finite field extension.
Let oci, . . ., a,, be the K/F-^j of a.

Let V be a finite-dimensional K-uector space, and £ a hereditary o^order in C = End^(V).
Suppose there exists an embedding 9^ : K[aJ -> C of K-algebras such that 9l(K[aJ><) norma-
lizes d. Then, for each i, there is a ^.-embedding 9,: K[aJ -> C such that 9,(K[aJ)<) nor-
malizes (£.

Proof. — This follows from (1.1) and (3.1). D
17
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Of course, one can vary the embedding of K in C by composing with the action
of the Galois group F == Gal(K/F). The next two results describe the effect of this on
the elements a,.

(4.5) Proposition. — Let K/F be a finite Galois extension with F == Gal(K/F). Let V be
a finite-dimensional K-vector space, and let (£ be a hereditary o^-order in C = End^(V). Let SI be
the hereditary Oy-order in A = Endy(V) defined by the same lattice chain as (£. Then:

(i) The W)-centralizer ofK" is ^((£).
(ii) Let ̂ i(K) denote the S<W-normalizer of Kx. Then ̂ (K) normalizes ^((£), and res-

triction to K induces an isomorphism

^(K)/^((£) ^ r.
Proof. — This follows from (1.6) and the Skolem-Noether theorem. D

Remark. — In the situation of (4.4-5), we have ^(%) = ^(£) U(%). Thus here
and in (4.6) below, we could replace (̂91) by U(Sl) without changing anything.

(4.6) Proposition. — Let K/F, a, (£, <pi be as in (4.4), and 31 as in (4.5). For 1 ^ i ̂  r,
^ 0, 6<? the set of K-embeddings 9,: K[aJ -> G z^ 9,(K[aJX) C ^(C), and put* == UO^.

(i) Z^ A:e.^(K), flTirf let a e F be the element satisfying a(jy) = xyx~1, y e K.
GZ^TZ z, ^r^ ̂ ^ <z ^z^ j such that a extends to an F-isomorphism c : K[aJ -> K[aj
satisfying 5(a^) == a,. T^ extension a is uniquely determined. Moreover, if 9,6$,, ^n
Ad(^) o 9,o G"1 e0,..

(ii) rfe fl̂ o^ ^^^(K) on * ^y^ 6^ (i) is transitive.
(iii) Tfe stabilizer of $, ^ •^(^[9^(0,)]) ^((£), wAw 9, z'j fl7y/ element of^ andS

is the hereditary o^^-order 91 n Endp .̂( .̂)](V).

Proof. — Part (i) is self-explanatory. Given any pair (i,j), together with 9, e0,
and 9, eO,, there is an F-isomorphism ^ : K[9,(a,)] -> K[9,(a^)] with ^(9,(a,)) == 9,(a,.).
We have S(K-) = K, and ^ | K e F. This isomorphism i; is realized by conjugation by
some element u eU(9I), by (1.6). However, u conjugates K to itself so u ec/r<a(K.), as
required for (ii).

In part (i), if we allow x to range over the stabilizer of0,, the corresponding
element a e F ranges over F, = Gal(K[aJ/F[a]). The inverse image of F, in ^((K)
is the group ^^(K^a,)]) ^(£), and the result follows. D

5. Tame lifting for minimal pairs

In this section, we deal with the lifting theorems (3.5), (3.7) in a special case,
which will form the first step of an inductive argument.

A simple pair [772, a] over F is called minimal if we have m = 7Zp(a) — 1. Thus
Ap(a) equals — oo or — 7Zy(a). This is equivalent to a being minimal over F, in the sense
of [BK1] (1.4.14). Explicitly, this means
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(5.1) (i) gcd(7Zp(a), .p(a)) - 1, and
(ii) if TTp is a prime element of F, the coset

n^ ^F(a) + Pp^(C U(0p^))

generates the residue field extension kp^]/kp.
For our choice of prime element Tip, we write

pp(a) = pp(a; Tip) = (Tr^ a^^ + PP[J ekp^.

The minimal simple pair [m, a] then determines a triple of invariants, namely the integers
^p(a), <?p(a) and the (monic) minimal polynomial/^(X) ekp[X] of pp(oc) over kp. The
integers ^p(a), ^p(a) are subject to the conditions

^p(a) ^ 1,

gcd(^p(a), ^(a)) = 1,

while the monic irreducible polynomial f^ (X) is subject only to

/a(X) + X.

Of course, the polynomial /a(X) does depend on the initial choice of prime element TT?.

(5.2) Proposition. — Fix a prime element TT? of F. The map

\m, a] ̂  (^(a), ̂ (a),^(X))

establishes a bijection between the set of equivalence classes of minimal simple pairs [m, a] over F
and the solo/triples (n, e,fCX.)) consisting ofan integer /z, a positive integer e such that gcd(e, n) = 1,
and a monic irreducible polynomial /(X) e kp[X] such thatf(X.) 4= X.

Proof. — In view of (1.10), this is simply a restatement of [BK3] (1.4). D

This enables us to treat lifting of minimal simple pairs in terms of invariants.

(5.3) Proposition. — Let [n — 1, a] be a minimal simple pair over F (so that n = ̂ p(a)^.
Let K/F be a finite tamely ramified field extension, and let { a^: 1 ^ i ̂  r } be the set of K/F'-lifts
of a. Then:

(i) [ne^(K [ F) — 1, aj is a minimal simple pair over K$
(ii) the equivalence classes (ne^(K. [ F) — 1, a,) e <9^(K), I ̂  i^ r, are distinct, and the set

^K/V^ — ^ a) == {(^(K I F) —• 1 ? a,) : 1 ^ ̂  r } depends only on (n — 1, a) e <$^(F).

(5.4) Proposition. — Let K/F ̂  ̂  in (5.3), <W fe^ [m — 1, [B] 6^ a minimal simple pair
over K. There exists a unique minimal (n — 1, a) e <9 (̂F) ̂ A ^A^ (m — 1, (i) e L^/p(% — 1, a).

We note that Proposition (5.3) (i) is a special case of (3.4), while the uniqueness
statement in (5.4) is a special case of (3.6) (which we have already proved in general).
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(5.5) Lemma. — Let L/K, K/F be finite tamely ramified extensions. Suppose that (5.3),
(5.4) hold for two of the extensions L/K, K/F, L/F. They then hold for the third.

This is just a special case of (4.1). We can therefore assume, when convenient,
that K/F is either unramified or totally ramified (of prime degree).

We treat first the case where K/F is unramified. We take a minimal simple pair
\n — 1, a] over F. We fix a prime element re? of F, so that, in addition, 7Tp will serve as
a prime element of K. Let p denote the residual characteristic of F, and let pp be the
unique ^-prime root of unity in F[a] such that

pp SE pp(a;7Tp) (modpp^).

If we view pp as an element ofkp^, then/^X) is the minimal polynomial ofpp over kp.
Further, we have

°VW == °F[PF? ^aL

where n^ denotes some prime element of F[a], Now write

<?==F[a ]®pK= HE,,
i==l

as before, where E, is the field K[ocJ. Since K/F is unramified, the identification of S
with II E, induces further identifications

^F[a]®OpOK = H OB?

PF[a]®OpOK= n RE,,
i==l

^w®^= nk^..i = = i
However, kp^ ^ ^[^/(/JX)). Since kK/kpis a finite separable extension,/^(X) splits
as a product <pi(X) ^(X.) ... <p,(X) of disdnct irreducible factors in k^[X], which we
may number so that

k^ k^[X]/(9,(X)).

However, we have 7^(a,) = ^p(a), and ^(a,) = ^p(a), by (3.1) since K/F is unramified.
If we write x h-> ̂  for the canonical projection § -> E,, we thus have

(pp(a;7Ty)), ==?K(ai;^).

It follows that the invariants of the simple pair [ne^{K | F) — 1, aj (which is minimal
simple by (3.4)) are

(^(aWa), <p,(X)).
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These are distinct, and the set

{(^(a),^(a),<p,(X)):l^ i ^ r }

depends only on (%p(a), ^p(a),/a(X)). This proves (5.3), and (5.4) is now immediate
(assuming that K/F is unramified).

We now have to treat the case in which K/F is totally tamely ramified. Indeed,
appealing to transitivity, we can (and do) assume that K/F is of prime degree ^ say.
There is an easy case of which we can dispose immediately, namely that where t does not
divide ^p(a) = ^(F[a] | F). Here, the algebra € = F[a] ® K is a field, we have r = 1,
and the first part of (5.3) (ii) is trivial. We may choose prime elements TT^, TC^ so that

(5.6) 7^ = TTp.

The extension <^/F[a] is totally ramified ofdegree/', so ̂ (a^) = ̂ p(a), while ̂ (a^) = ̂ W'
This means that p^ai; TT^) == pp(a; TTp). Hence the invariants of the lifted pair \nl — 1, a^]
are (^, ^p(a),y^(X)), and these depend only on the invariants (%, ^p(a),j^(X)) of the
given pair. This proves (5.3) in the case t < ^p(a).

In the opposite direction, suppose we are given a minimal simple pair [m — 1, p]
over K, where K/F is totally ramified of degree /', with invariants (m, e, <p(X)). We
assume that 9 has been calculated relative to a prime element satisfying (5.6). Suppose
also that t divides m. It follows that t does not divide e. Then by the calculation above,
[m —• 1, p] is equivalent to the unique lift of the simple pair over F with invariants
(mfl, e, 9(X)). Thus (5.4) holds for such pairs [m — 1, [B].

We must next treat the case where K/F is totally ramified of prime degree i and I
divides ^p(a). This has the effect that each extension K[aJ/F[a] is unramified. Let L/F
be some finite unramified extension. We know that (5.3), (5.4) hold for the exten-
sions L/F and KL/K. As in (5.5), they will therefore hold for K/F provided they hold
for KL/L. The effect of this observation is that we can replace F by any convenient
finite unramified extension of F.

First, replacing F by the maximal unramified subextension ofF[a]/F, we can reduce
to the case in which F[a]/F is totally ramified. Since i is not the residual characteristic,
we can further enlarge F (by an unramified extension) and assume that it contains a
primitive /-th root of unity. Now abbreviate E = F[a]. With these conditions, we have
r == t, and each of the extensions K[aJ/E is trivial.

Take some prime element TT^ ofE. Since E/F is totally ramified, we have T^''^ == TT? u,
for some u e U^o^)? ^d some prime element n-p ofF. Replacing F by a finite unramified
extension, we can now assume that we have a prime element n-^ of K such that TT^ = TT? .
Let E°/F denote the unique subextension of E/F of degree I . There is then a prime
element 71:0 of E° which satisfies

TTo = T^^
(modU^)).

TTo == TTp J
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Our element a has the form ̂ n y, where v e 1^(033), n == np(a), and ^ is a root of unity
in F of order prime to p. In particular, we have /a(X) = X — ^€FW. Consider the
element

8 = a6^^®^ e <?.

We have n == 7Zp(a) = ^(a), and so ^ = pp(a; TC?). On the other hand, the image 8, of 8
in K[ocJ is just p^a,; TT^). We can rewrite

8=^F(a )^7^o-ww®<,

for some w e U^OE). To compute the 8,, we consider the subalgebra E°® K of ff. We
have

E°®^K^ K x K x ... X K,

as K-algebra, with i factors here. The projections E° -> K are given by TT^ h-> T), n^
(mod U^OE:)), where T],, 1 ̂  i^ £, ranges over the f-th roots of unity in F. Thus

^^(a)/^-n

mod 1-units. These i values are distinct, since n is prime tof. This says that the invariants
of the lifted pairs [n - 1, aj are (%, <?p(a)^, X - ̂ -w ^F(^). This proves (5.3).

Combining these calculations with the first part of the proof (where K/F was
unramified), we have:

(5.7) Let [n — 1, a] be a minimal simple pair over F, let K/F be totally ramified of prime
degree t. Suppose that t divides ^p(a). Calculating relative to primes TTp, n-^ satisfying TT^ = TCp,
the invariants of the KIF-lifts of [n — 1, a] are (n, ̂ (a)/^, <p,(X)), where 9,(X) ranges over
the irreducible factors off^Y^).

It remains only to finish the proof of (5.4). We are given a totally ramified exten-
sion K/F of prime degree I and a minimal simple pair \m — 1, [3] over K. We have to
find a minimal simple pair [n — 1, a] over F of which [m — 1, [3] is a lift. The case
where i divides m has been dealt with above. We therefore assume that t -T m. Take
prime elements TT^, TC? such that TC^ == TT?. If, relative to this choice, [w — 1, [3] has
invariants (m, <?, <p(X)), we take [n — 1, a] to be the pair with invariants (w, ̂ ,/(X)),
where y(X) is the minimal polynomial over kp of 8^3 for some root 8 of <p(X) in kg^.

This completes the proofs of (3.5), (3.7) in the special case. D

6. Completion of the proofs

We now treat the general case of our "lifting theorems" (3.5), (3.7). We start,
however, with a useful result which does not form part of the main sequence. Its attractive
feature is that it gives us some latitude in the treatment of the <c level " of lifted simple
pairs.
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(6.1) Proposition. — Let [m, a] be a simple pair over F, and let a be some K/F-/z/^ of a.
Let [m, p] ^ another simple pair over F, and assume that

a) [m, p] w [m, a], ^rf
b) there exists a K/F-^(? of (3 ̂ A ̂  [M,<?] w [M, a], ̂ fe^ M = (m + 1) ^(K | F) -- 1.

Ttoi

[y, p] » [^ a:]

y&r any integer q such that

k(K|F)
== w.

Suppose further that we have \m — 1, a] w [m — 1, ?]. TA^TZ [M', a'] « [M',]?], where
M' == ^^(K | F) - 1.

Proof. — We choose convenient, equivalent, realizations of our simple pairs [M, o?],
[M, P], as follows. Let V = K(a), viewed as a K-vector space, and let (£ denote the
hereditary order

(£==End^({p^})

in G=EndK(V). By (1.10), (1.15), (1.6), we can choose a K-embedding of K[p]
in G so that the stratum [(£, n, M, ?] is simple and equivalent to [(£, n, M, a], where
^ = ̂ E )̂ = ̂ (P')-

Now write A == Endp(V), and let 91 denote the hereditary Op-order in A defined
by the same lattice chain as (£. Write E == F[a]. The subfield F[a] ofK[a] is isomorphic
to E via ah-)- a. We therefore regard E as a subfield of K[a] such that K[a] == KE.
Let s denote a tame corestriction on A relative to E/F. According to (2.7), the restriction
of s to C is a tame corestriction relative to K[a]/K.

Now write M' = w^(K/F) — 1. Let q be the least integer, M ^ q ^ M', such
that the strata [(£, 71, q, o?], [(£, %, q, (3] intertwine in C. We assume that q> M', and
there is no harm in changing our embedding of K[P] in G to arrange that

[£, 7 ,̂ a] - [(£, 72, ̂ ].

Write B == End^V), D == End^](V), 93 == 91 n B, D = % n D, and consider the derived
stratum [D, q, q — 1, s(^ — a)]. By [BK1] (2.4.1), this is either equivalent to a simple
stratum [2), q, q — 1, 8], or it is the null stratum [D, q, q — 1, 0]. We can exclude the
latter case, since this would imply, via [BK1] (2.2.1), that the strata [£, n, q — 1, 3?],
[(£, n, q — 1, p] intertwine, contrary to hypothesis. Further, by (5.4) and (4.3) applied
to the extension K[a]/E, we can assume that the equivalent strata

p8,^-l,8], [95,^-1,^—a)]
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are simple. This implies that the strata [91, n, q — 1, a], [91, n, q — 1, p] do not intertwine
(see [BK3] (1.9)). However,

f ? - l 1 .̂ m.
.^aW

If we have equality here, this contradicts the assumption that [m, a] w [w, p]. We
deduce that q — 1 = M', and the argument above implies [m — 1, a] ^ [m — 1, ?].
Thus, if we do indeed have [m — 1, a] w [m — 1, (3], we must have q = M'.

This completes the proof of the Proposition. D
Now we start the proofs of the lifting theorems (3.5), (3.7). By (4.1), we can assume

that our lifting extension K/F is Galois of prime degree t. We prove the following state-
ment, which is a rephrasing of the results we seek.

(6.2) Let K/F be a tamely ramified, Galois field extension of prime degree t. Let [M, [3]
be a simple pair over K. Then:

(i) there exists a simple pair [m, a] over F such that m == [M/^(K | F)] and a Tiff-lift a'
of a such that [M, a] w [M, (B];

(ii) if [w, a] is as in (i), and if a is a KIF-lift of a, then [M, a] w [M, p] if and only if
^s, ^a == a;

(iii) in the same situation, if [m, a'] is some simple pair over F equivalent to [m, a], there exists
a KIT-lift a' of a' such that [M, o?'] w [M, a].

Here, (i) implies (3.7). By (2.4) and (3.4), any (m, a) e <9^(F) and any K/F-lift o?
of a arise from some (M, (B) e y^(K) in the manner of (6.2) (i). Thus (3.5) is implied
by (6.2) (ii) and (iii).

We prove (6.2) by induction on the positive integer 7^((B) — M. The
case WK:(P) — M = 1 is covered by the arguments of § 5. We therefore assume that
n K ( P ) — M ^ 2 , and that (6.2) holds for all simple pairs [M', (B'] over K with
WK((B') — M' < 7^((3) — M. Before proceeding, it will be useful to note one consequence
of this inductive hypothesis.

(6.3) Lemma. — Suppose that (6.2) holds for all simple pairs [M, p] over K such that
^((3) — M ̂  k,for some constant k. Let V be a K-vector space, and [(£, n, m, [B] a simple stratum
in G = EndK(V) defining a simple pair [M, (B] with ^(P) — M < k. Let 91 denote the here-
ditary o^-order in A == Endy(V) defined by the same lattice chain as (£. Let [91, n, m, a] be a
simple stratum in A which intertwines with [91, n, m, (3J. There then exists a KIF-Uft a of a. and
a ^.-embedding 9 of K[a] in C with the following properties:

(i) ^(KCT^C^G;);
(ii) [(£, n, m, 9(0)] intertwines with [£, n, m, (?].

Proof. — By inductive hypothesis and (4.3), we can replace [(£, n, m, [3] by an
equivalent stratum and assume that [91, n, m, (B] is simple. Since this intertwines with the
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simple stratum [%, n, m, a], the F-simple pairs defined by these strata are of the form
[A, P], [A, a], for some h, and [h, |3] w [A, a]. The lemma now follows from (6.1) and
the part of the inductive hypothesis corresponding to (6.2) (iii). D

We now take [M, p] as in (6.2), and start by proving (6.2) (i). Let V be some
finite-dimensional K[(B]-vector space, and take a realization [(£, n, M, [B] of [M, [3]
on V, where (£ is a principal order in G with <?((£ | 0 :̂) = <?(K[(B] | K). Thus, in par-
ticular, n = ^(P)- we write c === ^dp^)? A == t^dpC^)) and we let 91 denote the
hereditary Op-order in A defined by the same lattice chain as (£. We next use [BK1] (2.4.1)
to find a simple stratum [(£, n, M + 1, y] equivalent to [(£, n, M + 1, p]. The quotient
<?i == €{KW | K)/<?(K[Y] | K) is an integer, by [BK1] (2.4.1). Thus the simple pair
defined by [(£, n, M + 1, y] is of the form [M^, yL where

^-M-L €! J

We also have ^(y) == ^(P)/^? so altogether

^(Y)-Mi<^((3)-M.

We can therefore apply our inductive hypothesis to find a simple stratum [(£, n, M + 1, y'j
equivalent to [(£, ^, M + 1, y] and such that [%, n, M + 1, y'] is simple. Indeed, we can
now economize on notation and assume that y === Y'? l•e• Aat [91, %, M 4- 1, y] is simple.

Now let us write E = F[y], B = EndE(V), SB = <tt n B. We also set D == End^^(V),
D == 91 n D. We choose a tame corestriction s on A relative to E/F, so that, by (2.7),
the restriction s | C is a tame corestriction on C relative to K[y]/K. We form the derived
stratum [D, M + 1^ M, J((B — y)]* This is either null or equivalent to a simple stratum
[3), M + 1, M, 8]. Then, by (4.3) and (5.4) (or inductive hypothesis), we can assume
that [SB, M + 1, M, 8] is simple or null.

By [BK1] (2.2.8), there exists a simple stratum [91, n, M, a] such that
[91, n, M + 1, a] is equivalent to [91, n, M + 1, y] and [93, M + 1, M, ^(a — y)] is equi-
valent to [33, M + 1, M, 8].

(6.4) Lemma. — In the situation above, let a be a KIF-lift of a. Then

,(K[a] | K) = ,(K[(B] | K).

proof. — By [BK1] (2.4.1), we have ^(K[(3] | K) = e(K[^] \ K) ^(K[Y, 8] | K[y]).
Likewise, ^(F[p] [ F) == <?(F[y] | F) <?(F[y, 8] | F[y]). The lemma now follows from (3.2)
via a straightforward computation. D

The situation for residue class degrees is a little more uncertain at this stage:

(6.5) Lemma. — In the situation above, /(K[a] | K) divides </*(K[(3] | K).

Proof. — When K/F is unramified, an argument analogous to that of (6.4) gives
us/(K[a] | K) ==/(K[(B] [ K). We therefore assume that K/F is totally ramified, as

18
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well as being Galois of prime degree /. This means that, if L/F is any finite extension
and L' is some field component ofL®y K, then/(L' [ K) is either/(L | F) or //"(L | F).
The latter can only occur if/ divides e{L \ F) and L® K is a field. We therefore have

/(K[a] 1 K) == ^/(F[a] | F)

= ei/(F[y] | F)/(F[Y, 8] | F[y])

= ̂  e,-1 ̂ /(KM | K)/(K[y, 8] | K[y])

^^^/(KTOIK),

where the e^ are constants with value 1 or /. The asserdon follows. D
We now impose a further condition on our vector space V, and assume that its

K[(3]-dimension is divisible by the prime number I == [K: F]. By (1.1), (6.4), (6.5),
our choice of (£ gives us:

(6.6) In the situation above, let o? be any Klf-lift of a. There exists a K-embedding
<p : K[a] -> C whose image normalizes £.

We choose a lift a and an embedding 9 as in (6.6), and abbreviate s = 9(0).
The stratum [(£, n, M, s] is then simple. By construction, its restriction [31, n, M, s]
is also simple, and indeed U(9I)-conjugate to [91, n, M, a]. Now we apply our inductive
hypothesis again to produce a simple stratum [(£, ^, M + 1, 9] equivalent to
[(£,», M + 1, e] and such that [91, n, M + 1,9] is simple. It follows that [<Si,n,M+ 1, 9]
intertwines with [91, n, M + L y]- By inductive hypothesis and (6.3), there is a lift ^
of 9 and a K-embedding ̂  of K[^] in G such that ^(K^]^ C^((£) and such that
[(£, n, M + 1, ^(9?)] ̂  [(£, n, M + I? y]- Now we appeal to (4.6): we can replace 9
by a ̂ i(K)-conjugate to arrange [(£, n, M + 1, e] ̂  [(£, n, M + 1, y]. In other words,
at this stage, we may as well take 9 = y Now we compare the derived strata
[3), M + 1, M, s(^ — y)], [2), M + 1, M, ^(e — y)]. These are equivalent to simple
(or null) strata [D, M + 1, M, 8], [D, M + 1, M, 8'] respectively, such that (by inductive
hypothesis) the restrictions [SB, M + 1, M, 8], [23, M + 1, M, 8'] are simple (or null).
Moreover, by construction (and [BK3] (1.9)), these restrictions intertwine. By (6.3)
and inductive hypothesis, we can now conjugate by an element of^g(K[y]) to arrange
[D, M + 1, M, 8] — [D, M + 1, M, 8']. It now follows that the strata [(£, n, M, |B],
[(£, w, M, e] intertwine. This element e has become an ^n(K)-conjugate of the ori-
ginal 9(a/). By (3.4), the stratum [(£, n, M, e] therefore defines a simple pair [M, a],
for some K/F-lift a of a. We have shown that [M, a] w [M, [B], and this proves (6.2) (i).

It is worth recording the conclusion of this argument, in a more general context.

(6.7) Proposition. — Let K/F be a finite, Galois, tamely ramified field extension. Let V
be a finite-dimensional K.-vector space, and [(£, n, m, (BJ simple strata in Endg;(V), i == 1, 2.
Let 91 be the hereditary Qy-order in Endp(V) defined by the same lattice chain as (£. Suppose that
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the strata [21, n, m, (3J are both simple, and intertwine in Endp(V). Then there exists x e^(K)
such that

[(£, n, m, x~1 pi x] ̂  [£, n, m, (3J.

Proof. — The assertion is transitive in the extension K/F, so we may assume that
K/F has prime degree t. When I divides dim^(V), the assertion is then given by the
arguments above.

For the general case, we write J§? = { L^} for the lattice chain defining 91. We
write V = V® ... ®V [I factors), and define a lattice chain ^ ={L^.} in V by

U = L,. ® L, ® ... ® L,., j e Z.

We write 91' = End^(J^'), and define (£' similarly. The stratum [9T, n, m, aj
defines the same simple pair as [91, n, m, a,], so the strata [9T, ^, w, aj, [91', n, w, aj
intertwine. Likewise, the strata [£', n, m, (BJ, [(£, ^, m, (BJ define the same simple pair,
call it [A, pj, over K. The case above gives x e^,(K) such that

[£', TZ, w, A;-1 pi ̂ ] /- [(£', 7i, m, (BJ.

This says, via (4.6) and the remarks concluding § 1, that there exists a e Gal(K/F)
such that [A, (^] « [A, [Bg]. The proposition now follows from (4.6). D

We can now deduce (6.2) (iii). We choose K/F-lifts S, o?' of a, a' respectively.
By (1.15), we have ^(a) = ̂ p(a'), so (by (3.2)) ^(K | F) == ^,(K | F). We choose
a K-vector space V and a hereditary Ogi-order C in G = End^(V) for which there exist
simultaneous realizations [£, n, M, a], [£:,%, M, a'] of the simple pairs [m1\ a], [w', a'],
where m' == {m + 1) e^(K \ F) — 1. If 91 is the hereditary Op-order in Endp(V) defined
by the same lattice chain as (£, then by hypothesis, the strata [91, n, M, a], [91, n, M, a']
intertwine. Now we apply (6.7), and the result follows.

This leaves us with proving (6.2) (ii). We start with a simple pair \m, a] over F,
and choose some K/F-lift a of a. If m + 1 < — A?p(a), the assertion follows immediately
from our inductive hypothesis. We therefore assume the contrary. We let V == K[a],
viewed as K-vector space, and let £ be the unique hereditary o^-order in C == End^V)
which is normalized by K^a]". We set M == (m + 1) ^(K | F) — 1, so that [M, a] is
a simple pair over K, of which we have a realization [(£, n, M, a] on (£, for some integer n,
Let 91 be the hereditary Op-order in A = Endp(V) defined by the same lattice chain
as £, so that the (< restriction " of [(£, n, M, a] is [91, n, M, a],

We choose a simple stratum [C, n, M + 1, y] equivalent to [(£, n, M + 1, a]
such that [91, n, M + 1, y] is simple. As usual, we write B = Endp^(V), D = End^(V),
SB == 91 n B, D = 91 n D. We choose a tame corestriction s on A relative to F[y]/F.
We choose a simple stratum [2), M + 1, M, 8], equivalent to [T), M + 1, M, s(S - y)],
and such that [33, M + 1, M, 8] is simple. In particular, we have

[SB, M + 1, M, 8] /- [SB, M + 1, M, ^(a - y)]-
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Of course, y» viewed as an element of K[y], is just a K/F-lift of y viewed as an element
ofF[y]. A similar remark applies to 8. Thus, invoking (3.1), we have

(6.8)^7 be some K/F-^ of^, andU someK^]^]^ 0/8. There exists a K-embed-
ding K[^, 8] -^ G whose image normalizes (£.

Now we return to our simple stratum [51, n, M, a], and the simple stratum
[91, n, M + 1, y] equivalent to [91, w, M + 1, a]. Let YI, Y 2 . - - - . Y r be the set of K/F-
lifts of Y. For each z, we choose a K-embedding 9, of K[yJ in G whose image nor-
malizes C. For each z, there exists ^ e*^(K) such that 9̂ 1) == ^rl Y-^i? ^d we use
this element to transfer ^ to a tame corestriction ^ on A relative to F[9^)]/F. By
inductive hypothesis, no two of the simple strata [(£, n, M + 1, <p,(Yi)] intertwine in G.

Next, we let 81,82,. . . ,^ be the set of K[y]/F[Y] -lifts of 8. We set
B^ = Endp^.(^(V), and define D,, SB,, 3^ in the obvious way. For each pair i, j\ we
extend 9, to a K-embedding 9^ : K[y,, 8J -> G whose image normalizes (£. Then, for
given i, no two of the simple strata [£>,, M + 1, M, 9^(8,)] intertwine in D<. However,
any two of them are conjugate under the group ^^.(K^Yt)]) C^((K). Now, for
each pair i,j\ we choose a simple stratum [(£, 71, M, (3,j such that

(6.9) (i) [(£, ,̂ M + 1, M - [C, n, M + 1, 9,(Y,)];
(n) [5),, M + 1, M, ^([3, - 9,(yJ)] - [D,, M + 1, M, 9,,(8,)];
(iii) the stratum [91, TZ, M, p .̂] ^ simple.

By construction, no two of the strata [(£, 71, M, |3̂ .] intertwine in G. However,
all of the strata [%, n, M, p,J intertwine with [91, n, M, a] in A. The construction also
shows that any [(£, n, M, p^] intertwines with some conjugate of [(£, n, M, a] under
^i(K). Thus, for each pair i, j, there exists a K/F-lift a,, of a, and a K-embedding ̂
of K[a,,] in G whose image normalizes (£, so that [£, », M, Y^(a^)] is equivalent
to [(£, TZ, M, p .̂]. It follows that the simple pairs (over K)

[M,aJ, l ^ K r , 1^^,

are mutually inequivalent. Moreover, we have the relation

[K[(B,] : K] = [K[a,] : K],

for all i and j. However,

[K[M : K] = [K[Y,, 8J : K[yJ]. [K[y.] : K]
=rl[F[Y,8]:F[Y]].r-l[F[Y]:F]
=(rt)-l[F[a]:F].

Thus dimi^n,,, K[a.,]) = [F[a] : F] = dimK(F[a] ®p K).

The a,, therefore exhaust the K/F-lifts of a, and the simple pairs defined by the lifts
of a. are mutually inequivalent.

This completes the proofs. D
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7. Ring lifting and simple characters

In this and the following two sections, we extend the results of§§ 1-6 to the context
of simple characters. In the present section, we work in the " interior " lifting situation
of § 2, and give the explicit constructions on which our notion of lifting for simple
characters is to be based.

To start with, let V be some finite-dimensional F-vector space, and [91, n, 0, (3]
a simple stratum in A = Endp(V). In [BK1] (3.1), we attached to such a stratum a
pair of Op-orders in A,

§((3, 91) C 3((B, 91) C 91.

These depend only on the ^/-equivalence class of [91, n, 0, p]. Each comes equipped
with a canonical filtration by two-sided ideals

^((3,9l)==§((B,9l) n^,

TO, %) = 3(P, 91) n ̂

where k ^ 0 and ^ denotes the Jacobson radical of St. Likewise, we get subgroups of
the unit groups of the rings §, 3, by

J(P^)== 3(^91) \
?91) ==3((3,%)n 1 (̂91),

?((3,91) =§((B, 91)01^(91),

where k ^ 1.

(7.1) Proposition. — Ze^ K/F ̂  a finite, tamely ramified, field extension. Let V &^ afinite-
dimensional K.-vector space, and let d be a hereditary o^-order in C == End^V). Z^ 91 ^ ̂
hereditary Qy-order in A = Endp(V) rf^y^rf by the same lattice chain as £.

Let [91, n, 0, p] &^ ^ K-pure simple stratum in A. rfe»

§(P, 91) nG= $(?,(£),

W 3(P, 91) n G = 3(P, 6;).

Remark. — By (2.4), the stratum [(!£;, ̂  0, (3] in G is simple, so the objects §(p, (£),
3(P, (£) are indeed defined.

Proo/'. — Our procedure will be <c inductive along [3 ", in the manner of many
of the proofs of [BK1]. However, it will be convenient to have a stronger inductive
hypothesis, so we actually show:
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(7.2) In the situation of (7.1), fo? j^/p &<? a ^w6? corestriction on A r^a^ ^ K/F. We
then have

§((3, 91) n G == $((3, (£) = ̂ /p(§(lB, %)),

and likewise/or 3.

We observe that this condition is independent of the choice of s^y, since §((B, 91)
is an OR-lattice. We therefore take ^/p so that its restriction to G is the identity map,
just as in the proof of (2.7).

We prove (7.2) only for §, since the argument for 3 is virtually identical. We
write ^ == rad(9l), 91 = rad((£). We also set E == F[[B], B == End^V), 93 == % n B,
Q == rad(SB).

We assume to start with that (3 is minimal over F. Then, by definition,

§(P,9l) =93 +^n/2]+l^

Now we put D == End^^V) and 2) = 91 n D. By (2.4), the element (B is minimal
over K, so we have

§(?,(£) =7)+<3{[n/2]+\

First we note that

(SB + ̂ 2]+l) n C 3 (SB n C) + (^^+1 n C) = 2) + ^n/2]+i^

For the opposite containment, we recall that for any o^-submodule L of A, ^K/p(L)
is the orthogonal projection (relative to the reduced trace pairing on A) of L into G,
whence ^^(L) 3 L n C. Applying this to the o^-lattice 93 + ̂ n/2]+l, we get

(» + ^[n/2]+l) n CC ^p(93 + ^[n/2]+l) = s^(S) + ̂ p(^/2]+l).

We have JK/F^) = SR^ for any t eZ, by [BK1] (1.3.4). On the other hand, (2.7)
implies that .̂ (93) = I). This gives

§((3, 91) n G == §((B, £) == ^/F(§(P, %))

in the present case, as required for (7.2).
We now assume that (3 is not minimal over F, and set r = — Ao((B, 91) < n. We

choose a simple stratum [£, n, r, y] equivalent to [C, ^, r, [3] such that [91, n, r, y] is
simple (as we may, by (3.8)). Using the notation above, we therefore have

W^^^^^T^),

whence §((3, 9 l )nG393nG+ S>W2]+1^ 91) n C.

As before, % n G = 3), while, by inductive hypothesis, we have
^[r/2]+i^ 9i) n G ̂  ̂ /2]+i ̂ ^ yi) nC

-^-^(T^).
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On the other hand, we have

$((B, <tt) n G C ̂ ($((3, <tt)) = ^(<B) + ̂ (^^(Y, %)).

Again, ^^^(33) = ̂  Further,

^(^^(Y, ̂ K)) = ̂ (§(Y, ̂  n ̂ P^1)
C ^/p($(Y^)) ^H/FO^21^)
==&(Y,S) n<R[f/2]+l

=§[f/21+l(Y^)•
Altogether, this gives us

2) + ̂ ^(Y, 0 C §((B, <tt) n G C ̂ p(§(P, 51)) C D + ̂ ^(Y, 0.
Therefore

$(p, <a) n c = s^w, <a) == D + ̂ ^^^y, <£).
It remains only to prove that
(7.3) 2) +§^+I(Y, (£)=§((3,Q;).

We know from (2.4) that A;o((3, (£) < ^(p, <tt). In the case where k^, (£) = k^, ̂ (),
(7.3) is the definition of §(p, (£). We therefore assume k^, G.) < k^, <K) == - r.
The stratum [(£, », r, p] is therefore simple, and, by definition, equivalent to [(£, n, r, y].
By [BK1] (3.1.9), we have

§[^/2]+1(^(S;) =§[f/2]+l(Y,(£).
This gives us

S) + $>w}+l(f, (£) = D + S^+^P, C) C §(p, C).

On the other hand, if we put t = — k^, (£) > r, then [BK1] (3.1.9) (ii) gives us

§((B, C) = 2) + ̂ "/^({B, (£) C D + ̂ '^(P, £),

which implies (7.3). This completes the proof of the Proposition. D
Before passing on, we note that (7.1) implies immediately that

OT.^nG^OB.C),
W, <tt) n G = W, (£),

for all k ^ 0. It will sometimes be useful to have the following more detailed version
of (7.2).

(7.4) Lemma. — In the situation of (7.2), we have

CT, <tt) n G = ̂ (p, (£) = s^{^, %)),
3^(3, 91) n G = TO, (£) == ^/F(3'(P, ^tt)),

for all k > 0.
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Proof. — Again we deal only with §. As we remarked above, the first equality
is trivial and, since J^/F ls effectively a projection, we have §^((3, 91) n G C ^^(^(P? ^l))-
However,

^/F(TO, %)) == ^/P(5(P, ̂ ) ^ W

c^p(§(P^))nW^)
=§(?,£) n^
-CT^).

This proves the lemma. D
We now turn to simple characters. A simple stratum [91, n, m, (3], with m ̂  0,

determines a finite set ^(%, m, JB) of disdnguished abelian characters of the group
jpi+i^^Q These characters we call "simple". They are defined and discussed at
length in [BK1], Gh. 3. Here, we continue in the situation of (7.1), and consider the
simple character sets defined by the simple strata [%, n, 0, [B], [(£, n, 0, |B], The relation
between simple characters and their underlying stratum depends on a choice of basic
additive character. We therefore fix, once for all, a continuous character ^F of the
additive group ofF with conductor pp, i.e. such that ppC Ker^), but Op 4: Ker^).
We also define

(7.5) ^^^oTr^p,

where Tr^/p denotes the field trace. Since K/F is tamely ramified, ^K has conductor p^.
When V is a finite-dimensional F-vector space and A = Endp(V), we write ^A for the
additive character ^F o tr^/p of A. Then, for b e A, we write ̂  for the function

^:^W(^-1))

on A or various subsets of A. We use similar notations relative to K. In particular, if
V is a K-vector space and G = End^(V), we have the functions ^? c e G. These are
related to the corresponding objects over F as follows. If s^y is the tame corestriction
on A relative to K/F which is the identity on G (as in § 2), we have

f76) ^|C==^p be A,
^|G=^, ceC.

(7.7) Theorem. — Let V be a finite-dimensional ^.-vector space, and [(£, n, m, (B] a simple
stratum in C = Endg(V) with m ̂  0. Let % denote the hereditary Oy-order in A = Endy(V)
defined by the same lattice chain as C, and suppose that the stratum [%, n, m, (B] is simple. Let
6e%'(<tt,OT,P). Then

eiH"^1^,^) e W, m, p).

Proof. — For this proof, we use the same system of notation as above, namely
E = F[p], B = Enda(V), <B = <tt n B, D == End^V), D = <tt n D.
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Again we proceed by induction along (3, viewed as an element of F[p]. We there-

fore assume first that p is minimal over F, and also that w^ n]. Thus

Hm+l^^=Vm^W, and e^lU^^). On the other hand, we have
H^CS, £) =UW+1((S:), and the unique element of ^((S, m, (B) is the character ^.
The assertion of the theorem therefore amount here to the identity

^lU^C)^,

and this is given by (7.6).

For the next step, we assume that p is minimal over F, but that 0^ m< ^ .
This means we have [2j

Hm+\^ 91) = Vm+l{^) U^23^1^),

and, by definition, the character 6 satisfies

(7.8) (i) e lU^^OBO^^ ̂
(ii) 6 [ U^+^SB) factors through the determinant mapping dets : Bx -> E\
On the other hand, we have H"14-1^, e:) == U"14-1^) U^23-^1^). As in the

first case above, we have 6 | U^^C) == ^. On the other factor, we note that

de ta lD^ =N^Eodet^

where N^g denotes the field norm K[(3] -> E. Thus 6 | U"1-1-1^) factors through det^.
This is enough to imply 6 | H^^p, (£) e ^(Q;, w, ?), as required.

(7.9) Remark. — In the notation of the last argument, let 6 e ^((£, m, (B). We
have det^U^^S))) = ^^^OKO]) for some m' ^ 0. Thus 6 determines a character 9
ofU^^o^) by the relation

elU^CD) =yodeto .

The character 6 is then the restriction of a character from %'(%[, w, j3) if and only if 9 factors
through the norm N^/E. This, of course, is not invariably the case. Thus the restriction
map ^(%, m, p) -> ^((S, m, p) need not be surjectiue. However, we will see below that it
is always injective.

We return to the proof, under the assumption that (3 is not minimal over F. We

put r = = —^0(^^)5 and we only treat the case r>m^ \r\: using (7.3), the case

[ 1 2
0 ̂  m < _ reduces to this one exactly as before. We choose a simple stratum [£, n, r, y],

equivalent to [(£, n, r, [3], and such that pjl, n, r, y] is simple. In particular,
DK,»,r,Y] is equivalent to [91, n, r, [3]. Let 6 e ^(?I, m, (B). Then, by definition,
H-4-1^, 91) = H^-^^y, %) and 6 = Oo.^^ for some 60 e (̂91, ̂  y), where c == p - y.

19
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The next step is to observe that H"14-1^, £) = H^^y, (£). This is the definition
of H if A?o(P, ( £ ) = = — r. Otherwise, we have ^(P? £) < — r by (2.4), so the strata
[(£,^,r,(B], [C,^r,Y] are both simple, and the equality of IP14- ̂ groups is given
by [BK1] (3.1.9). By inductive hypothesis, we have

eolH^Y.tQeW.m.Y),

while certainly ^ | H^-^p, (£) = ̂ . In the case where ^(P. £) == — r, we are
through: the character (60 | H^^y, (£)).^ lies in ^((£:,w, [B) by definidon of simple
character, and the injectivity of (7.8) follows by induction. We are therefore left with
the case where [£, n, r, p] is simple, and this follows from [BK1] (3.3.20). D

As we observed in (7.9), the restriction process in (7.7) is rarely surjecdve.
However, the character set ^((£, m, (3) does not determine the simple stratum [(£, n, m, p],
even up to equivalence. Thus, to recognize a given simple character over K as a (< lift"
of a simple character over F, we are at liberty to vary the underlying addidve parameter p.

(7.10) Theorem. — Let V be a finite-dimensional ^.-vector space, and let [(£, n, m, [B]
be a simple stratum in G = End^(V) with m ̂  0. Let 91 be the hereditary Oy-order in
A == Endp(V) defined by the same lattice chain as (£. Let ^ e ^(Q;, m, p). There exists a simple
stratum [(£, n, m, (BJ with the following properties:

(i) W,m,(^)=^(6;,m,p);
(ii) [21, n, m, (BJ is simple;
{iii) there exists 6 e ^(91, w, (Bi) such that 6 | Hr4-1^, (£) = -&•.

Moreover, the character 6 ^ (iii) z'j uniquely determined, i.e. the restriction map

W ̂  Pi)-^ W ̂  Pi)

i,y injective.

Remark. — In (iii), we have H^^p, (£) = H"14-1^, (£) = H^^-^pi, %) n G.
We can assume that [%, ^, m, (B] is simple, so that the group H^^p,?!) is defined.
However, we need not have the equality H"14-1^, %) = H"14-1^, %). To get an example
where these groups differ, one can take m == 0, n sufficiently large, (B e F, and
8- e ^((S, 0, (3) not in the image of (̂91, 0, (B). Thus ^ is the composition of the deter-
minant Cx -> K^ with a character % ofU^o^) which does not factor through the field
norm N^/p. The element j3i then cannot lie in F. If we further impose the condidon
that /1 ̂ (OK) does not factor through N^/p, we get — &p(jB) ^ 2. This implies
W(pi,5I) ?Ui(9l)=Hi(p,%).

Proo/* of (7.10). — We proceed by inducdon on m. Suppose first that m ̂  [%/2],
so that H"4-1^,^) =UTO+1((£), and ^(C, m, p) ={^}. The theorem then asserts
that, given a simple stratum [(!£:, n, m, |B] in G, there is a simple stratum [(£, n, m, p'J,
equivalent to [(£, ^, m, p], such that [91, TZ, w, (3'] is simple. This, however, is given
by (3.8). The uniqueness assertion is immediate.
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We therefore assume that m< [n/2]. We start by choosing a simple stratum
[£, n, m + 1, y] equivalent to [(£, ^, w + 1, (B] and such that [91, ^, TTZ + 1, y] is simple.
We then have H-^^ (£) = H-^y, (£), and ^ | H-^y, (£) e ̂ (C, m + 1, y). Induc-
tively, there is a simple stratum [£, %, w + 1, yj such that

(7.11) (i) ̂ m+ l,Yi) ==^((S;,m+ l,r);
(ii) [91, TZ, TTZ + 1, Yi] is simple;
(111) there exists a unique 60 e ^(91, m + 1, yi) ̂  that

eo |H W + 2 (Yl , (£ )=f t |H W + 2 (Y, , e ; ) .

Now we appeal to [BK3J (2.11): there exists a simple stratum [£, 72, m, pj such that

[(£, n, m + 1, (BJ /- [£, ̂  w + 1, Yi],

^(G;,m,pi) ==^(G;,m,(B).

Replacing [(£:, yz, w, pj by an equivalent simple stratum changes neither of these
conditions, so we can assume further that [91, n, m, (BJ is simple.

The next step is to choose a character '60 e (̂91, m, yi) which extends QQ. The
restriction

y=e /o|Hm+ l(y„(£)

then lies in ^(C, TTZ, yi), by (7.7). The character y agrees with our given ^ on
H^+^vi, £), so there exists c e gr^^ (where 9t = rad(£)) such that

^==^'.^.

We now choose a tame corestriction s on A relative to the field extension F[yi]/F. Thus,
by (2.7), s | C is a tame corestriction on G relative to K[yi]/K. We write B^ = Endp^ ^(V),
SBi=9lnBi , DI == End^^(V), 2 ) i = = % n D i . By [BK3] (2.7), the st?atum
[DI, m + 1,771, j(^)] is either null or is equivalent to a simple stratum [D^, m + 1, TTI, 8].
In either case, [(£, n, m, yi + c\ is equivalent to a simple stratum [£, n, m, pg], and
^ e ^((E:, w, pg). We can choose ^ so that [91, %, m, jSg] is simple, and we again have
60 ̂  e (̂91, w, Pa)- This proves the assertions (i)-(iii) of the theorem.

We now have to show that the condition 6 | ET^ ^(Bg, (£) = ̂  determines the charac-
ter 6 e (̂91, m, ^2) uniquely. At this point, there is no harm in assuming that the element
Pa constructed above is equal to ?. We now choose a core approximation to [91, n, m, ?],
in the sense of [BK1] (3.5). By definition, this is a simple stratum [91, n,t, 8] such that

(7.12) (i) ̂  m;
(ii) [9l,^(3]-[9W,8];
(iii) m < [tl2], where t == - ̂ (8, 91);
(iv) if [91,7Z,/', 8'] is a simple stratum satisfying (i)-(iii), with t' = — ^0(8', 91), then

t' > t and I' ̂  t.
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(7.13) Lemma. — Let [%, n, m, p] be a K-pure simple stratum with m ̂  0. Then
[91,», m, p] to a core approximation which is K.-pure.

Proof. — Choose a core approximation [%, n,t, 8] as in (7.12). With this value
off, choose a simple stratum [(£, ̂ , 8'] equivalent to [£, 7 ,̂ p] such that [%, ra,^, 8']
is simple. This is the required core approximation. D

Now suppose that we have characters 61, 6g e ̂ (91, m, (3) such that

ejH^^^e^lH-^e;).
Inducdvely, we have

611 H^-^p, %) == 6^ | H^2^, %).

We now take a K-pure core approximadon [91,7^,8] to [%,^,w,(B], as in (7.13),
and we choose a tame corestricdon ̂  on A reladve to F[8]/F. According to [BK1] (3.5.6),
there exists de<^~a+m) such that

(7.14) (i) 6, =61^, and
(ii) ^eF^+^T"

The definidon of core approximadon ensures that the character

^|HW+1((3,%)

actually only depends on the coset s^(d) + ̂ m. This follows from the idendty

H^^p, %) = U"^^) H-4-^?, %),

where SBg is the 91-centralizer of 8; see [BK1] (3.5) for this. Choose an element x e F[8]
such that x =s Ss(d) (mod^-^. This element x lies in ^p-^^ and commutes with
both K and 8. Thus there exists d ' e 91-(l+w) such that

^(^) ^x^s^imod^-^.

Replacing d by d ' does not change the character 63, so we may as well assume that d e G.
Our hypothesis implies that ̂  is trivial on H7^1^, (!£:). In particular, if we write

DS for the C-centralizer of 8, this character is trivial on

Vm+l^) ^U^^SBg) nC.

This implies s^{d) eSg^, where Sg denotes the radical of Dg. Of course, S^^C -Q^^,
where Qg is the radical ofSBg. This implies that ̂  is trivial on H"14'^^, 91). In other
words, we have shown 63 === Oi, as required. D

Returning to the statement of (7.10), we observe that there will, in general, be
many other simple strata [(£, n, m, j^] satisfying the required condidons. The fact that
the given ̂  lies in both ^((£, w, pi) and ^((£, m, (Bi) ensures that ^(C, w, pi) = ^((£, m, pi)
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(see [BK1] (3.5.8)). However, we have as yet no relation between the sets (̂91, m, pi),
^OM, m, pi). This is provided by the following result.

(7.15) Theorem. — Let V be a finite-dimensional T^-vector space and (£ a hereditary
0^-order in G = End^(V). Let 91 be the hereditary o^-order in A = Endp(V) defined by the
same lattice chain as (£.

For i = 1,2, let [91, n, w, (BJ be a K-pure simple stratum in A with m ̂  0, and suppose that
a) <^(C, m, (Bi) == W, m, ^), a^
b) the images of the sets ^(91, m, pi), ^(%, m, (Bg) m ^((£, w, (B,) to<? non-empty

intersection.
We then have

W^Pi)=W^P2).

Proo/'. — As before, there is nothing to prove if m ̂  [w/2], so we assume that
0^ w< [^/2]. Again we proceed by induction on w. Thus we may assume that

^(%,w+ l,(Bi) ==^(%,m+ 1,?2).

This implies ([BK1] (3.5.9)) that

H^1^,^)^^1^,^).

By inductive hypothesis and (7.10), we may choose 6, e (̂91, m, (B,) such that

el |HW 4- l(^,(s:)==e, |HT O + l(^,(£) ,
e l |HW + 2(^ ,9l)=e2|HW + 2(^ ,9l) .

Thus 62=61^, for some ce^1-"1. Consider the character ^ of H^^j^Sl). In
the notation of the last proof, this is effectively a character of U^^SBg), for a K-pure
core approximation [91,^,^,8] for [%, 71, w, (BJ. Write B, = Endp[p.](V). According
to [BK1] (3.3.3), the character 6, is intertwined by the whole of B^. In particular,
it is intertwined by K\ Therefore, the character ̂  | IP14'^®^) is intertwined, indeed
normalized, by the whole of K^ Now we need a lemma:

(7.16) Lemma. — Let 91 be a hereditary Oy-order in A == Endp(V), for some finite'
dimensional 7-vector space V. Let E/F be a subfield of A such that Ex C ̂ (%), and let A e ̂ -n,
where ^ == rad(9l). Suppose further that

x-^b + ̂ -n) x == b + ̂ -n,

for all x e E^. Then there exists b' e ̂ -n such that

(i) y +^l-n=b+^l-n, and
(ii) A;-1 ̂  x = 6', /or ̂  x e E^
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Proof. — The assertion is effectively transitive in the field extension E/F, so we
may assume that E = F[oc], for some element a which is minimal over F. Let ofSL == ̂ .
We then have

yjb _ boLe^l+t-n.

Now we recall that, since a is minimal over F, we have ^o(oc, 91) = t (or — oo, this being
the trivial case E = F). This now implies ([BK1] (1.4.7)) that there exists a e^""
such that s^(a) = b (mod (^l~n), where ^ is a tame corestriction on A relative to E/F.
We take b' == s^{a), and this implies the assertion of the lemma. D

With 8 as above, we choose a tame corestriction s^ on A relative to F[8]/F. We
apply (7.16) to the coset s^c) +Qsm^ with base field F[8] and extension K[8]/F[8].
We thus find an element e eQ^14"^ which commutes with K[8], in particular with K,
such that e == s^{c) (mod^""^). Continuing with our earlier notation (as at the end
of the proof of (7.10)), this means e eS^14"^. However, the tame corestriction ^
restricts to a tame corestriction on G relative to K[8]/K. Therefore there exists c' e 9?~(1 + m)

such that jg(<;') = s (mod 6s'm). With this element c ' , we have

^ | H-^.^) = ̂  | H-^, 91).

In other words, we could have assumed at the beginning that c e C. This implies that
s^{c) e G, and that

fe|Ds=^.

Here, the character ^Bs is defined by ^ | Eg == ̂ ), x e A, and ^Ds == ^B8 | Dg.
Moreover, ^B8 == ^[8] o tra^si, for some character ^F[8] ofF[S] with conductor pp^, and
likewise for ^D8.

Now we recall that our assumption implies ̂  | H"14'^^, (£) is trivial. This just
says, in the same notation, that s^{c) eSs""1, which implies s^{c) eQg'"1. In other words,
^ is trivial on 1^lm+l{^, 91). This means 61 = Og, and hence (by [BK1] (3.5.8)) that
(̂91, w, (Bi) = (̂91, m, pg), as required. D

For application to representation theory, one needs to consider the way in which
lifting interacts with intertwining between simple characters. This is a somewhat complex
matter, which requires the more indirect approach of later sections. However, it is
possible to say something useful at this stage. For this, we need to recall one of the
fundamental results of [BK1].

(7.18) Intertwining implies conjugacy. — For i == 1, 2, let [91, n, m, (3J be a simple
stratum in Endp(V), with m ̂  0. Let 6, e ^(91, m, (3,), and assume that 61, 63 intertwine in
Autp(V). Then there exists x e U(%) such that ^(91, m, pi) == ^(%, m, x~1 ̂  x) and 61 == 6j.

This is [BK1] (3.5.11).
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(7.19) Proposition. — Let V be a finite-dimensional K.-vector space, and put C = End^(V).
Let [91, n, w, [3] be a K-pure simple stratum in A = Endp(V), with m ̂  0. Let £ = 91 n C,
a7^ wn^

QK^Q]Hm+i^g;^ 6e^(%,m,(3).

Z^ 61, 62 e ^(91, w, (B). Suppose that the characters 6^ intertwine in Gx. Tfe characters 9, ^w
intertwine in Ax.

Pro<?/'. — By (7.18), there exists A; eU((£) such that
^(^m.x-1^) =%7(6;,m,(B)

^ (6^ = 6?.

Then by (7.15), we have W, w, ^-1 (3^) = ^(% w, (3) and, by (7.10), 6j == 61. This
proves the proposition. D

It is not hard, using the results of [BK3], to produce examples in the context
of (7.19) where the 6^ intertwine, but the 6s do not. As we shall see, this situation arises
where a given lift Qf of 61 intertwines with a different lift (i.e. one corresponding to
a different K-embedding of (S) of 6g.

8. Endo-classes of simple characters

In § 1, we organized the set of simple strata over F first into simple pairs and then
into equivalence classes of simple pairs. In this section, we give an analogous organization
for simple characters over F. The process is somewhat more tortuous here.

We start with the notion of a potential simple character, or ps-character, for short. We
fix a simple pair [k, p] with k ^ 0. We let [%, n, m, (B] range over all realizations of [k, (3],
so that, in particular, 91 is a hereditary Op-order in the algebra of F-endomorphisms
of some F[(B]-vector space, n == ^(|B) <?p(%) and [mfe^)] = k. We set

%[^]== U ^(%m,p).
[^n.w.P]

Now we need to recall the main idea of [BK1] (3.6). For each pair of realizations
[%„ n,, m,, p] of [A, (B], [BK1] (3.6.14) gives a canonical bijection

^,^,p: m, ̂ i, P) ̂  ̂ m> rn^ (B).
(We omit the m^ from the notation here; if we have two realizations of [A, [3] on the
same order 91 in the F-endomorphisms of a given F[(B] -vector space, the two simple
character sets are in canonical bijection by [BK1] (3.6.7).) The uniqueness properties
of this family of " transfer maps " T imply the identities

,Q . x ^^l.P =T^1 ^2,P'
[ Q . I ) _

^1,^3,3 —— ̂ ^P0^!.^?5

in the obvious notation.
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(8.2) Definition. — Let [A, p] be a simple pair over F with k ̂  0. For i = 1, 2, /^
6, e ̂ (%, 7^, (3) C 9 ,̂ (3]. ̂  ̂  ̂  61 is (3-equivalent to 62 if 63 == T<^<^p 6^.

The identities (8.1) show that (3-equivalence is indeed an equivalence relation
on 9l[A, p]. A potential simple character over F supported by [k, jB] (usually ps-character for
short) is then an equivalence class for this relation. If © is a ps-character supported
by [k, [3], and 6 e © C 9{[k, p], we call 6 the realization of © on %, where 6 e ^(Sl, m, (3).
It is sometimes useful to have the notation

6=©(Sl) ==©(%, w)

in this situation.
It will sometimes be convenient to use the notation [©, k, (B] for a ps-character

supported by [A, ?]. Likewise, if 6 is a simple character, 6 e © C 9l[yfe, p], we say that
6 is supported by [k, [B].

As for simple pairs, we can define realization in terms of embeddings of F[(3] in
Endp(V), for F-vector spaces V.

It is important to remember that one can have non-trivial identities
^(%, m, pi) == ^(%, m, (Bg), where the strata [%, n, m, (BJ define inequivalent simple
pairs [k, (BJ. However, these pairs have much in common.

(8.3) Proposition. — For i = 1, 2, let [%, n, m, [3,] be a simple stratum defining a simple
pair [k^ p,], and suppose that ^{^ w, pi) == < (̂Sl, m, j^). T^

^1 == ^23

^(F[Pi] I F) = <>(F[j3,] | F),
/(F[Pi] | F) =/(F[(3,] | F),

^(Pi) = ̂ 2).

Proo/'. — All but the first of these statements are given by [BK1] (3.5.1), while
the first follows from the second. D

(8.4) Proposition. — For i = 1,2, let [k^ p,] be a simple pair and let ©, be a ps-character
supported by [k,, p,]. Suppose that [F[pi] : F] == [F[pg] : F], and that we have simultaneous
realizations [%,»,, OT(, pj of the [k,, pj on the same order ^ in some A = Endy(V) such
that the corresponding characters ©,(%) 6 ̂ (^(t, OT(, p,) intertwine in Autp(V). Then

ftl = »2»

"p(Pl) = "p(P2),

^(FEPi] I F) = <'(F[[BJ | F),
/(F[M | F) =/(F[p,] | F),

Wi) = W,).
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Proof. — For each i, choose a simple stratum [91, ̂ , n, — 1, aj equivalent to
DMo^-UJ. We have H^, 91) = U^(9I), and the restriction of ©,(%) to
U"^) is equal to the character .̂. These characters .̂ intertwine, which forces
T?I == yzg. We now abbreviate n^ == n^ == n.

Now we consider the integers m^ m^. By symmetry, we can assume that m^ Wg.
Choose a simple stratum [91, TI, Wi, y] such that

[%^Wi,Y]^[%,n,Wi,pJ,

and set 60 = ©2(91) | H^i^y, 91). The simple characters 60, ©i(9I) still intertwine. This
implies (by (7.18)) the existence of x e U(9l) such that (̂91, m^ x-1 ̂ x) == (̂91, m^ ^)
and ©i(9l) == 6;. Proposition (8.3) then gives [F[y] : F] == [F[pJ : F], and our hypo-
thesis on field degrees implies that [91, n, m^, j^] is simple. The result now follows
from (8.3). D

Our next result is an extension of (1.9) to the present situation.

(8.5) Lemma. — For i == 1, 2, let [91, n, m, (3J be a simple stratum in A == Endp(V)
and let 6, e ^(91, m, (3,). 5^<w ̂  the characters 6, intertwine in Autp(V). Then

(i) ^W-^W.

Wrf^ Wo = ̂ .(9l)[77z/̂ .(9l)] (W^A ^ independent ofi). We have:
(ii) for each i, there is a unique character^, e ^(91, m^, (3,) such that'Q, | H^-^-^p,, 91) =6,;
(iii) the characters 61,62 intertwine in Autp(V).

Proof. — Part (i) is given by (7.18) and (8.4). Part (ii) is given by [BK1] (3.6.7),
and also applies when m^ is replaced by any integer m1 such that m^^m' ^ m. We can
therefore assume that m is the least integer ^ m^ for which the characters

^^iH^d^)
intertwine. If m == m^ we are done, so we assume otherwise. Applying (7.18), we can
replace (Bg by a U(9I)-conjugate and assume that 6^ == 6^, and hence ([BK1] (3.5.8))
that ^(9l,w,pi) = (̂91, m,^). Now we use [BK1] (3'.5.9): this gives us a simple
stratum [91, n, m, ^3] such that

[91, n, m, M -/ [91, n, m, pj,

and (̂91, m - 1, (^ = (̂91, m - 1, p,).

By (1.9), there exists y e U(9l) such that [91, n, m - l,jr1 ̂ y} ̂  [91, w, m - 1, pj.
In particular, we have [91, n, m,j/-1 pij/] /- [91, n, m, pi], so, by [BK1] (3.3.2), (1.5.8),
W = 6 for all 6 e ^(91, n, m, pi). We now see that 6 î e ^(91, m - 1, pi), and it
extends 6^. By (ii), this means 6^_i = 6^_i, which contradicts the choice ofw. D

20
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(8.6) Definition. — For i == 1, 2, let \k,, j3j be a simple pair over F with k^ ̂  0. Let
0, be a ps-character supported by [k,, (3J. The ps-characters ©, are endo-equivalent, denoted

©i » ©2,

tf [̂ [Pi] : F] == [FEP2] : F] fl7^ ^ere exists a fitiite-dimensional 7-vector space V together with
realizations [9I,^,w,,(3J of the pairs [^, (BJ j^ that the characters ©,(91) intertwine in
Autp(V).

Of course, we have yet to establish that the relation we have called endo-equivalenceis
in fact an equivalence relation. This is the point of the next result, which generalizes (1.10).

(8.7) Theorem. — For i = 1, 2, let [©,, ̂ , (3J be a ps-character over F, and suppose
that ©i w ©2.

Z^ V ^ ^ finite-dimensional f-vector space, and suppose we have simultaneous realizations
[9r,^,7^,(3j of the simple pairs [^, (BJ OTZ .SWT^ hereditary order 91' in Endp(V'). The
characters ©i(9l'), ©2(91') then intertwine in Autp(V').

Proof. — By hypothesis, there is a vector space V and a hereditary Op-order 91
in Endp(V), together with realizations [91, n^m,, (3J of the \k,, (BJ such that the
characters ©,(91) intertwine. We can apply (8.4) to deduce n^ == n^ etc., from which
it follows that k^ = k^ == k, say. Further, we can assume (by (8.5)) that m^ == m^ == m,
say. In the context of V therefore, we have n[ == n^ and we may as well take m[ = Wg.

Returning to the context of V, our first lemma will allow us to adjust the order 91.

(8.8) Lemma. — For i = 1, 2, let [91, n, m, (3J be a simple stratum in A == Endp(V)
with m ̂  0, and suppose we have e(F[^] | F) == ^(F[^] [ F), /(F[(BJ | F) ==/(F[^] | F).
Let 9lo be a hereditary Q-p-order in A = Endp(V) which contains 91, is normalized by F îF,
and is maximal for this property. Then

(i) 9lo is normalized by F^^ and is maximal for this property.
Let WQ = [w/^.(9l)]. Then

(ii) [9lo, %o9 ^o ? PJ ^ ^ simple stratum, where HQ = ̂ p.(9l).
^ 6, e < (̂9I, w, p,), fl̂  w^ ̂  = T^^,^.(e,) e ^(9Io, m^ ^). r̂ n

(iii) ̂  characters 6, intertwine in Autp(V) if and only if the characters 6^ intertwine
in Autp(V).

Proof. — The maximality condition on 9lo is equivalent to e^ (9lo) == 1. The
order 9lo is obtained as follows: there is an 91-lattice L in V such that 9lo is defined by
the lattice chain F^i^ L. However, the set of 91-lattices is linearly ordered and the
equality of ramification indices yields F^i^ L = F^F L, and this proves (i).

Part (ii) is immediate. In (iii), suppose first that the characters 6^ intertwine.
Using (8.5), we can now assume that m ==^o^W- Further, using (7.18), we can
conjugate by an element of U(9l) C U(9Io) and assume that 61 == 62. Our choice of m
gives us

U^^pU^+^o).
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By [BK1] (8.1.8), there is a unique irreducible representation p of the group V"1^1^)
which contains the character 61 = 62; indeed, the representation of U^^SI) induced
by 6, is a multiple of p. This representation p thus contains any character of the group
H^o+i(p^) which agrees with 6, on H^^, 9Io) n H^^, 91). However, by
[BK1] (3.6.1), the character ^ is the unique element of ^(9lo, WQ, ^) which agrees
with 6, on this intersection. The irreducible representation p therefore contains both
characters 6^, which therefore intertwine, as required.

For the converse, we define two sets. First, write e == <?(F[(3J | F),/==/(F[(BJ | F).
Let ̂  be the union of the sets (̂91, m, y), where [91, n, m, y] ranges over all simple strata
with .(F[y] | F) = ., /(F[y] | F) =/.

Note that, for such y, our order 9lo is normalized by F^F and is maximal for
this property. Moreover, each [SIo^^Y] ^ a simple stratum. If [9lo, ̂ ^8] is
simple and <?(F[8] | F) == e, /(F[8] | F) =/, then it intertwines with one of the form
Dtto? ^o? m^ y] as above. We now define a set ^o as above, using (9lo, n^, m^) in place
of (51, n,m).

The group U(9l) acts on ^ by conjugation; we write ^ for the set of orbits here.
Likewise define %o. The first part of the proof shows that 6 h->r6 gives a well-defined
map ̂  ->^, and this is moreover surjective. However, by [BK3] (2.6), the sets ^, %o
are finite with the same cardinality. This map is therefore a bijection. In the context
of the lemma, this says that the characters 6, intertwine if and only if the 8^ intertwine,
as required. D

Let us now prove (8.7) in the case where V and V have the same F-dimension.
By (8.8), we can assume that both orders 91, 91' are maximal for the property of being
normalized by F^J". In particular, 91 ̂  91' as Op-orders. Further, we can choose an
F[(3j-isomorphism V ^ V inducing an isomorphism 9 : Endp(V') -> Endp(V) such
that 9(91') == 91. This isomorphism 9 thus induces an embedding of F[(Bjx in (̂91)
which, by (1.6), is U(9I)-conjugate to the given embedding (from the F[(3J-vector
space structure of V). In terms of characters, we have ©i(9T) == ©i(9l) o 9-1; indeed,
composition with 9~1 is exactly the map T^ ̂ , ̂  in this situation. On the other hand,
©2(9T) is the <( pull-back " of a U(9I)-conjugate of ©2(9!), that is, a U (91') -conjugate
of ©2(91) o 9-1. Since the ©,(91) intertwine by hypothesis, so do the ©,(9T), as required.

To deal with the general case, we have to delve into another case of the definition
of the transfer maps T. To this end, we fix positive integers e, f, n and an integer m,
0 ̂  m < n. We choose an F-vector space Vo of dimension ef and a principal order 91̂
in Endp(Vo) with ^(9Io | Op) == e. We write

^o-U^o^Y),

for simple strata [9Io, n, m, y] in Endp(Vo) with <?(F[y] | F) = e, /(F[y] [ F) ==/. We
write ^ for the set of U(9lo)-conjugacy classes of simple characters represented by
elements of ^o.
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Now let t be a positive integer, and let V = Vo ® ... © Vo be a direct sum of
t copies of Vo. Let oS?o be the lattice chain in Vo which defines 9lo. w^ let ^ be the
lattice chain { L ® ... C L : L e JSf^ } in V, and write 91 for the hereditary order in
Endp(V) defined by oSf. Thus % is a principal order and ^(91 \ Op) = e. A simple stratum
[9lo, n, m, y] gives rise in the obvious way to a simple stratum [91, TZ, m, y], and 91 is
maximal for the property of being normalized by F^^. Further, any simple stratum
[91, n, m, 8], with e(F[8] \ F) = <?,/(F[8] | F) ==/, is U(9l)-conjugate to one of this form.
Write

<S?= U^(9l,m,8)

for simple strata [91, n, w, 8] sadsfying <?(F[8] | F) == ^,/(F[8] | F) =/. Likewise write ̂
for the set ofU(9l)-conjugacy classes of simple characters represented by elements oW.
If we take 6 e^o and choose a simple stratum such that 6 e ^(9lo, m, y), we get an
element 6^ == T^ % ^ 6 e ̂ .

The construction of T in this case is particularly straightforward. (The following
is a paraphrase of the proof of [BK1] (3.6.14).) We identify Autp^o^ with a Levi
subgroup M of Autp(V). We choose an opposite pair (P, P~) of parabolic subgroups
of Autp(V) with Levi component M, and write U, U~ for their unipotent radicals.
We get U(9l) n M == V^^. If [9lo, n, m, y] is a simple stratum as above, we get an
Iwahori decomposition

H^^Y, 91) = H n U-.H n M.H n U,

with the obvious abbreviation. Moreover, H n M is just H"14"^, 910)'. For
6 e^(9lo, w, y), the character TO agrees with 6 on the diagonal blocks H^^y^o)
and is trivial on H n U", H n U. The character r6 is therefore independent of the
choice ofy such that 6 e ^(9lo, m, y). Further, if 61, 63 e %o intertwine, we have x e U(9Io)
such that Og = 6^, whence rO^ == r(6^) intertwines with T(6l)a; (where we view U(9Io)
as embedded in U(9l) n M on the diagonal). In all, we have a well-defined map ̂ o -> ̂ ,
which is moreover surjective. By [BK3] (2.6), the sets ^o, ^ are finite with the same
cardinality, so this map is bijective. Invoking (1.6), we have proved:

(8.9) Lemma. — Let 9lo be a principal order in Endp(Vo). For i = 1, 2, let [9lo, n, m, (BJ
be a simple stratum such that F[(y is a maximal subfield of Endp(Vo). Let 6, e ^(910, m, (3,).

Let 91 be a principal order in Endp(V) with ^(911 Op) = <?(9lo | Op). Let
Pi^CPi] ->Endp(V) be an F-embedding such that cp^F^]^ normalizes 91.

The characters ^0,91,3,61 then intertwine in Autp(V) if and only if the characters 6,
intertwine in Autp(Vo).

Now we can complete the proof of (8.7). We are given realizations
0,(9l) e (̂91, m, (3J in some Endp(V) which intertwine. We are also given realizations
©,(9r) £^(91', w', p,) in some Endp(V/). We have to show that the latter intertwine.
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By (8.8), we can assume that the order 91 is maximal for the property of being normalized
by FIXT. By (8.9), we can assume that dimp(V) = [F[(3J : F]. We can apply the
same reduction procedure to %'. This reduces us to the case where dinip(V) = dinip(V'),
with which we dealt above. D

(8.10) Corollary. — The relation », defined by (8.6), is an equivalence relation on the
set of ps-characters over F.

An endo-class over F is then an equivalence class of ps-characters over F for the
relation «. Of course, we can equally regard an endo-class as a set of simple characters
over F.

There are several invariants attached to an endo-class 0 over F.

(8.11) Proposition. — Let Q be an endo-class of simple characters over F, and let
6 e ̂ (%, m, (B) be a realization of some ps-character belonging to 0. The following quantities
depend only on 0, and not on the choice of 6:

^(8) = ̂ (P),
W)=W),
e^{Q) = .(F(p) | F),

UQ) =/(F((B) | F),

W)
m

W).
Proof. — The first four assertions are given by (8.3), while the remaining one

comes from the definition of realization. D
For a given endo-class 0, consider the set of all simple pairs [A, [B] which support

some ps-character © e 0. The integer k is the invariant ^p(0). These simple pairs [̂ , [B]
fall into finitely many equivalence classes. We sometimes use the notation (0, k, (3) to
indicate that 0 contains a ps-character supported by an element of the class (k^ (3) of
simple pairs.

We write <?^(F) for the set of endo-classes of simple characters over F. As for
simple pairs, the association F i-><?^(F) is functorial in that an isomorphism F ̂  F'
of local fields induces a canonical bijection <^(F) ^(^(F'). In particular, the group
of continuous automorphisms of F acts on <^(F) in a natural way.

9. Tame lifting of endo-classes

In this section, we finally reach the main definition. We are given an endo-
class (0, k, (B) over F and a finite tamely ramified field extension K/F. We have to define
the K/F-lifts of 0.
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As in the parallel situation of § 3, we have to start with a specific representative.
Therefore, we take a ps-character [0, k, (B] where, of course, k ^ 0. Let pi, (3^ • . . , Pr
be the K/F-lifts of the field element jB. Let I be some integer satisfying

(9'1' bW^
For each i, 1 ̂  i^ r, we choose a realization [S^n^m,, (3J of the simple pair [7, (3J
on a finite-dimensional K-vector space V,. We write G, = End^V,), A, = Endp(VJ,
and we let 91, denote the hereditary Op-order in A, defined by the same lattice chain
as (£,. The stratum [91,, ̂ , m,, (BJ is then simple, and is a realization of [k, ?]. Let
6, e ̂ (^, m^ p.) be the corresponding realization of ©. We put

(9.2) e^eiH^1^,^),
using, in particular, (7.1) and (7.7). This character 6? lies in ^((£,, m,, (3,), and is
a realization of a ps-character [©K, /, pj over K.

(9.3) Proposition. — The ps-character [©K, Z, (BJ AjSw^ o^ <m [©, ̂  P] ̂  ̂
^ Pi 0/^ P? ^^ 7l^^ on ̂  specific realization chosen in the definition.

Proof. — Let [Co^,w,, (BJ be as above. Suppose we have another realization
IX, <, <, M of[/, (3J in the same End^V,). This gives us a realization [%;, <, <, pj
of[^, p]. Let e^ e ^(SI,', ̂ , (B,) be the corresponding realization of ©. By the definition of
ps-character and [BK1] (3.6.1), the characters 6,, 6; agree on

H-^^.^nH^^^,^).

They then certainly agree on H^-4-1^, ^) n H^4-1^, (£;), and hence define the
same ps-character.

In the general case, suppose we have a second realization [(£,', ̂ , m[, (BJ of [̂ , pj
in End^V,'), and otherwise use the notation of the previous paragraph. By the first
part, we can assume that each of the orders C,, (£,' are maximal for the property of
being normalized by K^]". We compare these via the standard realization of [7, pj
n End^(K[pJ). This implies m; = m[ = I. By transitivity, we may as well take
V, = K[(BJ. We then use an Iwahori decomposition argument, as in the proof of (8.7).
We construct a Levi subgroup M^ of Aut^Y^) along with unipotent radicals U^, U^
to give us an Iwahori decomposition

HK = H^ n UK.H^ n M^.H^ n U^,

H^nM^H^,^,

where H^ = H14-1^, £;) and t^ 1. The groups M^, U^, U^ determine analogous
subgroups M, U, U~ ofAutp(V^), and we get a corresponding Iwahori decomposition
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of H^^, %;). In particular, H^^, ̂ ) n M is the product of t copies ofH^^, %,).
The result will follow if we show that the restriction of 6,' to any of these (< blocks 5?

H^^Po ^i) ^s equal to 6^. However, this follows from the construction of the transfer
maps T, as reviewed in the proof of (8.7). D

(9.4) Definition. — Let [©, k, [3] be a ps-character over F, and let K/F be a finite tamely
ramified field extension. Let (3i, j^, ..., (By be the set ofKIF-lifts of the field element p. Let I be
an integer satisfying (9.1), and let [©K, Z, (BJ be the ps-character over K ̂ fe/iW by the character Of
o/ (9.2). T^

{[0^(3,1:1^^}

^ the set of (K/F, /)-lifts of the ps-character [0, k, [B],

As for simple pairs, the integer / plays virtually no role beyond having the pro-
perty (9.1): see (9.10) below. We will therefore drop it from the notation as soon as
possible.

We also have a transitivity property.

(9.5) Proposition. — Let [0, k, [3] be a ps-character over F and let K/F, L/K be finite
tamely ramified field extensions. Let {(B,: 1 ^ i ̂  r } be the set ofKIY-lifts of (B and let { [Qf, Z, (3J }
be the (K/F, l)-lifts of [0, k, [B], where I is some integer satisfying [7/<?p(K | F)] = k.

Let {(3,,: 1 < j ^ r,} be the set of LIK-lifts of (B,, 1 < i ̂  r, and let { [0^, w, |3,,] }
be the (L/K, m)-lifts of [0s, /, (BJ, where m is some integer satisfying [w/^.(L | K)] = I,

We then have

\ ^ 1 _ ,
k(L|F)J

and the set

{[©^M^^ r^ 1 ^ ^ r)

is the set of (L/F, m)-lifts of [0, &, p].

Proof. — We note first the identity ^(L | F) = ^(K | F) ^p^.(L | K), so the defi-
nidon of m is certainly independent of i. Moreover, it satisfies the required condition.
In the construction above of 0^, we could have taken (£^ to be the hereditary o^-order
defined by the unique o^p..j-lattice chain in L[jB^.], and the result follows immediately. D

We can now state our main results.

(9.6) Theorem. — Let K/F be a finite^ tamely ramified field extension.
(i) Let 0 be a ps-character over F, supported by a simple pair [k, [3]. Let

I == (k + 1) e^K | F) - 1,

and let {[@f, /, ?,] : 1 < i ̂  r } be the set of (K/F, l)-lifts of 0. We have 0f w 0f if and
only if i ==j.
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(ii) For j == 1, 2, let ©^ be a ps-character over F, supported by the simple pair [A, (BJ.
Suppose we have ©i w ©3, so that, in particular, ^(K | F) == ^(K | F). Let I be the integer

I == (k + 1) ^(K | F) - 1 == (^ + 1) ^(K | F) - 1,

^ ̂  { ©^ : 1 < z < r,} be the set of (K/F, l)-lifts of ©,, j = 1, 2. TA^ ^ A^ r^ == r,
<W, o/fcr renumbering,

©S»©^ l^z^.

In other words, equivalent ps-characters give rise to equivalent sets of lifts and,
moreover, distinct lifts of a given ps-character are inequivalent. The first enables us to
extend the definition of lifting to endo-classes of simple characters. Formally:

(9.7) Definition. — Let 0 be an endo-class of simple characters over F, and let [©, k, [3]
be a ps-character representing Q. Define ps-characters [©K, /, (3J over K as in (9.4), and let Qf
denote the endo-class of [©K, /, pj. Then

{ Q f : l ^ i ^ r }

is the set of (K/F, /)-lifts of 0.

As before, the lifting process is injecdve:

(9.8) Theorem. — Let K/F be a finite, tamely ramified field extension and, for j = 1, 2,
let @, be a ps-character over F supported by a simple pair [k,, (3J. Suppose there exists an integer M
such that

M + 1 ̂  mm{ (A, + 1) ^.(K | F) }

and (K/F, M)-lifts ©K of the ©, such that ©K w @f. Then ©i w ©2.

Likewise, there is a surjectivity property:

(9.9) Theorem. — Let K/F be a finite, tamely ramified field extension, and letT be a
ps-character over K supported by a simple pair \l, 8]. There exist a ps-character © over F, supported
by a simple pair [k, p], and a (K/F, l)-lift ©K of © such that

k==
L^(K | F)J 9

and ©K « Y.

Of these theorems, (9.9) follows from (7.10), while (9.8) follows from (7.15)
and the injecdvity statement of (7.10). We have therefore only to prove (9.6). The
first point to note is that, generalizing (6.1), the dependence on the parameter / in
the definition of lift is spurious.
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(9.10) Lemma. — For i = 1, 2, let [©,, k, (BJ ^ a ps-character over F. Z^ ^ be a
K/F-ff^ 0^ (3,, and ©K ̂  corresponding lift of ©,. Suppose that we have:
a) ©i « ©2 {so that ^(K | F) == ^(K | F));
b) [©?? ^Pi] » [®^ ^PzL/^ some integer I such that [l/e^K | F)] = k.

Let IQ be the integer ke^(K | F). Then

[©^o^i]»[©^o^2].

Proof. — We may as well start in the worst case
/ = (k + 1) ^.(K | F) - 1.

Let y be an integer such that lo^ y ^ I, and choose realizations [(£, n, m, pj of the simple
pairs [y,PJ on some K-space V. We set G = End^(V), A == Endp(V). The ps-cha-
racter ©K then determines a unique character Of e %'((£, w,^). Now choose q minimal
for the property that the 3f intertwine (and assume that q> IQ, since otherwise there
is nothing to prove). This property of the ^f is independent of the choice of realizations.
In particular, it is independent of the choice ofw subject to [^p.((£)] = q, by (8.5).
We can therefore take m = ^^.(£). By the fact that intertwining implies conjugacy (7.18),
we can therefore arrange ^(C, m,Pi) = ^((S, m,^), and ^ = ̂ .

Now let 91 be the hereditary Op-order defined by the same lattice chain as (£.
The stratum [%, n, m,^] is then simple, and is a realization of [k, (3J. Let 6? be the
corresponding realization of ©,. By definition, we have

e^H^1^)-^,
and, by (7.15), (7.7), also 6? == 6j. Further, by hypothesis, the characters 6?-1 (of
H"^, %)) intertwine. Let us now interpret this condition. There is an element c e ^ " " " ,
where ̂  is the radical of 91, such that 6j~1 = 6?~1 ̂ . For suitable choices of additive
characters, this gives us -8'j"1 == ̂ -1 ̂ . We choose a tame corestriction s on A relative
to FI^J/F. As in (2.7), this restricts to a tame corestriction on C relative to K^j/K.
Write B = Endp^(V), 93 = 91 n B. By [BK3] (2.7), the stratum [SB, w, m - 1, j^)]
is either null or equivalent to a simple stratum. Since the 6?~1 intertwine, it is in fact
null, by [BK3] (2.8). It follows that the stratum [SB n (£, m, m — 1, s(c)] is null, whence
the Qf~1 also intertwine.

This contradicts the definition of q, and so proves the Lemma. D
To prove (9.6), it is enough to treat the case where the extension K/F is Galois:

the justification for this is formally identical to the corresponding argument in (4.1).
We first prove (9.6) (ii). We take our equivalent ps-characters [Q^k, (3J, and choose
a K/F-lift of each (3, (which we continue to denote by (B,). Set / == {k + 1) ^.(K. | F) — 1.
We take realizations [(£, n, I, pj of minimal dimension (which saves notation), and let
^ e %'((£, /, p^) be the character defined by the lift ©K corresponding to our chosen
lift of (^. Now let 91 be the Op-order defined by the same lattice chain as C, and let x
range over the group .^((K)/^®). The simple pairs defined by the strata [(£, n, I, (^]

21
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then range over the lifts of [k, (BJ, and the ps-characters defined by the ̂  range over
the lifts of @i. To prove (9.6) (ii), we therefore have to show:

(9.11) In the situation above, there exists x e^/^K) such that the characters Qi, 0^
intertwine in Aut^(V).

We proceed by induction. If / ^ [^/2], we can appeal to (6.7). We therefore
assume otherwise. We choose a simple stratum [(£, TZ, / + 1, y], equivalent to
[(£, n, I + 1, PJ and such that [91, n, I + 1, y] ls simple. Inductively, we can assume
that the ^ agree on H^2^, (£) == H^^y, £). This implies, by (7.10), that the 6,
agree on H^^y, 91). Choose 6 e (̂91, /, y) agreeing with the 6, on H^2, and write ^
for the restriction of 6 to H^^y, C). We now choose a tame corestriction ^ on A relative
to F[y]/F, and write 93 == % n Endp^(V), D = £ n End^V).

Now we write 6^ = 6^, in the usual way. As in the proof of (7.15), we can take
^ e G, so that ^ == -8'̂ .. By [BK3] (2.7), the stratum [D, / + 1, /, ,?(^)] is either null
or equivalent to a simple stratum. We choose a simple (or null) stratum [3), I + 1, ,̂ 8,]
equivalent to [D, / + 1, /, s (<:,)] such that [SB, / + 1, /, 8J is simple (or null). Since
the 6, intertwine, the strata [SB, / + 1, /, 8J intertwine. Now, by (6.7), there exists
y e^B(K[y]) such that [£),/+ 1, /, 8j] intertwines with [3), / + 1, /, 8J. It follows
that 0-1 intertwines with ̂ . This proves (9.11), and hence (9.6) (ii).

Let us now prove (9.6) (i). We take a ps-character [0,^, [3] over F, and show
that the various lifts of this are distinct (modulo endo-equivalence). Again, we assume
that K/F is Galois. We fix a lift of (3, which we continue to call p. We set
I == (k + 1) ^p(K | F) — 1, and choose a realization [(£, 72, /, p] of [/, [B] of minimal
dimension. Let 91 be the hereditary Op-order defined by the same lattice chain as (£,
and let 6 e ^(91,1, (3) be the character defined by ©. Put ^ = 6 | ff4-1^, (£). We have
to produce r non-intertwining characters of the form Q35, where r is the number of K/F-
lifts of p and x ranges over the group *^((K). If / ^ [^/2], this is given by (3.5). The
assertion follows immediately from the inductive hypothesis if the stratum [91, n, / + I? P]
is simple. We therefore assume the contrary, and choose a simple stratum [(£, n, I + I? yL
equivalent to [(£, TZ, / + I? P] and such that [91, n, I + I? y] ls simple. We write
B == Endy^(V), 93 = 21 n B, D == End^(V), D = (£ n D. We choose a tame
corestriction s on A relative to F[y]/F. We then choose a simple stratum [D, ^ + I? ^ 8],
equivalent to [D, /+! , / , s(^ — y)], such that [23, / + 1, /, 8] is simple. As in the proof
of (6.2) (ii), we have r = ^^5 where r^ is the number of distinct K/F-lifts of y and
r§ is the number of K[y]/F[y]-lifts of 8. Inducdvely, there are r^ non-intertwining
characters of the form ^x | H^^y, (£), x ec/^(K). Fix one of these, which may as
well be ^IH^^y, (£). There exists ^ e ^(0, I, y), agreeing with » on H^2, such
that ^ = -8-0 +J-Y- Let JW2 ̂ ^s^M)- we have ^ == -^09 and the characters y*
intertwine if and only if the strata [3), / + I? ^5 ̂ ] intertwine. However, there are
precisely rg non-intertwining strata of this form, and the result follows. D
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This technique is worth recording explicitly. The arguments above assume that
we have realizations of minimal dimension. However, that hypothesis plays no serious
role, and we deduce.

(9.12) Corollary. — Let K/F be a finite, tamely ramified Galois extension. Let V be a
finite-dimensional K-vector space, and (£ a hereditary o^-order in C = End^(V). Let 91 be the
hereditary Oy-order in A = Endp(V) defined by the same lattice chain as C. For i = 1,2, let
[%, n, m, JBJ be a K-pure simple stratum with m ̂  0, and let Q, e ^(%, m, [3,). Define
^e^(Q:,m,(B,) by ^ = ejH-^^, G).

Suppose that the characters 61, Q^ intertwine in Autp(V). There exists x e^r^(K) such
that the characters Q-i, -9-j intertwine in Autg^V).

As in § 3, we can summarize our lifting theorems in terms of a certain base-field
restriction or induction map.

(9.13) Corollary. — Let K/F be a finite tamely ramified field extension. There exists a
unique map

Res^p:<^(K) -><^(F)

with the following property: for Y e^^K) represented by a ps-character [Y, /, [B], the endo-
class Res^Y) e<^?(F) is represented by [0, k, a], where [l/e^K \ F)] = k and [Y, /, p]
is endo-equivalent to some K/F-/z/^ of [©, A, a],

Moreover, we have:

(i) the map Res^/p is surjective,
(ii) yor a ps-character [0, Vfe, a] owr F, the fibre of Res-gyp above the endo-class of @

consists of the endo-classes of [©K, /, aj, where a^ ranges over the K/F'-lifts of a and I over integers
such that |7/^(K|F)] == k;

{iii) if L/K is another finite tamely ramified field extension, we have

Res^/p = Res^/p o Res^/K-

In (ii) here, we have used the notation of (9.4). Also, (iii) follows from (9.5).
If K/F is Galois, the group F = Gal(K/F) acts on <?^(K) and stabilizes the fibres

ofRes-g/p. Indeed, if in (9.13) (ii) we choose a lift a of a and write © for the corresponding
lift of ©, the fibre above the endo-class of [©, k, a] consists of the (mutually distinct)
endo-classes

[@°,/,a°], aer , ke^K \ F) ^ / < {k + 1) ^(K | F).

In practice, we shall usually only be interested in the set <^°(F) of endo-classes
of ps-characters of the form [©, 0, a]. We then get a surjective restriction map
^^(K) —>-<^°(F) whose fibres are parametrized just by lifts of elements.
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10. Iwahorl decomposition and parabolic norm

In preparation for the next couple of sections, we need to examine with some
care various (< Iwahori decompositions 9? of simple characters. We will later have to
compare a simple character Op in GL(N, F) with a related object in GL(N, K) made
from the various K/F-lifts of 6p. We approach this via simple characters in
GL(Nflf, F) 3 GL(N, K), where d = [K : F], the connection being made through various
"diagonal" embeddings of GL(N, F) in GL(N^ F). Here we examine how these
embeddings interact with the arithmetic structures attached to simple characters.

To start with, V denotes some finite-dimensional F-vector space, and we put
A == Endp(V), G = Autp(V). Let M be some Levi subgroup of G. Thus we have a
decomposition

(io.i) v == v^v^ ... ev
of V as a direct sum of (let us assume) non-zero subspaces V and

(10.2) M == n Aut^V1).
i=l

Let P be some parabolic subgroup ofG with Levi factor M. Thus there is a permutation TC
of the set { 1, 2, ..., r} such that P == P^ is the G-stabilizer of the flag

(io.3) {o }c v"^ c v"^ e v"^ c ... c u v^ = v
!<$« r

of subspaces ofV. We have P = MU, where U is the unipotent radical of P . I fP= ?„
as in (10.3), then the opposite permutation TT" : i h-» n(r — i) gives rise to the parabolic
subgroup P~ opposite to P. Again, P- == MU~, where U~ is the unipotent radical ofP-,
and P nP- == M.

Let P be a parabolic subgroup of G with Levi component M, and let ^ be some
subgroup of G. We say that ^ has Iwahori decomposition relative to the pair (P, M) if

^= ^ nU-.^ nM.^ n U

and ^ n M == II ^ n Autp^),
i==l

where M is given by (10.2). The cases of concern to us all arise in the following manner.

(10.4) Proposition. — Let M be a Levi subgroup ofG defined by (10.2) and let X be
an Oy-laftice in A such that I + X is a subgroup of G. Write ^ for the projection V -> V with
image V and kernel S,^V\ Suppose that

e, X^ C X

for all pairs z, j. The group 1 + X then has Iwahori decomposition relative to (P, M), for any
parabolic subgroup P of G with Levi component M.
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Proof. — The assertion is independent of the choice of P, so we may as well assume
that P is given by (10.3) and the permutation TT there is the identity. We choose a basis
of V, consisting of a union of bases of the V\ ordered in the obvious way so that P is
a group of upper triangular block matrices. The space ^ Ae^ is just Homp(V^ V),
so, put another way,

P==Gn(n^^A, , ) .

The hypothesis on X implies X n ^ Acj = ^ X.€j which in turn implies

x=u^x<?, .
i.J

In particular, ly, + ^ X^ is a compact open subgroup of Autp^) for each z, and

(1 +X) n M = = I I ( l +e,Xe,).

By hypothesis we have ^X^-.^X^C ^X^ for all i, j, k. The assertion now follows
readily using elementary row and column operations on matrices. D

Thus, in the situation of (10.4), the existence of an Iwahori decomposition depends
only on the Levi subgroup M. However, the components of the decomposition of a
given element x e 1 + X do depend on the choice of parabolic subgroup P.

We continue for the moment in the situation and with the notation of (10.4),
and suppose we are given an Op-latdce chain JS? = { L, :j e Z } in V. Let 91 == End^(oSf)
be the hereditary order defined by oS ,̂ and write ̂  for the radical of 91. We say that
M conforms to o6f if

(10.5) L^==SL^nV1 , keZ.

This condition implies that ^ L^ == L^ n V1 C L^ for all i and k, whence ^ e St. Thus
e, 91̂  C 91 for all i, j, and 91 is the direct sum of the e, 9fc,. Likewise, e, ̂ Cj C ^3. We
can therefore invoke (10.4) to establish the first assertion of:

(10.6) Proposition. — Let 91 = End -̂S )̂ be a hereditary Oy'order in A == Endp(V)
with radical ^}. Let M be a Levi subgroup ofG = Autp(V), defined by (10.2), which conforms
to «Sf. We have:

(i) The group Ul(9l) has Iwahori decomposition relative to the pair (P, M), for any
parabolic subgroup P of G with Levi component M.

(ii) 91, == ^ 91^ is the hereditary Oy-order in ^ A^ = Endp )̂ defined by the lattice
chain {L, n V : j e Z }. The radical of 91, is e, ̂ e,.

(lii) We have ^(91) n Autp(V1) == ^(91,), 1 ^ i< r.

Proof. — To prove (ii), we write -Sf" for the lattice chain { L,. n V1 :j e Z},
and define 91, == End^(JSf1). For any x e 91, we have e, xe, L, C L, n V\ so
^A:^e9I,. On the other hand, i f jye9l t (regarded as an element of A), we have
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^ L , = ^ L , = = ^ ( L , n V ^ ) C L , n V ^ C L , , s o J e % n ^ A ^ = ^ ^ . Thus ^91^=91,,
as required. For the second assertion, we use a duality argument (cf. [BK1] (1.1)).
We choose a continuous character ^F of the additive group of F with conductor pp,
and set ^A == ^F o tr^/p. For a subset S of A, we put S* == { x e A : ̂ (xS) ={!}}.
We then have 9T == ̂ . Further, ^A | e, Ac, == ^'Aef, in the obvious notation. We
write ^ for the radical of 91,, and then ^ == { x e e, Ae,: '̂̂ (^91,) ={!}}. The
inclusion ^5 n 9I,C ̂  is now immediate. On the other hand, i f j ^ e ^ C e,Ae^ then
^(^91) = ̂ (^91^) == ^'^'(.A) = { 1 }. This proves (ii), and (iii) now follows. D

We now consider a more delicate situation. With M, 91, JSf as before, suppose
we are actually given a subfield E/F of A such that Ex C ^(91), i.e. such that oSf is an
Ofi-lattice chain. We say that M conforms to S over E if it conforms to oSf in the sense
of (10.5) and the subspaces V of (10.1) which define M are E-subspaces of V.

(10.7) Proposition. — Let [21, n, 0, [B] be a simple stratum in A, and write E = F[(3],
91 == End^(oSf). Let M. be a Levi subgroup of G which conforms to J§f over E. The groups
H^p, 91), .P(jB, 91) then have Iwahori decomposition relative to (P, M), for any parabolic sub-
group P of G with Levi component M.

Proof. — Using our earlier notation, the hypotheses say that the projections ^
all lie in the hereditary o -̂01'̂ 1' ® = 91 n Ende(V). Since ^((B, 91), S^P, 91) are
93-bimodules [BK1] (3.1.9), we are in the situation of (10.4), and this gives the
result. D

In the degree of generality of (10.7), it can be difficult to describe the diagonal
factors H^p, 91) n Autp^). For each i, there is an integer n, such that [91,, ^, 0, [3] is a
simple stratum in Endp^1), but it often happens that H^p, 91) n Autp(V1) 4= ?((3, 91,),
and likewise for J1. We therefore make a definition:

(10.8) Definition. — Let [91, n, 0, [B] be a simple stratum in A = Endp(V), and write
E = F[(3], 91 == End^(JSf). Let M be a Levi subgroup of G, defined by (10.2), and use the
notation ^ as above. We say that M conforms to [91, n, 0, [B] if:

(i) M conforms to the lattice chain oSf over E;
(ii) for all i, we have ?((3, 91) n Aut^V1) == ?((3, 91,) (in the notation of (10.6))

and likewise for J1;
(iii) for any 6 e ^(91, 0, (B), ̂  restriction 6 | H^p, 91) n U ^ TM ,̂ z r̂<? U is the

unipotent radical of any parabolic subgroup P ofG with Levi component M.

There are two basic examples of the phenomenon (10.8).

(10.9) Example. — Let [91, TZ, 0, p] be a simple stratum in A, with E == F[(3], and let
£S === { L̂ . :j e Z } ̂  ̂  ̂ ^ cAam wA^A defines 91. Z^ M 6^ a Z^yz subgroup of G as in (10.2),
<W suppose it conforms to the lattice chain ,S? <wr E. Suppose also that all of the lattice chains ,S?
and { L, n V1 : j e Z } have the same period. Then M conforms to [91, n, 0, (BJ.
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At the other extreme we have:

(10.10) Example. — Let [51, n, 0, [3] be a simple stratum in A, with E == F[(B], and
let jy = {L, : j e Z } ̂  //^ to^ ^<OT wAz'̂  defines 91. Z^ M ̂  a Levi subgroup of G as
in (10.2), and suppose it conforms to the lattice chain oSf over E. Write L^ == L, n V\ Suppose
that

(i) r ^*yz^ the integer ^(91 \ Op)/^(E | F), and
(ii) z^ may renumber the V^ jo that

-"i + wr = —i + wr + 1 === • • • = —i + (m 4-1) r — 1 T —i +(m+l)r5

^or 1 < z ̂  r and all m e Z.

Then M conforms to [91, %, 0, [B].

ft

This case is given by [BK1] (7.1.14). Note that, to verify (10.8) (iii), it is enough
to check that 6 is null on 1 + ^^(P? 91) ^3 whenever i 4= j, and this is certainly implied
by [ibid.]. The proof of (10.9) is parallel, but rather easier so we omit the details. Note
that we used a special case of (10.9) in the proof of (8.9).

In both cases, write 91, == End^({L, n V1}). If 6 e (̂91, 0, (B), and we write
61 == 6 | ?((3, 91,), then in both cases (10.9), (10.10), we have 61 e ^(91,, 0, (3) and
6 i-̂  61 is the canonical bijection

^r,3:mO,(B)^m,0,(B)

discussed in § 8. In the case (10.10), this is proved in [BK1] (7.1.19). The case (10.9)
is parallel. It is worth observing that in the second case, we get an Iwahori decomposition
for the group J((B, 91), while this does not usually hold in the first example.

We need to combine these examples, as follows. It will also be convenient to
introduce a little extra generality.

(10.11) Proposition. — Let [91, n, 0, p] be a simple stratum in A, and M a Levi subgroup
ofG. Let E/F[(3] be afield extension in A with E" C ^(91). Let oSf be the lattice chain in V which
defines %. Suppose that M is given by (10.2), that M conforms to oSf over E, and that each space V1

has ^-dimension 1. Then M conforms to the simple stratum [91, ,̂ 0, ?].

Proof. — We first observe that, since M conforms to oSf over E, it must also conform
to oSf over F[(B], so (10.8) (i) is satisfied.

We write oSf == { Lj,:j e Z } as usual. We treat first the case in which the lattice
chain oS? has o^-period 1. For each i, the chain { L, n V1 :j e Z } then also has De-period 1,
and the result follows from (10.9).

We now reduce to this case. For each i, we choose y, e V such that Lo n V = o^ vi-
Then, after a suitable renumbering, the set { v,: 1 ̂  i ̂  r } is an o^-basis of the lattice
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chain £0. More precisely, we have integers 1 ̂  d(l) < d(2) < ... < d(e) = r, where e
denotes the o^-P^^d °f °^ such that

r

LQ = S OE^O
i=l

L, = S pE^ 9 2 OE^, l < j ^ < ? — l .
l^i^<i(^) i>d(j)

We now let W^ denote the E-linear span of ^-i)+i, ..., z^p l ^ k ^ e (with the
convention ^(0) = 0). This set ofsubspaces defines a Levi subgroup M° 3 M ofG, which
conforms to J? over E, and it conforms to [91, n, 0, [B] by (10.10). We can now work
in the "blocks" Aut^W^): set ^(k) = 91 n End^W^), M(k) == M n Aut^W*).
Thus [9l(^), 72/r, 0, [3] is a simple stratum in Endj^W^) and M{k) is a Levi subgroup
of Ai^W^) which conforms over E to the lattice chain { L^ nW^} defining 9l(A?).
By (10.10), we have ?((3,91) n Aut^) = ?((3, %(&)), and likewise for J1, so the
result will follow if we prove that M(A) conforms to the stratum [SI(^), w/r, 0, (B]. However,
the lattice chain defining 9I(^) has OE'P^0^ 1, and we are in the first case. D

Remark. — One can obtain a Levi subgroup M as in (10.11) by taking an
OE-basis {w,} of S and setting M = n, Autp(Ew,). In fact, all M satisfying the
hypotheses of (10.11) are of this form.

We continue in the situation of (10.11), and write % == % n Autp(V1), as before.
Thus, for 6 e ^(%, 0, (B), the character 61 = 6 | ?((3, %,) lies in ^(^ 0, (B) and

(10.12) The map 6 ̂  61 is the bijection T .̂̂  : ̂ (%, 0, (B) -. <S?(%, 0, p).

This follows from (8.1), the proof of (10.11) and the corresponding property in
the cases (10.9), (10.10).

If we choose a parabolic subgroup P = MU of G with Levi component M, an
element x e I-P^, 91) can be written in the form

(10.13) ^=J^i,.. . ,^).^

withj/ e ?((3, %) n U-, z e H^p, 91) n U, and x, e ?((3, %). We then have

(10.14) Q(X) = n e1^).
i=l

We shall need to view (10.14) as a relation between elements. We start with a simple
stratum [%, 71, 0, [B] in A == Endp(V). We let E/F[(3] be a finite field extension with
Ex C W) and put

B = EndE(V),
A(E) = Endp(E),

%(E)=En<({pE}).
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Let 86 == { ^i, ..., Wy} be some E-basis of V, and write W for the F-linear span of S8.
Thus the natural map E OOp W -> V is an isomorphism, and it induces an isomorphism
A(E) OOp Endp(W) ^ A of F-algebras. We regard this isomorphism as identifying A
with the ring of r X r matrices over A(E). In particular, it induces an embedding

^:A(E)->A,

which in matrix terms is the obvious diagonal one. Note that the isomorphism
A(E) ® Endp(W) ^ A and the embedding i^ actually only depend on the F-space W
rather than the chosen basis 88.

(10.15) Proposition. — Let [91, n, 0, [3] be a simple stratum in A === Endp(V). Let
E/F[(B] be a field extension with Ex C .ft(9l), and use the other notation above. Let 38 = { w^ ..., Wy}
be an Q^-basis of the lattice chain defining 91 (up to ordering)^ and use this to identify A with
M(r, A(E)) as above. Let M be the Levi subgroup

M = M^ = A Autp(E^),
i=l

i.e. M is the group of invertible diagonal matrices over A(E). The group M then conforms to the
stratum [91, n, 0, |B], and M n H^p, 91) z'j ̂  ^roa^ o/* diagonal matrices with entries in
H^P.^CE)). Moreover,

?((3, 91) n ̂ (A(E)) == ^(?((3, 9I(E))).

The analogous properties hold for JPdB, 91).

Proo/*. — As above, let W denote the F-linear span of 25. We thus have
E®pEndp(W) = B = Endg(V), and so we have canonical isomorphisms

A ^ A(E) ®p Endp(W) ^ (A(E) ®g E) ®F Endp(W)
^ A(E) ®B (E ®F Endp(W)) ^ A(E) ®^ B.

giving a canonical isomorphism A ^ A(E) ®g B of (A(E), 'K)-bimodules. (This is a
" (W, E)-decomposition " in the sense of [BK1] (1.2).) However, when as here 3S is
an o E-basis of the chain defining 91, this isomorphism restricts to an isomorphism
9I(E)®^® ^ %, where 93 is the hereditary OE-order 91 n B (see [BK1] (1.2.8)). In
matrix terms, 91 becomes identified with an order of block matrices in A = M(r, A(E)),
in which the blocks below the diagonal have entries in ^P(E) = rad(9I(E)) while the
others have entries in 9l(E). In particular, Endp(EwJ n 91 == 9l(E) in these identifi-
cations. In the terms of (10.6), we thus have 9l» = 9l(E) for all i, and the first assertion
follows from (10.11). The group ^(H^p, 9l(E)) is the group of "scalar" matrices
diag(^, x, . . . , x), x e ?((3, 9I(E)), and the second assertion again follows from (10.11). D

Remark. — It needs to be remembered that a basis of a lattice chain, for example
SB in (10.15) above, is not just a set: its elements have to be ordered in a certain way.
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The full definition is [BK1] (1.1.7), and it is effectively repeated in the proof of (10.11)
above. For many purposes, including those of (10.15), this ordering is irrelevant.

(10.16) Corollary. — In the situation of (10.15), let 6 e (̂<M, 0, p). There is a unique
character 6p e ̂ (%(E), 0, p) such that

Q | ?((3, %) n M = 6,0 6p® ... ® 6p.

We continue with the notation of (10.15). To recapitulate, we have a simple
stratum [31, n, 0, (3] in Endy(V), a finite field extension E/F[|3] with Ex C ^(<M), and
an OE-basis ̂  = { w^ w^, ..., w,} of the lattice chain ^ defining ̂ . (For the moment,
we need to assume that .̂  is ordered properly.) We set V* == Ew., and define a Levi
subgroup My of G = Autp(V) by

r

M^ = n Autp(V1).
(•=1

For definiteness, let fy be the parabolic subgroup of G with Levi component My defined
by the flag {S^^V: 1 < j< r). Write Vy for the unipotent radical of P^ and
Pa, = M^U,, for the opposite of P^. For x e H^p, <K), we have a unique expression

x=^y'{^,x^ ...,x,).z,

withj> e Ua,, z e Vy and A;, e IP(p, %(E)) C Auty(V). We define

(10.17) ^(x) = ̂  ̂  ... x, e ?0, SI(E)).

We refer to the map ̂  as the parabolic norm defined by the basis SB. We shall usually
only be interested in the composite 9po^, where (10.16) gives us the relation

(10.18) Q(x) = 9p(^M), x e ?((3, %).

Immediately, we have the property

(10.19) Proposition. — In the situation above, the map x ^^y(x) induces an isomorphism
of abelian groups

Hi(g,jl) ^ ?((3, <g(E))
Ker(6) ~ Ker(Op) '

It should be noted that the parabolic subgroup Eg plays little effective role in
the definition. We could replace it by any parabolic with Levi component M^, and
define a norm^J. We would still have the relation Q(x) == 6p(J^)). Thus the ordering
of the chain basis 38 is again irrelevant.

In practice, we will sometimes have to deal with a slight generalization of (10.15).
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(10.20) Proposition. — Let 3S' = {v^ . .., v,} be an E-basis of V, and assume there
exist elements y^ .. .,j/, e Ex such that 88 == Oi ̂ i, .. .,j, x,} is an o^-basis of the lattice
chain defining 91, up to order. We then have

H^P, 91) n ^(A(E)) = ^(?((3, 9I(E))).

Moreover, if 6 e (̂91, 0, (3), ^ to

(10.21) 6(^M) = 6(1^)), A; eHi((B, 9l(E)).

Proof. — The embedding L^/ is the composite of L^ with conjugation by the diagonal
matrix y == diag(j/i, .. .,j^,). This conjugation stabilizes the group M^ n ?([3, 91),
which gives the first assertion. It also fixes the character 6 | M^ n H^p, 91), since 6 is
intertwined by every element ofAut^V). This implies (10.21). D

11. The semisimple lift

We now take a simple stratum of the form [9I(E), n, 0, [B], where E is a finite
extension of the field F[(B] and 9l(E) denotes the order End^p^}), as usual. The
case E = F[(B] is the most significant, but the extra generality costs nothing and is
expected to be useful elsewhere. We fix a simple character 6p e ^(^(E), 0, (3).

Let K/F be a finite, tamely ramified field extension. In this section, we construct
a compact open subgroup H^ of Autg^K®^ E) and a character 6^ of H^. The pair
(H^, 9^) will effectively incorporate simultaneous realizations of the various K/F-lifts
of (the endoclass of) the simple character 6p. It will, in certain circumstances, enable
us later to give a direct connection between the irreducible representations of Autp(E)
containing 6p and the irreducible representations ofAutp(K®E) containing 6^.

Parallel to the standard case, there is another compact open subgroup J^ 3 H^.
This carries a unique irreducible representation whose restriction to H^ contains 8^.
Many of the statements of this section come in two versions, one for H and one for J*
The proofs are usually identical, so we only treat the first case (and sometimes forget
to say so).

Let 2)^:0^9 or J11^ ^3 denote the unique maximal Op-order in K®p E, and write r
for its Jacobson radical. Explicitly, r = 11̂  p^ 5 where E^ runs over the field factors
of K ®p E. This gives us an Op-lattice chain

^=^K®E = { r 3 : JeZ}

in K ® E which is also, of course, a lattice chain over o^ and o^. We set 91̂  = End^,(oS?),
and write ̂  for the radical of 91 .̂ The period of 91̂  is given by ^(91^ | Op) == e(E^ \ F),
where E^ is any of the field factors of K®p E. We have a simple stratum [91 ,̂ n^, 0, [B]
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in Endp(K®E), for a certain integer n^. We let On e ̂ ^ 0, p) be the realization
on <jly of the ps-character denned by the pair (9p, (3), as in § 8.

We now write:

C = G(K®E) = EndK(K®E),
(£ = £(K ® E) = <KM n G,

G(F) =Autp(E),
G(K) ==Auts(K®E),

(11.1) < ^=W,^)DC,
HK = ?((3, <ttu) n G(K),

SK = TO, ^M) ^ C,

J^.m^^K),

®K == ©M I Hi,.

This notation will be used throughout. We also put

K ® p E = AE.,
»=i

in our standard way, where the E, are fields. This is the unique decomposition of K ® E
as a direct sum of minimal ideals. Each E, is, in particular, both a K-subspace and
an E-subspace of K®E. We have D n E. = o^,, and more generally, r" n E, = p^.,
m e Z. Further, * '

("-rips,.
Choosing the numbering at random, the flag

EI C EI ® Eg C ... C K ® E

defines a parabolic subgroup P^ of Auty(K®E). We write U^ for its unipotent
radical and

MM = n Aut,(E.)

for the obvious Levi factor. As usual, Py = M^ U^ denotes the opposite of P^.

(11.2) Proposition. — (i) The groups H^p, ̂ , J1^, ̂  have Iwahori decomposition
relative to (M ,̂ Py), i.e.,

H^P, ̂  = (H^, ̂  n UM).(HI(P, <KM) n Ma).(W(p, <JIJ n UM),

J1^ ^IM) = (J^P, ^IM) ^ UM) . (J^P, <KM) ^ My). (Ji(p, ̂ ) n UM).
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Moreover^ we have

?((3, ̂ ) n Endp(E,) = IP(p, ̂ ),

M/fe^ 91, == 9I(E,) = End (̂{ PEJ). ^4 ^WZar property holds/or ^((3, 9^).
(ii) The characters Q^ \ ?((3, ̂ ) n U^ ̂  ©M I ?((3, 91^) n U^ are null, while

© , = © M | W((3,%)

/^ ̂  ̂ (^ 0, (3). The characters ©^, ©,, 6p all have the same endoclass over F.
(iii) The group H^ has Iwahori decomposition

HK == (HK n UM).(H^ ^ M^.(H^ n UM).

Mor̂ o r̂,

HK n MM == nHK n Autp(E,),
i

H^nAut^EJ^H1^,^

wA^r^ p^ denotes the canonical image of (B in E^ ayzj

(£,=C(E,)=End^({p^)).

The analogous statements hold for the group J^.
(iv) The set {(0, (B,) : 1 ^ i ̂  r } of equivalence classes of simple pairs over K is the set

of K/F l̂ifts of the class (0, (B).
(v) TA^ characters BK I KK n UM, 61^0^ ̂  ^M, wAzfe 9, == 0^ | ?((3,, (£,)

^ z7z ^(Ci, 0, (3,). TA<? endoclass of 0, ^ ̂  fifF-lift of the endoclass of 6p corresponding to
the KIF-lift ^ of p.

Proof. — Throughout, we only treat the H-groups: the proofs for the J-groups
are essentially identical.

Parts (i) and (ii) are covered by (10.9), since all of the chains { r""}, { x"1 n E,}
have the same period e(E, \ F) by (3.2). This Iwahori decomposition is given by the
method of (10.4): the lattice §̂  ^^(B, ^n) ^ the direct sum of the blocks e^e,,
where ^ denotes the canonical projection K®E->E, . These projections commute
with K, so JS>K is the direct sum of the e,§^e, n G = e,^ <?,. The Iwahori decompo-
sition for HK then follows immediately. Further, we have

HK n Autp(E,) = ?((3, 91J n G(K) n Autp(E,)

^^^nAut^E,),

which equals Hl(p„ £:,) by (7.1) (note here that the action of (3 on E, is given by the
inclusion E -^E,, (3 h-> (3,). This proves all the statements of (iii).
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In (iv), we rewrite K ®p E == K ®p F[(B] ®p^ E. If ^., 1 ̂  j ̂  s, are the
distinct K/F-Iifts of (3, we have

K®^F[p]=nK[p:,].

The field extension K[(3^]/F[(3] is tame, so the factor K[PJ ®F[@] E is a product of
fields E^. Write 8^ for the canonical projection to E^. Thus 8^ induces a K-embedding
K^.] -> E^ and it follows that any two fields 8^ K-[ .̂], a == 1,2, are K-isomorphic
via an isomorphism taking 8^(j^.) to 83^ (j^.). In other words, the elements 8^ (JS^)
define the same K/F-lift of (B. Allowing j to range from 1 to s, we get all such lifts. The
elements 8^(p^.) are exactly the (3^. This proves (iv).

In (v), the characters ©^ | H^p, 31̂ ) n ̂ ^ ®M I Hl(^ ^n) n v^ are both

trivial by (10.9), and remain so when we restrict further. The next statement is given
by (7.7) and the final one is the definition (9.4). D

Remark. — In the situation of (11.2), each K/F-lift of (3 occurs among the ^ with
multiplicity equal to the number of field factors of K[J3J ®p^ E (for any choice ofj).

In particular, there is a unique irreducible representation Y]^ of ]1^, £,) whose
restriction to H^p^, (£^) contains (and is indeed a multiple of) 6^. We now show that
a similar property holds for the group J^.

(11.3) Proposition. — There is a unique irreducible representation ̂  ofJ^ whose restriction
to Hĝ  contains 6^. Indeed, Y]^ | H^ is a multiple of 8^.

The representation Yfc can ^e constructed as follows. Form the group

^ == (H^ n U^) (JK n M )̂ (J^ n U )̂.

Let ^ be the representation of 9 which is trivial on H^ n U^ and J^ n U ,̂ wAz7^

S |JK^MM=YI I®. . .®TQ, .

Tfe^ YJK is the representation of J^ induced by ^.

Proo/; — The process (^,j^) t-> ©M^,^] (where [A:,J/] = A;"1^""1 ̂ ) induces a
nondegenerate alternating pairing

. J^P^M) ,, J^P^M) p
AM:H^,^)><Hl(p,^)^^

as in [BK1] (3.4). When convenient, we identify J^P, ̂ /H^P^M) with

m^/w^M).
The first assertion of the Proposition will follow when we prove that the restriction

of AM to (jK/Hg)2 is also nondegenerate. Let p denote the residual characteristic of F.
We can find a prime element TT^ of K such that Tc^1" = TC? ̂ y, for a prime element TCp
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of F and a p-prime root of unity ^ e K. We let ^ e K be another ^-prime root of unity
in K such that K.o == FK]/F is the maximal unramified subextension of K/F. The
(commuting) elements TT^, ^ act on the alternating Fy-space (J^P, ^[^/^(P) ^M)» ^n)
as symplecdc automorphisms of order prime to p. The restriction of k^ to the space
of fixed points of the group A == < TT^, 0 is thus nondegenerate. We therefore have to
show that this space is the same as JK/HK* ^e h^6 K == F[A], so the group of fixed
points of A in S^P? ^n) ls 3io anc! likewise for^^p, 21 )̂. Further, the group of conju-
gations by A on Endp(K®E) has order prime to p, so the cohomology group
H^A,^)^,^)) is trivial. The assertion follows.

To prove the second assertion, we note that k^ restricts to the canonical commu-
tator pairing on J^P,, Cy/H1^, C,) and so is nondegenerate there. Just as in [BK1]
(7.2.3), one shows that

/JK ^ UM JK ^ UM\
^ n U M ' H ^ n u J

is a pair of complementary totally isotropic subspaces of Js/H^, and the assertion
follows. D

It follows that the restriction T]̂  | J^ is a multiple of Y]^ where T)^ is the unique
irreducible representation ofj^p,^) which contains ©^.

Remark. — Suppose for the moment that K/F is a Galois extension, and put
r === Gal(K | F). Thus F acts on K ® E via the first factor, so we may regard it as a
subgroup of G(K), or even Autg(K®E). As such, it stabilizes each lattice x7"' and so
rcU^m)- Since F also commutes with E, it normalizes ?((3,91^) and fixes the
character ©^. Restricting to the centralizer of K, which is also F-stable, we see that
r acts on H^ (hence also on ̂ ) and fixes the character 9^. Likewise, F acts on J^ and
it follows that Y]^ ^ v^ for all a e F.

We have a canonical identification Endp(K®E) == A(E) ®pA(K), where
A(E) = Endp(E), A(K) == Endp(K). In particular, we have a canonical algebra map

^••A(E) ->Endp(K0E)

whose image commutes with K. In the notation of § 10, we have i^ = ^r? where SS'
is any F-basis of K.

(11.4) Proposition. — In the notation above, we have

HP((B, 91̂ ) n t^(A(E)) = H^ n t^(A(E))
=^(H^,9I(E))),

m^^^AW^J^n^AW)
=^(Ji(p,9I(E))).
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Proof. — Again we only treat the H-groups. We prove that

H^P, ̂  n LK(A(E)) = ^(H^P, 9l(E))),

and the other equality is then immediate. This equality follows from (10.15), (10.20)
once we have shown:

(11.5) Lemma. — There exist elements x^ K^ ..., Ay e K,j/i,j^? • • -9^ € Ex such that
(i) { A?i, A:2, ..., x^} is an F-basis of K, and
(ii) 88 ={A:i®j^, x^®y^ •••^d0^} ^ ^ OE-AO^ of the lattice chain -S^E-
Moreover, the set {x^x^ ..., x^} may be chosen to be an Oy-basis of the lattice chain

{ p^ : j 6 Z }, ̂  to order.

Proof. — Let us abbreviate <?(E) == <?(E | F), <?(K) = <?(K | F) and
e, = gcd(.(E),.(K)).

The OE-period of the chain oS^E ls ^(E» | E) = ^(K)/^), by (3.2). In other words,
if TT^, TCE are prime elements of K and E respectively, we have TC^O = ^ewe^ and
TCE S) == r^760. Choose integers a and A such that <K?(E) + be(K) == ^o. We put
^ ==== 7T^®7CE5 and we then have

^0==r.

The next step is to find suitable elements b^ e 0 such that the cosets ^ + r form a
kE-basis ofO/r. The elements ^3 ^5 0 < j < ^(K)/^o — 1, will then form an ^E-basis ofo§^.

Since K/F is tamely ramified, the kE-dimension of the quotient 0/r isy(K [ F) CQ.
We choose z^ ..., Zf e o^, f==f(K. | F), such that the cosets ^ + PK {orm a basis
of k^ over kp. The element ^ = -n;̂ ^0 ® TTE <(E)/eo lies in O", and it is a pleasant
exercise to show that the set

{ ^ , + r : 0 ^ z^o- 1. l^J^/}

is a kE-basis ofD/r. By the remark above, the set 3S -=={^^ z^}, where 0 < i < ^(K)/^o — 1,
O^^ ' ^^o — 1, l ^ ^ ^ y i s then an OE-basis of JS ,̂ at least when ordered suitably. Next,
we observe that we could have chosen 7^ so that n^ 1F) === ^p ^, where rc-p is a prime
element of F and ^ e K is a root of unity of order prime to the residual characteristic p.
Every element of S8 can then be written in the form ^u®Tc^n^ where u €11(0^)
and 0 ^ j ^ e ( K | F ) — 1. By construction, the set of elements n^u so obtained form
an Op-basis of { p^ : k e Z } (when suitably ordered). D

This completes the proof of (11.4). D
When the extension K/F is Galois, the canonical image i^(A(E)) of A(E) in

Endp(K ® E) is particularly easy to recognize: we have
^(E^End^KOE)^

where F == Gal(K/F). We deduce:
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(11.6) Corollary. — Suppose that the tamely ramified extension K/F is Galois, and put
Gal(K/F) == r. We then have

W = ^(?((3, %(E))),

(JK^ = ^TO^E))).

Without any hypothesis on our tame extension K/F, the basis 88 constructed
in (11.5) gives us a parabolic norm map^y as in (10.17). We restrict ^Vgy to a map

(11.7) ^H^H^^E))

which satisfies

(11.8) 6p(.^)==e^), xeVL^

by (10.18). In particular, we get a well-defined homomorphism of abelian groups

^ . "̂  Hl^ ^(E))
^ • Ker(9^) "> Ker(9p) •

This is certainly injective, and is in fact a bijection, although we will not need this. We
can now prove a basic identity. (A much stronger version of this will be proved, for
certain cyclic extensions, in § 12.)

(11.9) Proposition. — Let x eV1^) == Kx nH^. We have

W == WK/PW),

where N^/p denotes the field norm.

Proof. — We have to relate the field norm to the <( parabolic norm " ^Vgg. First,
let { z^ ..., ^ } be an Op-basis of the lattice chain of powers of p^ (up to order), and use
it to identify Autp(K) with M(rf, F). Let M^ be the Levi subgroup of diagonal matrices
in Autp(K), and P^ be the upper triangular matrices. We have U^o^) C IP^K)),
so our element x has Iwahori decomposition relative to (P^, M.g), say

A;=^.diag(^, ...,^).2',

with y, z unipotent and ^ eF. We then have FI^ == detA; == NK/P(A").
We can assume (by (11.5)) that there are elements j^eE" such that

OS == { ^ ®j,: 1 ̂  i ̂  d} is an Ojs-basis of £^^ g- Use this basis to identify End^K ® E)
with M(rf, E). The Iwahori decomposition of x, with respect to upper triangular and
diagonal matrices, is again ;v=ydiag(^i, . . . ,^)^, with y, z ' unipotent (in fact
conjugate to y, z by the diagonal matrix diag(ji, .. .,j^)) and the same x, as before
(except that they are now scalar matrices). Moreover, this is the Iwahori decomposition
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of x, viewed as an element of Autp(K®E), with respect to (M^, P^). This tells us
that ^{x) == N^p^), and the result follows from (11.8). D

It will be convenient to have the abbreviations

(11.10) §p =§1^ %(E)), Hp = H^p, Sl(E)),

and likewise forj-groups. We henceforward identify A(E) with i.g:(A(E)) C Endp(K® E),
and so omit the notation i^. We thus identify G = A(E) ®p K. We write Tr-^p tor
the field trace K -> F. This extends in an obvious way to a map

Tr^p:C->A(E).

( 1 1 . 1 1 ) Proposition. — We have

Tr^K)-^,

TrK/pOp) == 3?'

Proof. — The main step in the proof is to show that Tr^/p^) ^Sp- For then,
if x e§p, we have x == Tr^/p^oc), for any a e o^ which satisfies Tr^^a) = 1.

In the case where K/F is Galois, with Gal(K | F) = F, the trace funcdon is
x ̂  S^gFVW- I^ image thus lies in OE :̂)11, which equals §p by (11.6).

We must therefore assume that K/F is not Galois. There is then a finite unramified
extension L/K such that L/F is Galois. Write A = Gal(L | K), F = Gal(L [ F). We have
J&^C Endi/E®pL), and we can identify End^E®!.) with Endp(E) ®L. The group F
acts via the second factor, and the space of A-fixed points is Endp(E) ® K == End^(E ® K).
We show that

^KC^.

Given this, we can choose a' e o^ with Tr^/g^a') = 1 and then, for x e^, we have

T^K/pM == ^K/F 0 ̂ wW = Tr^p(^a') e§p

by the Galois case.
We now choose an o^-basis {j^, .. .,^}ofoL. We identify L®pE = L®^ K-®p E.

Write £>L ̂  ̂ e unique maximal Op-order in L ®p E and r^ for its radical. We then have

(11.12) ^==11^®^, weZ.
3=1

We use the basis { y ^ } to identify Endp(L ® E) with the algebra of s X s matrices over
Endp(K®E). Let Po be the parabolic subgroup of inverdble upper triangular matrices
over Endp(K®E) and MQ the obvious block diagonal Levi component of Po. Let
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%o =End^({r^}). The groups U^o). H^p, 94) have Iwahori decomposidon with
respect to (Po, Mo) (this is a case of (10.9)) and, in particular,

HI((B, %o) n Mo = ?((3, ̂ ) x ... x ?((3, 94)

(with .$• factors in the product). Thus ?((3, %o) contains the natural diagonal embedding
of ?((3, 91 )̂, and therefore also H^. However, this diagonal embedding ofH^ commutes
with L, so we have H^ C H^. It is clearly fixed by A, and we have finished the proof. D

The immediate point of this sequence of results is that we can now compare
conjugacy classes in the groups Hp, H^.

(11.13) Corollary. — Let x,jy eHy and suppose there exists tef)^ such that
(1 + t)~1 x{l + t) =y. There then exists ^ e^p such that (1 + Q~1 x{\ + to) ==j/. The
same result holds for J-groups.

Proof. — Choose a e o^ with Tr^p(a) == 1. The given relation amounts to
x + xt ==jy + ty, whence QLX + xv.t = v.y + vty (noting that a commutes with x). This
is a relation between elements in ̂ . Applying Tr^/p, we get

x + xto ̂ y + to^

where /o == Tr^p(a^ e$p. D
We conclude with a more special result.

(11.14) Proposition. — Suppose that the extension K/F is unramified. The canonical
embedding ^e .'̂ (P, Sl(E))—>^ induces an isomorphism

^^TO^OK.

This isomorphism preserves the canonical filiations of these lattices. Likewise,

3K^m^(E))®oFoK.
Proof. — As usual, we only treat the H-groups, the other case being identical.

We now omit the notation 1^3 and view A(E) as canonically embedded in C = A(E) ® K.
Let us abbreviate ^(p, %(E)) ==^p. We surely have §y®o^C^ and these two
lattices have the same F-fixed points. The same applies to § ,̂ ̂  for m^ 1. The
Proposition now follows from:

(11.15) Lemma. — Let K/F be a finite unramified field extension and put F == Gal(K | F).
Let V be a finite-dimensional F'-vector space. The maps L h-> L®pp 0^, M ̂  M1' are mutually
inverse bijections between the set of Oy-lattices L in V and the set of T-stable ^-lattices M in
V®pK.

Proof. — We surely have (L ® o^)1^ = L and M 3 M1^ ® o^. It is therefore enough
to prove that if Mi 3 M^ are F-stable o^-lsittices in V ® K with Mf == M^ then
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Mi = Mg. There is no harm in replacing Mg by Mg + PK M^ and assuming that
M^p^Mi.

The first step is to show that (M^/Mg)1^ = { 0 }. To do this, we choose a e o^ such
that S^gr TC^ == !• Let ^ e (Mi/M^)3" be the image of m e M^. Consider the element

mo === S y^)-
ver

We have m^ e Mf, hence m^ e Mg and it has zero image in M^/Mg. On the other hand,
the image of m^ in M^/M^ is xL^ Y(a) == ̂  whence x = 0, as desired.

We can view the quotient X == M^/M^ as a left vector space over k^, with an
action (y? ^) t-^y^) of F such that y^) = vW ^W^ A? e X, a ek^. In other words,
X is a module over the " twisted group algebra " k^ F. This is isomorphic to End^(k^)
via the natural inclusion. In particular, it is a simple kp-algebra, which has a unique
simple module, namely k^ with the obvious F-action, and this module has nontrivial
r-fixed points. It follows that X = { 0 }, as required. D

12. The cyclic norm

We now relate the material of § 11 with a structure originating in a different part
of the subject, that of the " cyclic norm " ^Vy of [AC] (and many predecessors). We
continue with the notation of § 11 (especially (11.1)), but we now assume that our
tamely ramified extension K/F is cyclic. We write F = Gal(K | F), and fix a generator or
ofF.

To start with, let V be some finite-dimensional F-vector space, and write
Gp = Autp(V). The group G^ == Autg^VOp K) inherits an action of F in the obvious
way, which we denote ((T, g) ̂  c(g). We can thus form the semidirect product Gg; >< F,
in which the multiplication satisfies cr.^.or"1 == a{g).

Two elements gl9g2eG•^ are a-conjugate if there exists h e G^ such that
g^.a == hg^a.h~1, or, equivalently, g^ == hgi o(A)~1. For g e G^, we put

^g-g^g)^\g) . . . ^\S) = ̂ .^

where d == [K : F]. Let us summarize the main properties of this procedure.

(12.1) Use the notation above.
(i) Vgi^ == h~1 g^.Gh, gi,heG^, then^g^ =h~l^g^h.
(ii) For g e G^, there exists h e Gp such that h is G^--conjugate to ^yg. The element h

is uniquely determined up to Gy-conjugacy.
(iii) Let g^g^G G ,̂ and suppose that the elements ^y g^ are G^-conjugate. The elements g^

are then a-conjugate in G .̂

This is taken from [AC] Ch. 1, Lemma 1.1. The assumption there that F has
characteristic zero is not used in the proof. In all, the cyclic norm ̂  induces an
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injective map from the set of o-conjugacy classes in G^ to the set of conjugacy classes
of Gp. We sometimes also denote this map by ̂ ,.

We will, of course, apply this in the context of our groups G(F) = Autp(E),
G(K) = Auts(K®E). The behaviour of the <c cyclic norm " ̂  on the groups H^,
JK of (11.1) is both pleasant and illuminating. In particular, it gives a direct and
canonical relation between the characters Op, 9^.

As before, we abbreviate

§F = W, TO), Hp == ?((3, 9l(E)),

and similarly for J-groups.

(12.2) Notation. — For the rest of this section, K/F is a cyclic extension which
is either unr (unified or totally tamely ramified. We put F == Gal(K | F), and fix a generator a
of P. Further, p denotes the characteristic of the residue field kp.

The results of this section will only be used (in § 16) to compare two situations
which are known to be transitive in the field extension K/F, so the restriction (12.2)
will have no practical consequences. It seems likely that the assertions here are valid
for arbitrary cyclic (tame) extensions K/F, but (12.2) usefully simplifies the proofs at
certain points.

(12.3) Proposition. — With the notation (12.2), we have:
(i) Let x e H .̂ There exists u e H^ such that y^ = uxa(u)~1 satisfies ̂ y^ e Hp.
(ii) The process x ^*^oJ^ induces a bijection between a-conjugacy classes in H^ and

conjugacy classes in Hp.
(iii) The analogues of {i) and (ii) hold for J-groups.

Proof. — It will be more convenient to work with an element of the form 1 + A?,
xe^.

(12.4) Lemma. — Let x e^ and let a e o^ ^fy ^wW == L T^hero then exists
XQ e$p such that 1 + x is a-conjugate in H^ to 1 + XQ a. In particular, if p^ [K : F], x is
a-conjugate in H^ to an element ofHy.

Proof. — As in (11.11), we extend the field trace to give us a map Tr^/p : ̂  ->§?.
Set x^ = Tr.g;/p(;v). We then have x^ a e^ and Tr^p(A; — x^ a) == 0. The cohomology
H^r, ̂ ) is trivial, by (11.14) when K/F is unramified, or because # F is prime to p
and ̂  ls a pro-^-group when K/F is totally ramified. Hence there exists y e ̂  such that

^oc =x +y — cr(^),

which implies
(1 +j/) (l + ̂  ^(l +^)-i = 1 + ̂ a (mod^).

We iterate this process in the obvious way to get the desired element XQ. D
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We continue with the notation of the last proof, and put

AW- n (1 + T ( a ) ^ ) e O p M .
rer

For XQ e§p, we then have

^o(l +XQ^==f^Xo)eH^

This proves part (i) of the Proposition. Moreover,

/a(^o) = 1 +A:o (modA;o$F),

and A:o§pC:§p. Indeed, we have/^) = 1 + t modulo terms of degree ^ 2.
For an indeterminate X, we set F(X) ==/a(x) — 1- There then exists a (unique)

formal power series ^(X) e Op[[X]],

^(X) = X + S &, X",
n^2

with the properties

Fo^(X)=X,

^oF(X)-X.

Thus, if x e§p3 the power series ^(A;) converges to an element XQ e$p such that

-«1 +A:oa) == 1 + x.

Moreover, XQ is the unique element with this property.
Now we prove part (ii) of the Proposition. Let x^ x^ e ̂ , and suppose that the

elements 1 + x, are cy-conjugate in H^. We may as well take x, ==j^ a, with y, e§p.
The norms ̂ (1 + x,) ==/^(j^) e Hp are then conjugate in H^, and hence also in Hp
by (11.13). Conversely, suppose that the 1 +j^ are conjugate in Hp,

1 +^==^ +^i)u-\

say, for some u eHp. But, in the notation above, we have

^2 == g^2) == g^nyi u-1) == ug^) u-1 === ux^ u-\
Since a(u) == u, this says that the (1 + x,) are o-conjugate in H^, as required. D

We will need to refer back to the details of the constructions in (12.3), so we now
exhibit them explicitly.

(12.5) Corollary. — With the notation of (12.2), choose a e Og: with Tr^p(a) = 1.
There exists a formal power series g^(X) eOp[[X]], with constant term X and the following
property: if x, XQ e$p, then J^(l + XQ a) == 1 + x if and only if XQ == g^x). The maps

1 +x^l +^)a, A:e§p,

1 +J/a^^,(l+^a), ^e$p,
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induce mutually inverse bisections between the following sets:

a) conjugacy classes in Hp;
b) a-conjugacy classes in H ;̂
c) VLy'conjugacy classes of elements 1 +ja eH^ with y e$p.

The analogous result, with the same series ga(X.), holds for J-groups.

We have already remarked (following the proof of (11.3)) that the character 9^
is stabilized by F,

^W)=W. ^eH^.

It follows that 6^ is constant on a-conjugacy classes in H^. This brings us to the first
substantial result of the section.

(12.6) Theorem. — Use the notation (12.2). Let x eH^ satisfy ^(x) eHp. We
then have

W = 9p(^oW).

Proof. — Put d == [K: F] and assume that K/F is totally ramified. Thus p < d
(and this is actually the only hypothesis we require for this argument). In (12.4), we
can therefore take a === d~1 e Op, and we may as well assume that x = 1 +j/, for some
y e§p. We then have ^o(^) = A^, so we have to show that

W=W, A; eHp.

We use the basis 39 of the chain -S^(^E provided by (11.5). We let M be the Levi sub-
group of Autp(K ® E) defined by 38,

M = n Autp(EA).
bess

Let L^ be the embedding A(E) ^Endp(K®E) defined by the basis 35. We then
have i^(Hp) C M n H1^ %^) by (10.15) and @^{x)) == Op^ by (10.17). How-
ever, ©M(^W) = ©M^) by (10.21) (recall that we are identifying A(E) with
i^(A(E)) C End.K(K®E), and the map L^ plays the role of ^ in (10.21)). However,
by definition, @^{x) = 9^(x) when x eH^, and we have finished the proof in this case.

We therefore assume that K/F is unramified. We can take x = 1 +j/a,
where j /e^p, as in (12.4). In the context of (11.5), an Op-basis 38 ={^ i , ...,^}
of OK ls automatically an o^-basis of the lattice chain -S^E- The embedding
A(E) ->Endp(K®E) induced by 38 is the canonical embedding L^. We use this to
identify Endp(K®E) with the ring of d X d matrices over A(E). We write Op[[j?]]
for the image of the formal power series ring Op[[YJ] (where Y is an indeterminate)
under the specialization Y v->y. Our element x then belongs to the commutative subring

Orl:̂ ]] ̂  OK C Op[[^]] (̂  EndJoJ ̂  M(rf, Dp[[^]]).
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Further, Op[[jr|] ® 0-g: ̂  ^[[j/]], and ^y{x) is just the determinant of x viewed as a
matrix over Op[[^]]. On the other hand, the Levi subgroup M of Endp(K®E) defined
by the basis 88 is just the group ofinvertible diagonal matrices over A(E). We take for P
the upper triangular group with Levi component M. We work out the Iwahori decompo-
sition of the element x relative to (P, M):

x == u.{x^x^ .. .,^).^

where u and z are the unipotent components and (x-^, ..., x^) e M. However, the entries
of the matrix x all lie in Op[[j/]] and, when we use elementary row and column operations
to compute the Iwahori components, we find that their entries also lie in Op[[j/]]. Thus
^^(x) == x^ x^ ... x^ is just the determinant of A; as a matrix over OpECj^]]?
i.e. ̂ (x) ==^(x). We have Q^(x) = @^(x) == 6p(^(A;)) by (10.18), and we have
proved the theorem. D

We can with advantage rearrange the conclusion of (12.6). As we have observed,
the group F acts on the group H^ and this action fixes the character 6^. We can therefore
extend Q^ to a character of H^ x F by, for example, making it trivial on the second
factor. We then have

(12.7) e^.o)==6p(^), xeH^

where, in the right hand side, ^^ x is understood to be an element of Hp which is
H^-conjugate to x.a(x) ... o^"1^), d == [K : F].

We now return to the unique irreducible representation Y]^ ofj^ which contains 9^.
Again, the group r acts on J^ and, by the uniqueness property (11.3) of Y]^ we have

îS: ̂  ^K-

We can therefore extend Y)^ to a representation of J^ X F.
If we have a finite-dimensional representation p of a group G, we now write

g (-̂  tr(p(^)), g e G, for the character of p.

(12.8) Proposition. — Use the notation above and that of (12.2). We have

tr(y]K(^.CT)) ==^.tr(y)p(^A:)),

where x ej^ and^y x denotes some element of Jp which is J^-conjugafe to x.a{x) ... c^"1^),
d = [K : F]. The constant Cy is given by

^ _ tr(Yfe(a))
0 dim7]p

Proof. — The left hand side of the desired inequality vanishes unless the J^ F-
conjugacy class ofx.a meets H^ F. (For this, see § 13 below.) This condition is equivalent
to the a-conjugacy class of x meeting H^. Assuming this to be the case, we can take
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^eH^. We then get ^{x.a) == Q^(x) 1^(0-), while ^p^ x) = 6p(^ A?) 7)p(l), and
the result follows from (12.6).

We therefore suppose that the <r-conjugacy class of x in J^ does not meet H^,
so that tr(Y]K(A;.(y)) === 0. By (12.5), we can take x = 1 + XQ a, with A;o e3p and a e OR
of trace 1. In the notation of that proof, we have ̂  x == 1 +j/, and XQ = ^a(j0- ^
j were an element of§p, we would have XQ e§p and x eH^, contrary to hypothesis.
We deduce that ̂  A; ^ Hp and that tr(7]p(^, ^)) = 0. D

We can assemble the identities (12.7) into a more informative result.

(12.9) Theorem. — Use the notation (12.2). Let ^eH^, ^eHp, and suppose that
t is Its-conjugate to ^VyS. Let Q(t) denote the set of cosets g eG(F)/Hp with the property
g~ltg eHp, and likewise letG{s, a) be the set of h eG(K)/H^ such that h~ls.a.h eH^.o.
There is then a bijection

^ew-^xs^o)
with the property

^W^^^{g)) ==8p(^1^ g^QW.
Proof. — We start with the case in which K/F is unramified. The machinations of

this part of the proof are inspired by [Ko], but the situation here is simpler.
If L/F is an unramified extension, we can define

G(L) ==Aut^(LOOpE),
(12.10) ^ = o^$p, Hi = 1 +$L

3L=^®o,3p, Ji = l + % .
The latdces § ,̂ and hence the groups H^, come equipped with a filtration inherited
from that of$p. By (11.14), we have §^ = ̂ . Write F^/F for a maximal unramified
extension of F (assumed to contain K) and F for the completion of Fny. The defini-
tions (12.10) then make sense with L = F^ or L = F. We choose a topological generator or
of the Galois group of F^/F whose restriction to K is our original element CT. The Galois
group of F^/F acts on F in a natural way, and hence on objects like Q^ via the second
tensor factor in their definition.

(12.11) Lemma. — The map x \-> x~1 a(x) induces surjections Hp -> H^ and]^ ->Jg •

Proof. — As usual, we only deal with the first case. The residue class field Op/pp Op
is the same as Op^/pp Op^., which we can identify with an algebraic closure kp of kp.
The map x h-> a{x) — x is a surjection kp ->kp. Thus, if V is a finite-dimensional
kp-vector space and we make o- act on V 0^ kp via the second factor, we get a surjection
of V ®^ kp to itself by v i-> a{v) — v. In particular, x »-> a{x) — x gives a surjection

24
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of S^/Sl^1 to itself. Put another way, given A?eHj , there exists j /eH^ such that
j/~1 xc(y) eH^ . Iteradng and passing to the limit (as we may in !F), we see that,
given A:eHp, there exists j / e H p such that jy~1 xa(jy) == 1, and we have proved the
Lemma. D

We will need a sharper version of this formal result.

(12.12) Lemma. — Let aeo^, and suppose Tr^p(a) == 1. There exists a formal
power series C^(X) e Op[[X]] with constant term 1 and the following property: if XQ e$p and
s == 1 + XQ a e HK, then s = c~1 a(c), where c = C^Xo).

Proof. — Let Kp/K be the unramified extension of K in F^ with [Kp : K] = p.
There then exists ai e o^ such that a === ai -- (1(04) (mod pp^). The element
( l — ^ o ai) ^cr(l — XQ 04) "~1 then lies in H^ and is also an element of o^ [i>o]]. It is
of the form 1 + XQ TT? y? where TTp is a prime of F and y e OK • We now find ocg e OK ,
(in the obvious notation) with y == ag — ^(a^) (mod pp ), to get

(1 — XQ Try a^) (1 -- XQ a^ ^cr((l — XQ a^ (1 — A:o TTp ag))-1 e H^..

We iterate this process. The desired power series is therefore

G,(X)= n (i-xwr1^),
n=l

and the element a^ lies in o^.,. D

(12.13) Lemma. — The space

{G(F)IH^°

of affixed points in G(F)/Hl; is equal to G(F)/Hp.

Proof. — Let gH^y be a fixed point, so that a(g) == gh, for some A e H;;. We use
(12.11) to write A^-1^), for some k e H ^ . Thus g~1 a(g) == k~1 a(k), whence
^te^1) = ̂ ~1. This says that gk~1 e G(F), as required. D

We now consider the set ©(<), t e Hp. For g e G(F), we have g~1 tg e Hp if and
only if tgHy == ^Hp, with the result that

®(^)=(G(F)/^4)<0 .<>, ^eHp .

Likewise, we have

S(.,o)=(G(F)/Hg)<°<-°>, .6H^,

where rf == [K: Fj. The assertion of (12.9) is unchanged if we replace t by an Hp-
conjugate and s by an (H^, o-) -conjugate. Therefore, if we choose a e o^ with
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^wW === 1, we can take s = 1 + XQ a, XQ e§p, and t =^o x (equality of elements).
We write s == c~1 a{c) according to (12.12). Thus

s.a == c~1 .a.c

as elements of G(F) x < <r>. This gives us

/ == ̂ s = {s. a)^ a^ = <T1 ^(c) == a^c) r\

since, by construcdon (12.12), the elements c, cr^) commute. We can rewrite the relation
t = ̂ (c) c~1 as

c-^-^c^c^^.

Altogether, we now have

<J.(T, CT^) == c~1 < ^ a ) c

as subgroups of G(F) x < a >. We therefore have a bijecdon

(G^/H^)^10 -^ (G(?)/H^)<o<a•o>

given by .vh-x?"1^. That is, given x e G(F) such that A?Hp e®(^), there exists
y eG{s, a) C G(K), which is uniquely determined modulo H^, such that

(12.14) ^Hg^^-^Hp.

This process x \-^y gives a bijecdon

(12.15) S(^) -^>S(^CT).

We have to show that (12.15) has the property demanded by the theorem. We can
write the relation (12.14) a s J y = = c ~ l x j , for somejeHp. We evaluate 9^(jy~1 s.ay).
Using (12.3), we can adjust y on the right by an element of H^ to ensure that
^o{y~1 sa{y)) eHp. This done, we have the reladon

^oCr1^)) =y1^.
In pardcular we have 6^(y~1 sa(jy)) = Qy(jy~1 ty) by (12.6). Now we subsdtute
y == c~1 xj to get

y~1 ty ==j~lx~l ctc~1 xj.

By construcdon, the elements c, / commute: they both lie in Op[[^o]L ^or some XQ e§p.
This leaves us with the relation y~1 ty ==j~1 x~1 txj, both sides lying in Hp. By definidon,
we also have x~1 tx e Hp.

(12.16) Lemma. — In the situation above, there exists k e Hp such that kT1 x " 1 txk = y " 1 ty.
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Proof. — We havej=^-1^, where x e G(F), y e G(K), and c = CJ^n) for
some ^o ̂ p and a formal power series G^(X) e Op[[X]]. The construction of G,, shows
that, given an integer n, there exists a finite unramified extension KJK and a polynomial
C^(X) eo^[X] such that G<,(X) == G^(X) (modpp). By continuity, if n is sufficiently
large, there exists m{n) ^ 1 such that x~l<Q^yC^{n\ Put another way, given w, we
can find a finite unramified extension KJK and an element^ e Hg_ such that j =j\ A,
h e H^4'1. Write ^ = 1 + a^, h = 1 + b. Abbreviate ^ ==jT'1 ̂ , <2 = x-l tx' Our
relation reads

(1 + flj (1 + b) ^ == ^(1 + aj (1 + 6),

whence

î + ̂ i ̂ 2 + ̂ n (mod^2).

Multiplying this by p e K^ such that Tr^p((3) = 1 and taking the trace from K^ to F, we get

^i+^i^2+^n(mod§|?),

where

Cn = Tr^(P^) = S ^(K) ^p, < = [K, : F].
i == ft

Setdng k^ == 1 + ̂  e Hp, we have ^1 A:"1 ̂  =^~1 ̂  (mod H^2). Passing to the
limit, we get the result. D

We now have

®K(y"1 ̂ -j0 === 9F(^~1 ty) == Op^-1 ^-1 ̂ ) = 6p(^-1 ^).

This completes the proof of (12.9) in the case where K/F is unramified.
We now assume that our finite cyclic extension K/F is totally ramified. Again we

put d == [K : F], and note that p r d. By (12.5) (with a == d~1) we can assume that
s == 1 + &, b e$p, so that t = 3d. Indeed, if we write t == 1 + c, c e$p, we have
b == ^{c) for a formal power series *(X) e Op[[X]] with leading term d~1 X.

Now takej/ e G(F), with gHy eQ(t). We then have

y1 s.a.jy ==jy~1 sy.a = (1 + *(J/-1 ^)).CT.

This element lies in Hp. a C H^. o, whence^ e(5(j, 0). Thus we have a map S(^) -^S(J, a)
which is injective by (11.6).

In the opposite direction, take x e(5(.y, a) viewed as an element of G(K). We
again adjust x on the right by an element ofH^ to achieve x~1 so^x) eHp, by (12.4).
This implies x~1 ̂  x == x~1 tx e Hp. Writing t == 1 + c as before, we have x~1 ex e§p
whence x~1 sx == 1 + ^{x~1 ex) also lies in §p. Therefore

CT(^) == A?A,
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for some h e Hp. We thus have o\x) = a{x) h == xh2 and, iterating,
x == a^x) == xh^

Thus hd = \ and, since Hp is a pro-^-group and p -f d, we have h == 1 and so ^ e G(F).
We have already seen that x~1 tx e Hp, so xHy^ lies in the image ofS(^). Thus we have
a bijection which surely satisfies the requirements of the theorem. D

There is of course an analogue of (12.9) using the groups J in place of H. We
exhibit this explicitly.

(12.17) Theorem. — Use the notation (12.2), and let T]? (resp. t\^) be the unique
irreducible representation of Jp (resp. J^) which contains 6p (resp. 6^). Extend Y)^, in some
manner^ to a representation of J^x r. Let s ejs, t ejp, and suppose that t is J^-conjugate
to^s. Write

^^^{g^G^IJ^.g-^geJ^

®^, o) == { h e G(K)/J^ : A-1 ^(T.A ej^.o}.

TA^r^ ^z^j a bijection 9 ^S'^) -^©'(^ d) w^A the property

tr(Tl^(9(^)-l^^y(g))) = tr(^p(g-1^)) ̂ ^^^ ^e®'^).
dim7]p

The proof is identical to that of (12.9), except that it relies on (12.8) in place
of (12.6).

It is striking that the groups G play very little role in the proof of (12.9) (and,
by implication, in that of (12.17)). In the case where K/F is unramified, we simply
need to be able to form G(F) 3 Hp with the fixed-point properties G(F)° == G(F),
G(F)ad == G(K). In the ramified case, we only need G(K) and the property
G(K)° == G(F). There are many <c functorial groups " between Hp and G(F) with
analogous properties, hence many variations on the theme of (12.8), (12.17). We list
some of these.

The first comes from the unit groups of hereditary orders. Let 9I(E) be as before,
and recall the notation (£ = End^eS?^^)* ^e can define a functor of unramified
extensions L/F by L t->Uj^ = (9I(E) ®op ̂ ^ This certainly has the right fixed-point
properties. On the other hand, if K/F is totally ramified, we need to know that

(12.18) V^f = U(9I(E)).

Here we observe that the lattices of fixed points v"1 0 E = (r"1)3" form a lattice chain
in E, which must be stabilized by the ring (S^ of fixed points in (L However, the o^^tice
chain { r^ n E } is just that of powers ofp^. Thus (S^C %(E). We surely have 9l(E) C C^
(examine its effect on the basis S6 of (11.5)) so (12.18) holds. Writing S{ for the normalizer
of a principal order, we similarly obtain ^((S)11 == ^(Sl(E)). We now have:
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(12.19) Corollary. — In the situation of (12.8), there is a bijection <p between the set of
g e U(%(E))/Hp such that g"1 tg e Hp and the set of h e U(£)/HK such that h-1 sa(h) e H^
with the property

8K(?(5)~1^(9(^)))=9^-1^).

T^ result also holds if we replace U by S{ or V1 throughout.
The analogue of (12 .17) likewise holds here.

In the general situation of § 11, we can define

SK = 3(P, ̂ ) n £,
jK=3K=J( (B ,9 lM)nU(a) .

In the unramified case we get 3^ == 3((3, %(E)) ® o^ hence J^ == J((3, %(E)). In the
totally ramified cyclic case we likewise have

j£ -m sy ^ W(E)) ==J((B, %(E)).
Now abbreviate Jp==J((3,%(E)). The analogue of (12.19) thus holds with (JsJp)
in place of (U((£), U(9I(E))). However, conjugation by the groups J stabilizes the
characters 6, so it is the bijection which is the point here. I f jeH^ and h ej^, we have
h~1 sa(h) e HK if and only if A"1 a(h) e H^. We thus retrieve the cohomological triviality
statements:

/M^^
\HK/ Hy'

(12.80) v /
v ' / -w \ r1 -r

W^Jr
W JP'

13. Characters of some finite group extensions

We relax from the rigours of the preceding analysis to prove a simple result from
the representation theory of finite groups. Very similar results can be found in [Ge]
and [Hoi], but these are not quite what we need. The notation introduced here is valid for
this section only.

Let/? be a not necessarily odd prime number and G an " extra-special finite ̂ -group
of class 2 ". We write Z for the centre of G and assume we have a faithful character ^
of Z. Thus Z is cyclic, and contains the commutator group of G. We set V = G/Z, and
this is an elementary abelian^-group. (The example we have in mind is G == J^/Ke^O^),
which satisfies these conditions by (11.3).)

The commutator pairing

(^j0 ^/[^A ^V e=G,

where [x,y\ = yT1 y~1 xy, takes values in the group (Ay of^-th roots of unity in C: this
follows from the elementary identity [x,yz\ = [x, z] [x.yY. It thus defines a non-
degenerate alternating form V X V -> pip, which we denote by < , >.
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Let ^ denote the unique irreducible representation of G whose restriction to Z
contains ^. We have dim ^ = ffV172. We assume given a cyclic group F of automorphisms
of G which fix the centre Z. They therefore fix the character ^ and the representation i;.
For elementary reasons, the representation $ admits extension to a representation,
still denoted ^ of the semidirect product G <i F. For y e F, we write GY for the group
of fixed points (i.e. centralizer) of y in G, and likewise for V.

(13.1) Proposition. — In the situation above, suppose that the natural map G^ ->V^
is surjective for all y e F. The character tr(^) of the representation S of G xi F then satisfies the
following, for all y e F:

(i) tr(^y)) 4= 0 if and only if g-^ is conjugate in GF to an element ofZT.
(ii) For z e Z, we have \ tr(^y)) | == ((V^2.

Proof. — Let us write g ̂  g for the quotient map G -^ V. For y <= F, let ̂  denote
the space of elements { v~1 ̂ (v) : v e V }. We first note that an element ^y, g e G, is
conjugate to one of the form z^'\ for y' e F and z e Z, if and only if -/ = y and g e ̂  .
The next point to note is that J^y is orthogonal, under the pairing < , >, to the space V^
ofy-fixed points in V. Comparing sizes, and recalling that our pairing is nondegenerate,
we see that V^ = (^)1, the orthogonal complement of J^y.

Suppose first that ^y ls not conjugate to an element of Zy. Thus there exists h e G
such that h eV^ and <^, h > =[= 1. We can (and do) further choose h e G\ Consider
the element hg^h~1. We can write this as

(13.2) W-1 = hgh^g^.g^.^h^h-1.

The first factor here lies in Z and the choice of h implies '^(hgh~1 g~1) + 1. Since h is
fixed by y? we have y"1^"1 == 1. Applying ^ to (13.2) and taking the trace, we
therefore get

tr(^T))-tr(^Yr1))

-X^r^tr^T))

while •^{hgh"1 g~1) 4= 1. Thus tr(^(^y)) = 0, as required.
This proves one implication in (i), and the converse follows from (ii). We prove (ii)

by an argument lifted virtually verbatim from [Hoi], First we note that our fixed-point
hypothesis implies:

(13.3) For z-^y z^eZ and y e F, the elements z^ y, z^ y are conjugate in GF if and only
tf î == ^2-

It will now be easier to write c = #F, g == #G, and define p^ = tr(y as a function
on GF. We fix a generator (T of F. Let a range over the linear characters of the finite
cyclic group F, viewed as characters of GF via GF/G = F, when convenient. The



192 COLIN J. BUSHNELL AND GUY HENNIART

representations a ® S are then irreducible and mutually inequivalent: this follows readily
from Clifford theory. At the level of characters therefore, a h-> ap^ gives an injective
map from the space of (class) functions on F to the space of class functions on GF. Since
it takes irreducible characters to irreducible characters, it must preserve the canonical
inner products on these function spaces.

For 0 < i ̂  c — 1, let G^, 1 ̂  j ̂  n^ be the conjugacy classes of GF whose image
in r is (j\ Now using a bar " to denote complex conjugation, the fact that a h-> ap^ is
an isometric injection on class functions gives us the relation

c-1 Va^) W = {eg)-1 Va^) a,(a-) 2 | p,(G,,) |2 #C,,
i==0 i=0 j ^ l

where 04, a^ are linear characters of r. Writing ^ for the inner sum on the right hand
side, this says that the element

^sY^-i)^
of the complex group algebra C[r] satisfies p(^) == 0 for all linear characters (3 of r.
This implies x = 0 or, equivalently,

s i ps(c,,) i2 #n, ==g, o^ z< c -1.
By part (i) of the Proposition, only those C,, which meet ZF can contribute to this sum.
We number the G .̂ so that C,i is the conjugacy class of ^ in GF. The conjugacy
classes zC^, z e Z , 0 ^ : i ^ c — 1 are distinct by (13.3). Further, p^C^) = ^(z) p^(C^).
Subsdtuting in the sum above, we get

I Ps(G^) |2 ̂  = (G : Z), O^^-l.

However, #0,1 is just the cardinality of the set ̂  == { v~1 ^(u) : v e V }, as we saw
above. Therefore

IP^GJI^CV:^,)-^0',

as required. D
We apply this in the proof of (12.8), where G == jK/Ker(6J, Z == H^/Ke^),

^ = OR, S = ^K and r == Gal(K/F). Further, the quodent V == G/Z is just SK/^K-
We have to check that the fixed-point hypothesis of (13.1) is sadsfied. This is trivial
when r has order prime to p. We may therefore assume that the extension K/F is unra-
mified. In this case, (11.10) implies that the 1-cohomology of F' in ̂  is trivial, for
any subgroup F of F. Thus (3^ = 3p maps onto (SK/^)^ tor any y e F.
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14. Comparison with base change I

We return to the situation of§ 12. In particular, K/F is a cyclic, tamely ramified
extension of degree d, which is either unramified or totally ramified. We set F = Gal(K/F)
and fix a generator <y of F. We now make some preliminary comparisons between our
local lifting procedure and the base-change lift of [AC], Of course, one must remember
that the latter is only available in characteristic 0. For the time being, however, the
characteristic of F remains arbitrary, and we make extensive use of the basic properties
of characters set out in the Appendix. The first step is to derive a <c trace comparison "
formula valid in full generality.

We are given a simple stratum of the form [%(E), n, 0, [3] as before, except that
in this section we insist

E = F[(3].

Set

G(F) == Autp(E) ^ GL(N, F),

say. We are given a simple character 6p G ̂ (91, 0, (3). Let 73? denote the unique irreducible
representation of the group Jp ==^((3, %(E)) whose restriction to Hp = ?((3, %)
contains 6p. We also write

^^K/P-N^K^,

where N denotes the field norm. Thus F"391 3 U^Op) and 91 is of index d == [K: F]
in V x . We fix a quasicharacter co? of 91, and define a quasicharacter co^ of K^ by

^K = ^p0 NK/R.

We write T)? for the representation of 9ljp which extends Y)? and is a multiple of cop
on 91. It will be convenient to write J == E^ Jp. We can decompose the coset space G(F)/J
into (Jp, J)-double cosets,

(14.1) G(F)/J= U U JJ.
o;e4\G(p)/j VGJ^J/J

We consider the series

(14.2) Xp(^)= S ( S tr^(y-1^)).
x e JJ\G(F) /J y G 4 a;J /J

Here, t eG(F)^, the set of quasi-regular elements of G(F): see Appendix (A. 2) et seq.
for this term. We view g h-> tr r^(g) as a function on G(F) which is zero outside 91Jp.
The group J normalizes Jp and fixes the representation T]?, so the (extended) function tr rff
is invariant under conjugation by J.

25
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(14.3) Proposition. — We use the notation given at the beginning of the section. Let

r = = . ( E [ F ) ( k ^ : k p ) [ K : F ] .

Then:

(i) there are precisely r inequivalent irreducible smooth representations TC^, Ttg, . . ., n^ of G(F)
which contain the representation T]?;

(ii) each ^ is super cuspidal.

Proof. — Our representation rff extends to a representation of the group J = Ex Jp.
There are r == (J :Jp?l) such extensions A,, 1 < z ^ r, and no two of them intertwine,
by [BK1] (5.2.2), (6.1.2). Moreover, the smooth representation n, of G(F) induced
by A, is irreducible and supercuspidal, by [BK1] (6.2.2). This proves (i) and (ii). D

IfTc is an irreducible smooth representation of G(F), we write 0^ for the function
on G(F)^ which represents the character ofw, in the sense of (A. 11). Thus, in particular,
0^ is a locally constant function on G(F)^.

(14.4) Proposition. — (i) The series (14.2) converges absolutely and uniformly on compact
subsets ofG(F)^, and represents a locally constant function there. Indeed, the outer sum in (14.2)
has only finitely many non-zero terms.

(ii) Let TCI, ..., TCy be as in (14.3). We have

^se^)=x^),

for every t e G(F)^.

Proof. — Write 71, == c-Ind(A,), as in the proof of (14.3). We invoke (A. 14) below,
with Jp playing the role of K^ in the arguments leading to that result. Thus

Q^t)== S ( S trA,(jr^))
a?GJ?\G(F)/J vGJ^J/J

for every element ^eG(F)^. The convergence is absolute and uniform on compact
subsets of Gqy; indeed, there are only finitely many non-zero terms in the outer sum
here. The summand trA,(y"1 ty) is zero unless y~1 ty e J. However, for y~1 ty e J,
we have

V . ,- , , [^r^y-lty)\£y-ltyEyl]^S trA,{y lty)^\
l * [0 otherwise

We can now add the series 0 .̂ term by term to get the identity in (ii), and the resulting
sum has the properties required by (i). D

Notice that (14.4) (ii) tells us that Xp is a class function on G(F)^, i.e.

XpQr^^Xp^), ^eG(F)^ ^eG(F).
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We now take J^, ife as in (11.1), and we set K^ = K^ J^. By (11.9), there si
a unique irreducible representation Y)^ of K^ which extends Y]^ and is a muldple of (OK
on K^. We fix a representation Y]^ of K^X F which extends Y)^, and write ̂  f01* lts

restriction to J^x F. We put (without yet worrying about convergence):

XK(SG) = ̂ ^ 1 s ( 1s tr ̂ (Jr-'s^"^KW a?e4\G(K)/K^ yeJ^K^/K^

where s e G(K). We shall actually only be concerned here with a rather restricted class
of elements s.

(14.5) Theorem. — Let s e Kg; = K" J^, ̂  ̂  ^ eSRJp ^ ^-conjugate to ^s.
Suppose also that t is a quasi-regular element o/G(F). Write d == [K : F], r == e(E \ F) (k^ : kp) d
as before. We have

X^)=^X^o).

The series defining X^(j(y) converges absolutely and uniformly on compact sets of elements s e K^
.y^A ^Aa^ ̂ o s is conjugate to a quasi-regular element of G(F). Indeed^ for such elements s, there
are only finitely many non-zero terms in the outer sum defining X-^(Jcy).

Proof. — The contribution of the centres is effectively trivial here, so we may as
well take s ejg:. The inner sum in the definition of Xg; is constant on J^-conjugacy
classes, so we may as well assume (using (12.3)) that t ==^yS ejp.

The next step is to re-arrange our definition of Xp(^). For this paragraph, we
only need t e G(F)^. We put Kp == VIJp and try to sum according to (Jp, Kp)-double
cosets. We note to start with that any double cosetjp xJ is the union of exactly r distinct
(Jp, Kp)-double cosets. For, JpA:J consists of exactly (Jp :Jp n xjx~1) cosets j/J. How-
ever, J has a unique maximal pro-p-subgroup, namely Jp, so Jp n xJx~1 = Jp n xjy x~ \
Likewise, a double coset Jp A:Kp consists of (Jp :Jp n xjy x~1) cosets j^Kp. Now we
recall that r = (J : Kp), and our assertion follows. More precisely, we have

Jr^= U JF^'KP, ^eG(F).
j-eJ/Kp

The sum
S tr^(^-1^)

l/eJ^jKp/Kp

is clearly independent ofj e J/Kp, so we can write

(14.6) Xp(^l S S tr^(j-1^),
r s e 4\G(F)/Ky y e 4 asKy/Kp

where t e G(F)q,., without affecting the convergence properties.
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Now we use the comparison theorem (12.17). Recall that we have arranged
t == ̂  s ejp. Let G(t) be the set of cosets &Jp e G(F)/Jp such that g-1 tg ejp (which,
we note, is equivalent to g~1 tg e Kp). Similarly define G(s, o). Note here, however,
that sa has conjugates in Kg: a which do not lie in J^ a (see (14.8) below). Theorem (12.17)
gives us a bijection <p :G{t) -^G(s, a) with the property (in our present notation)

tr ^QT1 ̂ ) = ̂  tr y^(9te)-1 ̂ (p(^)), &Jp e G(t),

where ky denotes the constant dim 7]p/tri)^((y).

(14.7) Lemma. — In the situation above, we have

jK<TK^G(F)=JpAjp , ^eG(F),

^ 9(Jp ^Jp nSW) == JK <PW JK n®(^ ^, ^Jp e S(^).

We prove this later. To proceed with the present argument, take xjy eG(t) and
consider the sum

S tr ̂ (j/-1 ty) == S tr ̂ (j.-1 ty).
ve4<BKp/Kp vej^4/4

According to (12.17) and (14.7), this is equal to

^. S tr Y)^-1 ̂ ) = A,. S tr ̂ (^-1 ĵ ).
« 6 4 y^) 4/4 » e 4 <P(a?) 9l4/9Ut

We return to our expression (14.6) for Xp(^), and note that we can replace G(F) by
JpS(^) and thereby change nothing. We now have

X^)=-° S ( S try^(y-1^)).
r a?e4\4(5(s.o)/49^ ve4«49i/49i

(14.8) Z^mwa. — An element g e G(K) satisfies g~1 sag e K^ if and only if g = ah,
where a e Kx and h e(5(.y, <r). Moreover, if h eQ(s, a) and a e K", then ah eG(s, a) if and
only ifae^V1^).

Proof. — If h eG{s, a) and a eK^, then (ah)~~1 saah = a~1 a(a) h~1 sah. This
proves the last assertion and one implication of the first. Now let g e G(K) and assume
that^"1 sag = as' a, with a eKX and s ' ej^. Appealing to (12.3), we can adjust^ on the
right by an element ofj^ to ensure that^ s ' ejp. We then getJ^(^') == N^(0) ̂ , ̂ ',
which must be G(F)-conjugate to t == ̂  s ejp. This is only possible ifN^p^) e U^Op).
Since K/F is tamely ramified, we have NK/^U1^)) = U^Op). In other words, we
can adjust a by a 1-unit to achieve N^/p^) = 1. By Hilbert 90, a is of the form b~1 a(b)
for some b eK^. This gives (b~~1 g)~1 scb~1 g e J^, as required for the Lemma. D

Now we return to the main argument. Lemma (14.8) says that
•

Q(s, c) KK = U G(s, a) a.
aeKK/F"4
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Therefore

x^) == ~7^——^hr^ S ( S tr y^(j/-1 say)).
^K •* r JlJ a?eJ^\6(8,o)K^/49l veJ^J^/J^SR

According to (14.8), we can replace®^, o) Kg by G(K) here without changing anything.
By construction (and (14.4)), the outer series here has only finitely many non-zero
terms. A coset JK^K^ is the disjoint union of (KK:JKSR) distinct (JR,JK 91) -double
cosets, each of which contributes equally to the sum. The coset spaces J^ xj^ 91/Jg; 91
and JK ^KK/KK are effectively identical, so we now have

X /.\ ^o (KK^JK^) v. v ^ -^/ i \Fw = 7 (K »px T^ 1 s s tr ̂ ^~ ^)-r l̂ K • r JK) a?e4\G(K)/K^ ve4»K^/K^

Since ^== (FX :9l) = (F^ J^ :9Us), we have proved the theorem. D

Remark. — The identity (14.5) is distinctly intriguing. The left hand side can be
interpreted, via (14.4), as a finite sum of characters of irreducible supercuspidal repre-
sentations, using the Mackey formula derived from the description of these represen-
tations as induced representations. The right hand side has very much the same appearance,
and, as we shall see, there is a special case in which it admits an analogous description.
However, no such interpretation is available in general.

We now specialize to the case in which the algebra K ®p E is a field. We tend to
abbreviate K ® E = = K E . The constructions of (11.2) then yield a simple stratum
[S, y^, 0, |B] in EndR(K®E), and the groups Hg:, J^ are the more familiar ?((3, (£),
^((3, (£). We therefore just denote them by H^.JK. Likewise, the character 9^ is a simple
character in the ordinary sense, and an element of ^((£, 0, (3). We thus denote it 6^.
Its K-endo-class is the unique K/F lift of the endo-class of the original character 6p.

For convenience of reference, we summarize our hypotheses and notations.

(14.9) Hypotheses. — (i) Let [91, TZ, 0, [B] be a simple stratum in Ap == Endp(E), where
E denotes the field F[(B]. (Thus % == 9l(E).; Let Op e^(%, 0, (3) be a simple character, and
let 7]p be the unique irreducible representation of the group J^P, 91) which contains 6p.

(ii) Let K/F be a finite cyclic field extension, which is either unramified or totally tamely
ramified. Fix a generator a of F = Gal (K/F). Write 91 == ̂ ^(K"), and suppose that the
algebra E ®p K is a field.

(iii) Let C be the unique hereditary o^-order in A^ == End-g^E 00 K) which is normalized
by (E® K)^ so that [(£, n^, 0, [B] is a simple stratum, for some n^. Let Q-^ e^((£, 0, (B) be
the simple character defined by 6p as in § 1 1 . Let ̂  be the unique irreducible representation o/J^jB, (£)
which contains 6^. Fix an extension 73^ of -r^to a representation of J^p, (£) x r.

(iv) Let Op be a quasicharacter o/yi which agrees with Op on 91 n H^p, 91) = U^Op),
and put (OK == ^F^K/p. Let rff denote the representation o/'^ij1^, 91) which extends T]? and
is a multiple of <x)p on 91. Likewise define a representation ̂  o/' Kx J^p, (£).
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(v) Let y-y denote the set of equivalence classes of irreducible representations of
G(F) = Autp(E) which contain T^.

(vi) Let y^ denote the set of equivalence classes of irreducible representations p of the group
G(K) == Aut^KE) ^ GL(N, K) which contain r^ and satisfy p° ^ p.

We recall from (14.3) that the set <^p consists of classes of super cuspidal represen-
tations. We now show that a similar property holds for ̂ .

(14.10) Proposition, — In the notation of (14.9), we have:
(i) The set ^ consists of classes of super cuspidal representations of G(K), and

#^==^-1^.
(ii) If p e e9^, there exists a unique extension p of p to a representation of G(K) x F

such that p contains rfy^. Indeed, there is a uniquely determined representation A of the group (KE)x J^
which extends T]^ such that

p ^ ^Ind(A : (KE)x JK x3 r, G(K) x F).

Proo/*. — We can argue exactly as in (14.3): an irreducible representation p
containing T]^ is supercuspidal, and is induced from a uniquely determined represen-
tation A of (KE)x JK which extends T]^. We deduce that p° ^ p if and only if A° ^ A.

We first show there exists a o-invariant extension A. We start with extensions
of 7]̂  to the group J^ ==J(P, £). We have J^ = P<(KE) L><JK, where (A(KE) is the
group of^-prime roots of unity in the field KE. An extension K of Y]^ to J^ is thus deter-
mined by the character detK [ (JL(KE), and any character of (A(KE) can arise in this
context. The representation K thus agrees with c^ on p.(KE) if and only if
det K | p.(K) = ^mrlK' However, cog; can be extended to a G-invariant character
of (Ji(KE): we simply choose a character ^ of (x(E) which agrees with co? on 91 n (i(F),
and / o NK^/E ls a ^-stable extension of <x)^ to P-(KE). Thus if K is an extension of 73^
with detK [ p.(KE) == (^oN^E/E)'11111^ we have K° ^ K, as desired. The step to
(KE)x J^ is trivial if K/F is unramified, since this group of generated by a prime of E
and JK. If K/F is totally ramified, the group (KE)^^ is generated by Jg: and any
prime ro ofKE. We can choose CT so that a0 == CT^, where ^ is a d-th root of unity lying in F.
Our extension A satisfies A0^) = A(©) ^(S), while ^(^ == ^F(NK/F(^) = ̂ (^ = 1-
Thus, in all cases, an extension A of T]^ is cr-invariant if and only if A | J^ is o-invariant.
We conclude that cr-invariant extensions A exist.

We can identify (KE)^/^ with (KE)^^^) as F-module. The (j-invariant
extensions of T]^ are thus classified by the <r-invariant characters of (KE)x which are
trivial on Kx U^o^g). The extension KE/E is cyclic and tamely ramified, so the
cy-invariant characters of (KE)X are precisely those which factor through NKE/E* ^ur

desired set of characters is thus in bijection with the group NK^g^KE)^)/^!)'1^))
which has precisely e(E \ F) (kg : kp) elements. Comparing with (14.3), we see that we
have proved (i).

Now take p e <$^. Since F is cyclic, we can certainly extend p to a representation p'
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of G(K) x r. This contains an irreducible representation ^ of the group (KE)x J^ x^ F
which itself contains Y^ . Thus ^ is an extension of T)^ . Since p contains T]^ with multi-
plicity one, the representations p', ^ determine each other. We can now choose the
extension p' so that ^ == ̂  on K^ F. The final relation is now immediate. D

(14.11) Theorem. — Use the notation and hypotheses o/'(14.9), (14.10). For n e^,
let Q^ denote the locally constant function on the set of quasi-regular elements of G(F) which
represents the character ofn there. We use a similar notation/or the character o/'p, p e e9^. We have

S Q^)=d-^rw S 0,«),
p e yjs. dim T)? 7C e ̂

for every pair (s, t), s e G(K), t e G(F)^, such that t is G(K) -conjugate to ̂  s.

Proof. — It will be convenient to abbreviate

.^(KE)^.

We shall also need the group

^-KK.Ker(N^/E).

(14.12) Lemma. — (i) The group S{F is a normal subgroup of J^ F. There is a unique
irreducible representation X of S{T such that X | Kg: F == T]^ .

(ii) For any g e G(K), we have

trX(^)=(J^)-1 S tr^x-^ax).
a; e JK/KK

Proo/'. — Part (i) is essentially contained in the proof of (14.10). In part (ii), both
sides vanish unless g e S{. However, any element of S{a is J^-conjugate to an element
of K^ a. For, the typical element of S{ is G~l{(x.~l) oy, for some a e KE and j e K^. But

(^(a) G^~ l(a~ l) oyoCT'^a"1) == oya~1 a.

So, to prove (ii), we might just as well take g e K^. The sum

S tr^x-^ax)
rG JK/KK

is the value at go of the character of the representation, call it K, of J^ F induced by ̂ .
We can divide K into two parts. First, every extension of r^ to J^ F occurs in K with
multiplicity one. Write Ko for the sum of such subrepresentations of K. We observe that
KQ is the representation of Jg: F induced by X. Let iq be the complement of KQ in K, and
let T be an irreducible component of iq. Take an irreducible component TI of T | J^,
and let A denote the group of y e F such that T^S TI. By definition, A + F, and T is
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induced from some extension of T^ to J^ A (which is a normal subgroup of J^ F). It
follows that trr^o) == 0 for every h £ J K . We deduce

2 tr^AT1^) ==trKote<i),
a? £ JK/KK

for every ^ e J^. However, since KQ is induced by X, we have

trKoC?cr)== S trX(A?-1^)
a; £ JK/^

==(^:KK)-1 S trX(^-1^)
aeJK/KK

==(J^:^) t rX(^) ,
as required. D

Now we rearrange our definition of X^. Abbreviate

^ dim7)p
°~tr^)'

For the moment, we let^ e K^ be such that^, g is quasi-regular in G(F). Theorem (14.5)
allows us to group terms

XK(^)==^O S S tr^(^-1^)-
a?e4\G(K)/JK veJK^K^K

We can rewrite the inner sum here as

S S tr^^-^-1^^) == (JK : -ft) S trX(jr1^).
ye4»K^/K^ (GJK^K ve4»K^/K^

However, X is a representation of ^F, which is a normal subgroup of J^ ̂  so the

summand here is invariant under J^« This gives us

(14.13) X^a) == ^(JK : ̂ ) S S tr X(^~1 gay).
xeJ^\GCK)/^ veJsxJ^K

The sum in the right hand side of (14.13) is susceptible of another interpretation. Let p,,
1 ^ i ̂  s == (JK : S{) be the elements of ̂ , and set

n = = p i C p 2 ® . . . ®p,.
We have

Ind(X : ̂ r, JK F) == AI ® ... ®A,,

and we can assume that A, induces p,. Rearranging the character expressions (A. 14),
as we may by the same result, we get

Qn(g^= S S S trA,(jr1^)
i-l x€Ji\OCE.)/Jys. veJ^aJK/JK

== S S S trA,(jr1^).
a?eJ^\G(K)/JK VGJ^^K^K i==l
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However, since SVT is normal in Jg; F, we have (as functions on G(K)F)
8

S trA, == (JK:^) trX.

Thus On(^o) is given by

(14.14) On(̂ ) == (JK : ̂ ) S ( S tr X(y-1 ̂ )),
« € 4\G(K)/J^ y € 4 ̂ K^K

for all g e G(K) such that^, g is quasi-regular. In particular, if s e Kg: has quasi-regular
norm, combining (14.13) and (14.14) we obtain

Qn^^k^X^sa).

If we further assume that t ==^s lies inJpSR, we can use (14.5), (14.4) to get

(14.15) Q^sa) == k^ d-1 S 0 )̂,
we^F

provided s e K^ and ^ejp9t is J^-conjugate to ^s. However, 0n, 0^ are class
functions, so (14.15) holds for all pairs (j, t) as in (14.11) such that sa is G(K)-conjugate
to an element of K^ CT. We therefore assume that sa is not conjugate to an element
of KK (T. We have On(^<r) =0 by (14.12), (14.14). If t is not conjugate to an element
ofJpSft, we also have S^ Q^{t) =0 by (14.4). This leaves only the case where t is
conjugate to an element ofjp9t We may as well, therefore, take t ejp9l. By (12.3),
there exists ^ e Kg: such that ̂  ̂  == ^. By (12.1), the element Ji a is G(K)-conjugate
to j<y, which contradicts the hypothesis on s.

Thus (14.15) holds for all pairs (s, t) as in (14.11), and completes the proof of
the theorem. D

Now let A^/p denote the group of characters of Fx which vanish on 91. If w is an
irreducible representation of G(F) and ^ eA^/p, we write n^ rather than 7i®^odet.

(14.16) Lemma. — (i) We have n-^ e <9p, for every n e ̂ p, / e A^/p.
(ii) For n e <9^, % e A^/p, z^ Aa^ TV^^ n if and only if ̂  = 1.

Proo/. — Part (i) follows from the definitions, and (ii) from [BK1] (5.2.2),
(6.1.2). D

Now let us assume that F has characteristic zero. We invoke [AC] Gh. 1 Th. 6.2.
Let p e y^. Since p° ^ p, there exists an irreducible smooth representation w(p) ofG(F)
with the property

(14.17) c(p)e^(^g)==Q-^ga)

for all elements g e G(K) such that ^yg is (conjugate to a) regular element of G(F).
(We note that regular elements are automatically quasi-regular. We write G(F)^ for
the set of regular elements of G(F).) The constant c(p) depends only on the choice of

26
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extension of p to G(K) F (and we have normalized such an extension in (14.10)). The
representation p is then the base-change lift of 7t(p). The next point to observe is:

(14.18) Lemma. — The representation 7t(p) is super cuspidal.

Proof. — We observe first that 7i(p) is a discrete series representation: otherwise,
the argument on [AC] p. 53 shows that p cannot be o-discrete (in the sense of [AC])
hence not supercuspidal. Next, if w(p) is discrete series but not supercuspidal, then
[AC] Gh. 1 Lemma 6.12 shows that the same applies to p. D

We return to the relation (14.17). We have det.^g == Ng^det^), so the same
relation holds with 7c(p) ^ in place of 7i(p), ^ e A. Summing over ^ and p, we get

©n^)- S Q,(ga)==d-1 S .(p)-1 S <W )̂,
p e ̂ K p e ̂ K x e A

for g eG(K) with regular norm. Combining with (14.18), we get

(14.19) d-1 S c{p)-1 S; O^W^k^d-1 S 0,(A)
pe^K x e A ne^F

for all h eG(F)^g which are conjugate to ^yg, for some g eG(K). Now we appeal
to [AC] Ch. 1 Lemma 1.4: an elliptic regular element h e G(F) is conjugate to^,^,
for some g e G(K), if and only ifdet h e 91. We deduce that (14.19) holds for all h e G(F)^
with det h e 91. However^ viewed as a function o f A e G(F)^g, the left hand side of (14.19)
vanishes if det h ^91. The same applies to the right hand side by (14.16). We deduce
that (14.19) holds for all h eG(F)^g. Since the representations w, w(p) are all super-
cuspidal, we can appeal to a consequence of the Jacquet-Langlands correspondence:
characters of inequivalent irreducible supercuspidal representations of G(F) are linearly
independent on G(F)^. (This follows from [Ro] Th. 5.8 or Th. A. 4.1 of [DKV].)
We deduce that

^ = { ^ ( p ) x : P ^ i o X e A } ,

and also that

p4-20' ^-t-^
for all p. We have proved:

(14.21) Corollary. — Suppose that F has characteristic zero, and use the notation (14.9).
Let y^ be the set of equivalence classes of irreducible smooth representations o/'Autp(E) ^ GL(N, F)
which contain the representation T^ . Let <9^ be the set of equivalence classes of irreducible repre-
sentations p of Avit^(KE) ^ GL(N, K) which contain the representation Y]^ and satisfy p° ̂  p.
Then:

(i) y^ is precisely the set of K/F base-change lifts of the elements of t9p.
(ii) Let n be an irreducible smooth representation o/'GL(N, F). The base-change lift ofn

lies in <$^ if and only if n e ̂ p.
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Remark. — (ii) The relation (14.20) is worthy of a second look. Given p e.9^,
one can choose an extension p to G(K) F such that c(^) == 1. This is proved in [AC]
p. 10 by reference to Whittaker models. In our situation, we can therefore choose our
extension 73^ to give tr^(cr) = dimvjp. (This elementary fact is, of course, easy to
obtain directly.) Using this particular ̂ , (14.20) says that the normalization of extensions
to G(K) r given in (14.10) is identical to the Whittaker model normalization.

To conclude, we have to give:

Proof of (14.7). — We first have to show that

(14.22) JK^JK^G(F)=J^,

whenever x e G(F) and K/F is a finite cyclic extension which is either unramified or
totally tamely ramified. As before, we put F == Gal (K/F). Nothing is changed if we
replace x by ax, for some a e Fx. We can therefore assume that x e 3^, for some integer
t^ 1. The key step in the proof is

(14.23) Lemma. — Let m be a non-negative integer. For an integer q, write

q' = \q-z-l\ + 1, e == e(K | F). Then
L € J

((SK^ + <&) ̂  sr^ + sr^y
= (3p^ + <^) ̂ ^+t+l)l +3^-^.

If we accept this for the moment, we can prove (14.22) by imitating exactly the
proof of [BK1] (1.6.1): there seems little point in repeating the obnoxious details.

Now we deduce the second assertion of (14.7) from (14.22). When K/F is totally
ramified, this is immediate from the construction of the map 9. We therefore assume
that K/F is unramified. Again this follows from the construction of 9 once we know that

(14.24) J^ xj^ n G(F) == J^ xj^ x e G(F),

where, as in § 12, F denotes the completion of the maximal unramified extension of F.
To prove this, suppose we have elements x e G(F), u, v ejly such thatj/ = uxv e G(F).
By continuity, we can find an integer m ̂  1 such that xj"^ x ~ l C ] ^ . Moreover, for
any m, (11.14) gives

J?/J?=UJ^»,
L/F

where L/F ranges over all finite extensions in F/F. We can therefore write y = vf xv\
where vf ej^ and v ' ej^, for some finite unramified extension L/F. Thus, in particular,
jeG(L) and u' ej^. Therefore y ej^xj^ n G(F) ==Jp^Jp by (14.22). This proves
(14.24), and we are left with the task of proving (14.23).
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Suppose first that K/F is totally ramified. We start by showing that

(3^=3?.
The case q == 1 is given by (11.6) while, in general,

(3^ ==(3^^
==3pn%

=3pny((B,%M),

in the notation of § 11. The assertion now follows from (11.6), (10.20) and [BK1]
(7.1.12).

Now let Li, Lg be F-stable o^-lattices in End^E^K). The cohomology group
H^r, Li n Lg) is trivial, so

(Li+L^Lf+LT.

Taking fixed points certainly commutes with intersection, so (14.23) follows in this case.
We now prove (14.23) when K/F is unramified. For any Op-lattices Li, Lg in

an F-vector space W, we have

(Li + Lg) ®^ OK == LI ®op OK + L2 ®op OK,

(Li n Lg) ®^ OK == Li ®^ OK n Lg ®op OK,

as lattices in W ®p K, since OR is a flat Op-module. This gives us

(3K^+<&) ns^-^+s^^
= ( (3^+^p)n3^ + ( + l +3? + ( + 2 )®opOK,

as a consequence of (11.14). The assertion of (14.23) is now immediate. D

15. Comparison with automorphic induction

Again, let PK(E), ^,0, p] be a simple stratum in Endp(E), where n> 0 and E
denotes the field F[p]. Let 6p e ^(9I(E), 0, p). We continue our comparison of the set
of irreducible representations of G(F) = Autp(E) containing 6p with the set of Galois-
stable irreducible representations of G(K) =AutK(K®pE) containing 6^ (in the
notation of § 11), for a tame cyclic extension K/F. Here we consider the opposite extreme
to § 14, and assume that K embeds in E over F. In this situation, it is not so easy to use
base change directly since we do not know how to interpret the formula (14.5). We
therefore approach the problem indirectly, using the " dual" process of automorphic
induction^ as in [HHJ.

Let us summarize our hypotheses.
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(15.1) Hypotheses. —Let [9l(E), n, 0, (B] be a simple stratum, where n > 0 and E == F[j3].
Let 6p e ̂ (9l(E), 0, (B). £^ K/F ^ a cyclic extension of degree d, with F = Gal(K/F), such
that there exists an f-embedding K -> E. Suppose that either

(i) K/F ^ unramified, or else
(ii) K/F zj totally tamely ramified and E/F is totally ramified.

The extra restriction in (15.1) (ii) simplifies various matters considerably and
will be easily circumvented in the applications in § 16.

For the time being, we impose no restriction on the characteristic of F.
In the situation of (15.1), the algebra K®p E is a direct sum of d == [K : F]

fields, and these are permuted transitively by F. We fix an F-embedding K -> E. This
is equivalent to choosing a field factor of K ® E or to fixing a K/F-lift of (3. We write

A == Endp(E), G = Autp(E),

B == Ends(E), H == Aut^E).

The field K C E surely normalizes the order %(E), so we can form the principal Ogi-order

C == %(E) n B.

We are in the interior lifting situation of § 7, so we have

H^,%(E))nH==Hi((3,($;),

and likewise for J-groups, by (7.1). We put

OK = 6p I H^jB, £),

and this lies in ^((£, 0, (B), by (7.7). Indeed, up to endo-equivalence, 6^ is the K/F-lift
of6p corresponding to choice of K/F-lift of(B implicit in our choice of embedding K -> E.
It will be convenient to have the abbreviations

Hp = H^, %(E)), Jp^J^^E)),

H^ = ?((3, (£), JK=31^^

and the obvious variations on these. As before, if n is an irreducible representation of G
and ^ is a quasicharacter of F^ we abbreviate n-^ = TC® ^ o det.

(15.2) Proposition. — (i) Let n be an irreducible smooth representation of G which contains 6p.
Then n is super cuspidal.

(ii) Let K be a character of¥x which generates the dual of the finite cyclic group F^/N^K"),
Then TCK ̂  w, for any irreducible smooth representation n of G containing 6p.

(iii) Let a be an irreducible smooth representation of H which contains 6^. Then a is
supercuspidal.
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Proof. — Parts (i) and (iii) are immediate. In part (ii), we note that TC is induced
from some irreducible representation A of the group E^dB, 9I(E)) = E^^p, 9l(E))
which contains 6p. The image of this group under the determinant on G is contained
in de^E^ U^Op). The character K is null on U^o?). The group de^E^ is just N^E^.
Since K/F is an abelian subextension of E/F, we have N^y^E^ C Ng^K^ and K is
null on this last group. Altogether, A ® K o det ^ A, and A ® K o det induces the
representation TCK. D

Now we need to take account of the action of F. The choice of a K-basis of E
induces an isomorphism E ^ IC^ of K-vector spaces, where M = [E : K] = [E : F]/rf.
It is convenient to choose an Oj^-basis of the lattice chain 3? == { p ^ ' - j e Z } for this
purpose. We transport the obvious action of F on K3^ back to an action on E, and use
this to define an action of F on H and G. We write this as (y? x) (-> yW? x e G. Thus,
if o is a smooth representation of H and y e F, we can define a representation a^ of H by

^ : h ̂  O(Y(A)), A e H .

At the level of equivalence classes, this action does not depend on the choice of basis.
This also reflects the natural action of F on simple characters. With our above

choice of basis, the orders 9I(E), (£ are F-stable, and the elements yW? viewed as
defining simple pairs over K, are the K/F-lifts of the original p. We also get
Y-^H^p, %(E)) == H^Y-'dB), 9t(E)), and the character 6^ == 6^ o y of this group is
the lift of 6p corresponding to the lift y'^P) °^ P-

(15.3) Proposition. — Let a be an irreducible smooth representation qfH which contains 6^.
Then a^ ̂  o, for any y e r? Y + ^

Proof. — The representation a^ contains the character 6^, which is a simple
character lying in %'((£:, 0, y'^P))- The endo-class of 6^ is the K/F-lift of 6p corresponding
to the K/F-lift y'^P) °^ P- Hence, if y =t= ^ the endo-classes of 6^3 6^ are disdnct,
by (9.6). In particular, these realizations of these endo-classes cannot intertwine, so
a^ ̂  a, as required. D

We now need some definitions. We write (JL? for the group of j&-prime roots of
unity in F, where p is the residual characteristic of F. We use the analogous notation
for finite extension fields of F.

(15.4A) Suppose that K/F is unramified. Let^ e (JL^ be such that K = F[C]. Fix a prime
element TC? of F. Choose a representation Xp of the group Jp ==J((3, %(E)) = Ogjp with the
following properties'.

(i) the restriction of\ to J^ is equivalent to 7]p, the unique irreducible representation ofj^ which
contains 6p$

(ii) Xp is a ^-extension of Y]?;
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(iii) Xp is trivial on pip;
(iv) the character det(Xp) | jig is trivial.

Let A be a representation of the group Jp = Ex Jp .n̂ A ^A^ A [ Jp = Xp.

For the phrase " (B-extension )?, see [BK1] (5.2). The existence of a representation Xp
with the required properties is guaranteed by [BK1] (5.2.2). The existence of the
extension A is given by [BK1] (6.1.2). Since dimXp=dim7]p is a power of p,
condition (iii) is a consequence of (iv).

In the other case of (15.1), we use the notation:

(15.4B) Suppose that K/F is totally ramified. Let TC^ be a prime element of K such that
Tip == < is a prime element of F. Wnte Jp == J((i, 9l(E)) = (Apjp and Jp == Ex Jp. Z^ A
ATZO^ flw irreducible representation of Jy such that

(i) A |^=T]F;
(ii) A is trivial on (Ap;

(iii) detA(^) = 1.

We also write Xp == A [ Jp.

The existence of A is easily established as before. Note that Xp is again a (3-extension
of 7]p, while (iii) and the choices of primes imply that A is trivial on Wp.

When convenient, we unify the two cases (15.4A) and (15.4B) by setting

^ if K/F is unramified,

TC^ if K/F is totally ramified.
K ^^

Now let / range over the characters of the group

S-JrK^JF-E^Tr^U1^).

The representations A%, % e 3, are then distinct, and indeed do not intertwine in G
by [BK1] (5.2.2), (6.1.2). They are precisely the representations of Jp which agree
with A on the group generated by TT? and Jp. Write

^ == ^-Ind(Ax).

This is an irreducible supercuspidal representation ofG, and the w^, ^ e S, are distinct.
Indeed:

(15.5) An irreducible smooth representation n of G is of the form n^ for some ^ e E,
if and only if it contains 6p and its central character agrees with that of A at the prime element n-p of F.

By (15.2), we have

T ^ K ^ T ^ , ^e3,

where K is as in (15.2) (ii).
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Fix ^, and let ̂  denote the representation space ofw^. We view n^ K as also acting
on Y^. The equivalence n^ K ^ TC^ says that there is a linear automorphism A^ of Y^
uniquely determined up to a scalar factor, with the property

\ n^g) = K(det^) n^g) A^, ^ e G.

We have A%® K o det ^ A^. It follows that A^ stabilizes the isotypic space i^^. Since
the representation A^ occurs in n^ with multiplicity one, A^ must act as a scalar on ^Ax.
We normalize A^ by the condition

AJ 1^^= 1.

With this normalization, let 0^ denote the ^-character of TC^. This (cf. [HH] (3.7)) is
the distribution

y ̂  ®^(y) = ̂ (^(9) o A^),
for locally constant, compactly supported, functions 9 on G. We form the distribution

(15.6) e = 1 s x(ye^,
r xes

where r = #S.
Next we choose a compact open subgroup K^ of G such that

K^C Go = Ker(Kodet).

As before, we write G^g for the set of regular elements of G.

(15.7) Proposition. — Let h e H n G .̂ Then

Q{h) == S ^ KodetM S^ ^ ^"'Aj),
a; e Ki\ G /jp. v e KI ajp /^p

w^r^ -^ ^ the function supported on Jp == Ex Jp <z^ such that

^)=1 S x(S)trAxW, ̂ .
^ xes

TA^ jMj&por̂  of the function 6 ̂  actually contained in ̂  < Tip > J^, fl̂  8- ogr̂ ^ w^A the function trA
on ^fl̂  ^^ .̂

pyo^ — As we observed in the proof of (15.2), we haveJpC Go, so we can form
the representation

p, = r-Ind (̂A )̂

of Go, and then ̂  is induced by p^. Write ̂  for the representation space of n^ and
^C ̂  for that of p^. As Go-space, we have

^= U 7^)^.
QGG/GO
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The action of Go on the space n^(g) "Ty is given by the conjugate representation p'"1,
and the conjugates p^, g e G/GQ, are mutually inequivalent. It follows that the inter-
twining operator \ above preserves each space n^g) ̂  and acts there as the scalar
K(det.?). It follows (cf. [HH] (3.9)) that the distribution 0^ is null outside Go, while
on Go it is given by

0^= S KCdet^trp;,
»ec/Go

where tr p^ is the character ofp^. The representation p^ is induced by the conjugate (A^)".
We apply (A. 14) to p^ to get

trpW = S ^ ( 2__ tr(Ax) (^ghg-1^,
« e KI\GO/JF v e Ki asjp/jp

for h e Go n G,,. We can replace K^ by,?-1 K^g in (A. 14) without changing anything;
this allows us to replace y by gy to get

trpW = S ^ ( ^__ tr(A^ (jp-1^)).
a; £ KI\ oGo /Jp v e KI aJ'p /Jp

This series is absolutely convergent; in fact, the outer sum has only finitely many non-
zero terms by (A. 14). We can now substitute this expression into the definition of 9
and rearrange to get the result. D

Now let us consider the corresponding situation in H. Let ^ denote the unique
irreducible representation ofj^ which contains 6^.

(15.8) Proposition. — There is a unique e e{± 1 } such that

trA^x) =etr7]KW, x e j ^ .

Proof. — Suppose first that K/F is unramified. The natural conjugation action
ofjAa onjp defines an injection of ̂ /^ -^Autjp). By construction, Xp is the inflation
to Jp of the representation Xp of the semi-direct product (AB/PT ^Jp ^Jp/Pr defined
by the conditions:

^plJp == ̂
de tXp | (AE/(JLp== 1.

The set of fixed points of?:injF is precisely^, since, by definition, K = FR]. We now
appeal to [G] Th. 3. This gives a unique irreducible representation p ofj^ and a unique
sign s such that

trX^) =strp(A:), x e j ^ .

Let us apply this identity first to x == 1 and then to an element y eH^. We have
^(jO = QK(A so we get

tr \^) QK^) == e dim TJK. O^(^) == e tr p(j^).

27
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We deduce that p | H^ is a multiple of 6^, whence p = Y]^, and this proves the Propo-
sition when K/F is unramified.

The proof in the totally ramified case is parallel. D
We now need to choose an irreducible representation A^ of the group Jg: == ̂ x JK-

Let (Op denote the central character of our chosen representation A as in (15.4).

(15.9A) Suppose that K/F is unramified. Let A^ be a representation of^ such that

(i)A^|jK=^;
(ii)A^)=l;
(iii) the restriction of A^ to K^ is a multiple of a character co^ which satisfies

(OJF^^K^-^

where, as before, d == [K: F], M = [E : K].

(15.9B) Suppose that K/F is totally ramified. Let A^ be a representation of^ such that

(i) AK|JK=^;
(ii) the restriction ofA^ to Kx is a multiple of a character <o^ which satisfies

^\fx =(OFKMd(d-l)/2,

where, as before, d = [K : F], M = [E : K].

Of course, in (15.9B), the character <x)p is trivial. In both cases of (15.9), the
character ^d{d~l)/2 is independent of the choice of K among generators of the dual of
F^Ng^K^): it is the unique character in this group of order 2 when d is even and
is trivial when d is odd.

We observe that the conditions in (15.9) are consistent, by the definitions of A
and 6^.

Once A^ is chosen, we can form the representations A^ ^, / e 3, of ̂ . Just as
before, these do not intertwine in H. Let T^ denote the (irreducible supercuspidal)
representation of H induced by A^ /. An irreducible representation of H is of the
form T^, for some / e 3, if and only if it contains T^ anc! lts central character agrees
with that of A^ at n-p. We now form the distribution

(15.10) e^=1 s x(i;)e^,
r xes x

where 0^ denotes the character of the representation T^. We regard this as a locally
constant function on the set of regular elements ofH. For h e H^g, (A. 14) then gives us

(15.11) Q^(h) = S, S , ^{^hy),
Ka\H/jK VGK^JK/JK
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where Kg is some chosen compact open subgroup of H and ̂  is the function supported
on JK ^d defined there by

W==1 ^x(S)trA^), xej^.
i X G c.

Again we see that ̂  is actually supported on the coset ^ < TT? >J^ and is equal to tr A^
on UK- I11 particular, we have (recalling (15.8))

(15.12A) ^(^ ̂ ) = sQ^-1^))^ ^(74 ̂ ), ^ e Z, j ej^

in the case where K/F is unramified. When K/F is totally ramified, the corresponding
relation is

(15.12B) ^(^ T^) = s^-1^))^ co^) ̂ j), ^ e Z, j ej^.

For g e G, let us write r^(g) for the conjugacy class {ygy~1 \y e G}, and use a
similar notation in H. For h e H n G^g, there is a finite set X(A) such that 1 e X(A) and

(15.13) I Y A ) n H = U r^^-1).
as e X(TI)

For A eH n G,^, let A(A) = A^(A) be the transfer factor of [HH] (3.3). We recall
the definition in more detail below, in the proof of (15.21). Note that the definition
of A does depend on certain auxiliary choices, but these only affect a constant factor
which we do not specify anyway. It will also be convenient to have the quantity

8(A) = A(A)/| A(A) |2, AeHnG, , .

The absolute value here is the ordinary complex one. In the notation of [HH] recalled
below, we have A(A) = A1^) A2^), while 8(A) = A^/A^A).

Finally, we can state our main result:

(15.14) Theorem. — Define 0 by (15.6) and Q^ by (15.10). There is then a nonzero
constant e' such that

Q(h) == e' S K{x)-1 6(x-1 hx) Q^(x-1 hx),
a?eX(fc)

for all h eH n G^g.

We shall prove this below. Before doing so, we derive some consequences. We
now assume that F has characteristic zero. This enables us to use the main results of [HH],
but it is worth emphasizing that, up to and including the proof of (15.14), this restriction
has been unnecessary. Here, and for the rest of the section, we write K{g) to mean
i^det.?), g e G. For / e S, let n^ be the representation of G induced by A/, as above.



212 COLIN J. BUSHNELL AND GUY HENNIART

The property (15.2) (ii) says exactly that the representation n^ is obtained from an
irreducible representation a^ of H by automorphic induction, as in [HH] (5.4). We have
the defining relation (loc. cit. (3.11))

QW == ̂  S K^)-1 8(x-1 hx) Q (x-1 hx), h e H n G^
a?exw x

where Qy is the character of a^ and ^ is some non-zero complex constant. Now let
us restrict to the case h eH n G^, where G^g is the set of elliptic regular elements
in G. We can then choose X(A) so that its image in Aut(H) coincides with that of F
(loc. cit. (3.10)). This done, we get the identity

A(A) ^K^X-^^X-^X)

(see [HH] (4.3) Corollary), and hence

8(h) ==K(x-1) 8(^-1^).

The reladon above then simplifies to

Q^h)=c^{h) S 0 (y(A)), AeHnG^
yer A

(loc. cit. (3.11) Remark (2)). We can now substitute this into the definition (15.6) of0
to get the expression

(15.15) e^^S^) 2 ^x(S) S 0 (y(A)), A e H n G ^ .
r xeB yer x

On the other hand, we can incorporate the same simplifications into the expression
for 0 given by (15.14). Thus, using the definition (15.10) ofOg:, we get

0(A) = s' S; K{X- ̂  8(x-1 hx) Q^{x-1 hx)
x e x(7»)

=e's(A) s e^(r(A))Yer

^^s 'sw s s x(S)e (Y(A)),
y ver xes x

valid for A e H n G ^ g . Here, as before, T^ denotes the (irreducible supercuspidal)
representation ofH induced by A^ ^. We now combine this last expression with (15.15)
to get the relation

(15.16) e' S z(S) S ©,,(YW)- 2: ^x(^) S 0 (YW),xes yer 7- xes yer

again valid for all h e H n G^g. The next point to note is:

(15.17) Lemma. — For ^, e 3, y^ e F, ^ Afl^ T^ ^ T^ ?/^ o^/y ?/' YI = Y2 a7zrf

Zi = X2-
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Proof. — The representation T^ contains the simple character 6^. These two
simple characters intertwine in H if and only if yi = Y2: we have already noted this
in the proof of (15.3). On the other hand, the representations A^. intertwine in H if
and only if ̂  = /g, and the Lemma follows. D

In all, the representations ̂  appearing in the left hand side of (15.16) are distinct.
On the other hand, since TC^ is supercuspidal, the representation o^ is supercuspidal
by [HH] (4.8), (5.5). However, by loc. cit. (5.2), characters of inequivalent discrete
series representations of H remain linearly independent on restriction to H n G^ .
This shows first that n^ determines the F-orbit of a^ via the relation (15.15). Therefore
a relation a^ ^ a^ with ^ e S, y, e F, implies Xi == /2- It now follows from (15.16)
and the corresponding property (15.17) for the T^ that the F-conjugates of a given <^
are mutually inequivalent, and then that the sets of equivalence classes of representations
ofH,

{T^eS .yeF} ,

{ ̂ : ̂  e S, Y e r },

are identical. We have proved:

(15.18) Corollary. — In the situation of (15.1) , suppose that F has characteristic zero.
Fix a prime element TTp of F and an element y. eCX. In the case where K/F is totally ramified,
choose TTp of the form 7^,for some prime element n^ of K. Let K be a character which generates
the dual of F^N^K^).

Let «9p denote the set of irreducible smooth representations TV of G which contain 9p and
whose central quasicharacter satisfies ^(^p) == a. Let y^ denote the set of irreducible smooth
representations a of H which contain 6^ and whose central quasicharacter satisfies

^(^)=aK(7CF)Md((^-l)/2,

where Md == [E : F].
Let n be an irreducible smooth representation of G. Then n e e9p if and only if n is auto-

morphically induced by a, for some a e <$^.

The only point to be made here is that, in the constructions above in the ramified
case, we imposed the condition a = 1 for technical convenience. This is easily removed
by tensoring with an unramified character of Fx.

Now we have the task of proving (15.14). We revert to the case where F has
arbitrary characteristic. The relation to be established is invariant under G-conjugation
so, by (15.7) and (15.11), we may as well take h e < n^ > y?. The relations (15.12)
and formal properties [HHJ (4.2) of A allow us to eliminate the contribution from < TTp >,
so we take h e ̂ Jp. We need a list of Lemmas.

(15.19) Lemma. — Let h e^Jp. There exists y ej? such that yhy~1 e^.
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(15.20) Lemma. — Let h, h' e SJ^. Suppose yhy~1 = h' for some y e G. Then y e H.

(15.21) Lemma. — The functions A, 6 are constant on the coset y^. Moreover^ for
h e y^, we have

(i) Q^{x-1 hx) == 0 for all x e X(A), x 4= 1 $
(ii) Q{h) == e' OK (A), for some constant s' + 0.

If we assume (15.19), it is enough to prove Theorem (15.14) for h eSJp? but,
for such h, it follows from (15.21).

Now let us prove (15.19). We write

A = S j ( l +x), jej^ x e ^ , r^ 1,

and proceed by induction on r. Letj/ e^y and consider

(1 +jQ h{\ +y>-1 = ^'(1 + x + r1^ -J) (mod U^1).

Conjugation by ^ induces a semisimple automorphism Z of the kp-vector space
V^S^^S so that

V^In^Z- l)CKer(Z- 1).

Moreover, by a standard cohomology-vanishing argument, Ker(Z — 1) is the image
of^K ln vr- we can now choose y so that x + ̂ ~1^ —y + ̂ +1 e Ker(Z — 1), and
we then have (1 +jy) h{\ +^)~1 e^J^J^1. The lemma now follows.

Now we turn to (15.20). Suppose first that K/F is unramified. Put q = ffk^, and
define

t == lim ^n.
n-^-oo

Defining /" similarly, we have t ' ==^-1. We will show that f == t ' = ^, and the Lemma
will then follow. However, we can write h = ^(1 + A;), with A; e^, giving us

h^ EE^ ^ ^(mod3£), 7^^ 1.

The same applies to ^', so we have the result in this case. When K/F is totally ramified,
consider the sequence ̂  == TCp^""1^^ eT^J^, and define {/ '„} similarly. (Note here
that, by hypothesis on K, the field kp = k^ contains a primitive d-th root of unity, so
q s= 1 (modrf).) We have a strictly increasing sequence { ^ } of positive integers such
that {^.}, {t^} are both convergent, with limits ^ f respectively. We again have
f -==yty~^. Now we finish the proof as before.

We now prove (15.21). To prove the first assertion, we have to recall the definition
of A from [HH] (3.2-3). Fix a generator a of F = Gal(K/F) and choose an element
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CQ e K>< such that a(<?o) = (- l)^-^ ̂ . Let h, V e H, and let oci, .. ., a^, a;, .. ., <
be the eigenvalues of A, V respectively in some finite extension of K. We set

r(A, A') = fi (a, - a;.),
i. 3 == 1

and, for h e H, we put

A(A) == n rW), o^)).
0^i<^d-l

We have <?()A(A) G F ^d A (A)2 eF. Let || ||p be the normalized absolute value on F
and let det h be the determinant of h viewed as an element of G. We put

AI(A) = || A(A)2 \\y1| det A IIST^2 (cf. [HH] Lemma [4.1)),

A2(A)=K(.oA(A)),

A(A) =Ai(A)A2(A).

Observe that A1 is real and positive, while A2 is a root of unity. Thus, as we said earlier,
8 == A/] A |2 == A2/A1.

Now let h eSjR; we want to show that A (K) = A(^). Let L be a finite Galois
extension of F containing K and all the eigenvalues ai, ..., a^ of H. Since h e ^JK?
there are elements ̂  e U^oJ such that o^ == ̂ , 1 ̂  k ̂  m. The definition of S shows
that the element a\^) — <j^(^) has the same valuation as i; whenever 0^ i<j^ d — 1.
It follows that A(A), A(^) differ by an element of U^) and, in particular, A2^) = A2(^)
since K is tamely ramified. On the other hand, det h and det ^ differ by an element
ofU^Op) and hence A1 (fi) == A^). This proves the first assertion of (15.21).

Part (i) of (15.21) is a consequence of (15.20). This leaves us with (15.21) (ii).
We recall the formula (15.7):

0(h) = S ^ KodetQv) 5^ Q<y-1 hy}.
x e Ki\ G /?p v e KI a??p/?F

A conjugate y~1 ̂ / contributes to this sum if and only ifj/~1^ eSJi" By (15.19), we
can chooser in its Jp-coset so thatj?"1 hy e y^ and then y e H by (15.20). We have
Jy n H = J^ and K o det is null on H, so we get

Q(h) = S ^ S ^ H^'hy).
aeK^G/Jp v € KI a?JF n H/JK

At this point, we recall that our open subgroups Ki C G, Kg C H were chosen rather
arbitrarily. It will now be convenient to set Kg == Ki n H. For A; e H, the set K^ xjy n H
is a finite union of (Kg, J^)-double cosets. We define an equivalence relation ^ on H
by AI ~ /?2 if Ki Aijp = Ki Agjp, and choose a set X of representatives for this relation.
Rewriting the last formula for 0(A) and incorporating (15.12), we have

QW==^ s s ^ ^Cr1^)
a;6X veKiaiJpnH/yK
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for some nonzero constant s'. On the other hand,

0^)== S ^ S_ ^O^AA
a?eK2\H/3s l/eKaicJK/JK

by (15.11). However, absolute convergence (A. 14) allows us to group terms here, and
this gives us the relation 0(A) == s" 0-g_(h) for some constant e" =(= 0, as required for the
Lemma. D

We have now completed the proof of (15.14) and hence that of (15.18).

16. Comparison with base change n

We now compare our local lifting process 6y ^-> 6^ (notation of § 11) with base
change for an arbitrary tame Galois extension K/F.

Let us briefly recall a variation of the Zeievinsky product notation, of which we
make frequent use in this section. If we have an irreducible smooth representation 7^
of GL(N,, F), 1 ̂  i^ r, we form a representation

n = TCi X Wg X ... X TC,.

of GL(N, F), N = S,N,, as follows. We form the representation TC^®^® ... ® W y
of M = riGL(N,, F), and identify M with a Levi subgroup of GL(N, F). We choose
a parabolic subgroup P of GL(N, F) with Levi component M, extend 0 TC, to P by
triviality, and induce to GL(N, F). This is the representation TC. It depends on the choice
of P, but its set of composition factors does not. We shall only use this notation when
either n is irreducible (and hence independent of P) or when we are only concerned
with composition factors. We use a similar notation in the global situation.

We have to start by establishing a few formal properties of local base change and
automorphic induction. This is mainly a matter of rearranging some arguments from [AC]
and comparing them with [HH], First, let k denote an algebraic number field and
Afc the adele ring of k. Let TC be an automorphic representation of GL(N, A^). Thus
n decomposes as a restricted tensor product [Fl]

7t == 0 71,,
v

where v runs over the places of k and n^ is an irreducible admissible representation
ofGL(N, &„). There is a finite set S of places of k, containing all the Archimedean ones,
such that T ,̂ is spherical for all v f S. That is to say, for such », the representation TC,,
contains the trivial character of GL(N, oj, where Oy is the discrete valuation ring
in the completion ky. Thus, for v f S, the representation Uy is parametrized by an
element ^, of (C^ modulo permutation. We now have ([JS] or [AC] Gh. 3 (2.4)
and (4.1)):
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(16.1) Let w, n' be automorphic representations of GL(N, A^), and suppose they are both
induced from cuspidal. Then n ̂  n' if and only if t^ „ == t^. y for almost all non-Archimedean
places v of k.

(For the term " induced from cuspidal "5 see [AC] Ch. 3 § 4.)

Now let l\k be a finite field extension, and n (resp. II) an automorphic represen-
tation of GL(N, A,,) (resp. GL(N, A,)). We say (cf. [AC] Ch. 3 § 1) that 11 is a weak
lift of n if

^,.=^

for almost all non-Archimedean places v of k and all places w of / lying over y, where
f^ -=f(l^ \ ky) is the local residue class degree.

(16.2) Proposition. — Suppose that the extension Ifk is soluble Galois. Let n be an auto-
morphic representation of GL(N, A^) which is induced from cuspidal. There then exists a unique
automorphic representation i^ n of GL(N, A() which is a weak lift of TC. This representation is
induced from cuspidal. Moreover, if kC / 'C / and I'fk is Galois, then

U^-W/^))-
The Proposition follows immediately from [AC] Gh. 3 Th. 4.2 and the obvious

transitivity property of weak lifting.
Now we return to our non-Archimedean local field F, which henceforward has

characteristic zero. If K/F is a finite cyclic extension and n is an irreducible smooth repre-
sentation ofGL(N, F), we write A^/p n for the K/F-base change lift of n: ifwis tempered,
it is defined by the Shintani relation [AC] Gh. 1, 6.1 (which we used for supercuspidal
representations in § 14). For general representations n, it is defined indirectly via the
Langlands classification; see [AG] remarks on p. 59 following Prop. 6.8.

(16.3) Proposition. — Let K/F be a finite cyclic extension and let K'/F be a subextension
of K/F. We then have

*K/F(71) == ^K/K^K'/B^))?

for every irreducible smooth representation n of GL(N, F).

Proof. — The remarks cited above reduce us to the case where n is tempered. When
n is tempered, it is irreducibly (parabolically) induced from a discrete series represen-
tation, and b^,^ w is irreducibly induced from a Gal(K'/F)-discrete representation.
Local base change commutes with irreducible parabolic induction, so we are reduced
to the case where TC is discrete series.

We next recall the construction of A^/p w, for n discrete series, from [AC] Gh. 1
§ 6.3. We find a number field k and a place v of k such that &„ ^ F. We then find a
cyclic extension Ijk in which v does not split such that the local extension l^k^ is iso-

28
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morphic to K/F, where w is the unique place of / lying over y. There is then a cuspidal
automorphic representation 11 of GL(N, AJ such that 11̂  ̂  w. (The subsidiary
conditions imposed on 11 in loc. cit. Lemma 6.5 are irrelevant here.) We form the weak
lift i^ II, and the desired representation A^/p TC is the component of i^ 11 at w.
Observe that this condition is independent of all choices (because TC and b^,-p TC satisfy
the Shintani relation). Indeed (16.1) shows that, for the purposes of this construction,
we need only have taken 11 to be induced from cuspidal.

Now let us prove the Proposition. We can use induction on the degree [K' : F],
so we may as well assume that this is prime. We choose a cuspidal automorphic repre-
sentation II of GL(N, AJ whose y-component is TC. Let I ' f k be the subextension of I f k
corresponding to K'/F, and let w' be the unique place of /' above v. Consider the repre-
sentation b^.iy TC. This representation is Gal (K'/F)-discrete (by the argument on [AC]
p. 56) and hence, by [AC] Ch. 1 Lemma 2.8, is of the form

*K'/F 71 == TC' X TC'° X . . . X TO'0""1,

where TC' is discrete series, CT generates the Galois group of K'/F, and g ^ 1 is the least
integer for which TC'017 s TC'. By hypothesis on the degree [K' : F], we have only the
cases g == 1 or g == [K': F].

The case g = 1 is easy: the weak K'/F-lift of II is induced from cuspidal and TC'
is discrete so, by the general construction, b^^,(b^,^(n)) is the ^-component of
^K/K^K'/FW) ^K/FW. as required.

We therefore assume that g == [K': F]. In this case, we need to choose the
global representation 11 with more care. We use the fact ([AC] Gh. I Prop. 6.6,
6.7) that, in these circumstances, any irreducible representation TC^ of GL(N, F)
with Ag^p TCI ^ A^/F TC must be equivalent to TC. We first find a cuspidal represen-
tation II' of GL(N/^, A(.) whose ^'-component is TC'. In particular, II' is not equivalent
to any of its Gal (K'/F)-conjugates. We let 11 be the representation of GL(N, A^)
automorphically induced by II', in the sense of [AG] Ch. 3 § 6. This representation
is induced from cuspidal. Invoking [AC] Gh. 3 Cor. 6.5 and Lemma 6.6, the repre-
sentation n has weak lift II' X IT0 x . . . X IT017"1. The w'-component of this induced
representation is induced from the ^'-component of 0 11'° ,̂ by [L2] Lemma 1, and
hence is equivalent to TC' X TC'° X ... X TC'00'"1. On the other hand, since
[K' : F] = [/': k] is prime, we can use [AC] Gh. 3 Th. 5.1 to show b^.,^ Tl^ ̂  A^'/F "•
Thus, by the facts recalled above, we have Tly ^ TC. Therefore, we might as well have
assumed at the beginning that TC = 11̂ , for a representation 11 of GL(N, AJ which is
induced from cuspidal and such that ^'/F II == IIi X 11̂  x . . . X II^~1 for some
cuspidal representation II^ of GL(N/^, A(/) with w'-component TC'. The representa-

tion *K/K'(^K7F(71)) ls now °f tne f011111 ^K/K'^') X ... X ^K/K'C71')0^"1? which is the
w-component of the weak K/K'-lift of IIi X ... X Tlf~1. The result again follows
from transitivity of weak lifting. D
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Remark. — This argument also shows that weak lifting is the same as <( strong
lifting55 (terminology of [AC] Ch. 3 § 1) for arbitrary cyclic extensions, thus removing
the prime degree hypothesis imposed in [AC] Gh. 3 Th. 5.1.

We need a complementary result of this kind.

(16.4) Proposition, — Let K^/F, Kg/F be finite cyclic extensions which are linearly disjoint
over F. We then have

^KiKg/Ki ° ^Ki/F = ^KiKa/Kg ° ^Kg/F-

Proof. — Using (16.3), a simple inductive argument reduces us to the case where
the field degrees [K^: F] are both prime. We globalize as before: we choose a number
field k and a place v ofk such that ky ^ F. For i == 1,2, we can find a cyclic extension I J k
in which v is inert such that ^ ^. ̂  K over ky == F, where w^ is the unique place of /,,
over v. We only need verify the identity for discrete series representations n ofGL(N, F).
We identify n with the y-component of a cuspidal representation 11 of GL(N, A^). An
argument identical to the one in (16.3) shows that A^ K/K-^KVF^)) ls tlle 1̂2"
component of the weak K^ Kg/F-lift of II, where w^ is the unique place of /i /g above v.
(Indeed, the hypothesis that K/F is cyclic is not used in the final paragraphs of the proof
of (16.3).) D

We now assume that our local extension K/F is Galois and tamely ramified. Let
KQ/F be the maximal unramified subextension of K/F. The extensions K/KQ, KQ/F
are then cyclic, so we can unambiguously define

(16.5) A^(7t) = &K/Ko(*Ko/F(")),

for any irreducible smooth representation n of GL(N, F). (Both this definition and the
next result are susceptible of further generalization, but we do not pursue the matter here.)

(16.6) Proposition. — Let L/F be a tamely ramified Galois extension, and let K/F be a
Galois subextension of L/F. We then have

*L/F == ^L/K ° ^K/F •

Proof. — Let Lo/K, Ko/F be the maximal unramified subextensions of L/K, K/F
respectively. Let E/Ko be the unramified extension ofKo of degree [LQ : K], Since K/Kg
is totally ramified, the fields E, K are linearly disjoint over Kg and we have Lg = EK.
Moreover, E/F is the maximal unramified subextension of L/F. Thus

*L/F == ^L/E ° ^E/F (definition)
= *L/LO ° ^LO/E ° *E/KO ° ^KO/F (16.3)
= ^L/LO ° ^LO/K ° ^K/KO ° ^KO/F (16.4)
=== ^L/K ° *K/F (definition),

which proves the result. D
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We now need a special case of the relation between base change and automorphic
induction. (We use the latter term in the sense of [HH] at this stage.)

(16.7) Proposition. — Let K/F be finite cyclic, and let a be an irreducible supercuspidal
representation of GL(N, K) such that ^ ̂  a for any y e Gal(K/F), y + I' Letn denote the
representation of GL(N ,̂ F), d = [K : F], automorphically induced by a. Then A^/p ̂  is the
Zeievinsky product of the representations o^ y eGal(K/F).

Proof. — We follow the arguments of [HH] (8.8) which construct TC from a. We
choose a number field k and a place v of k such that ky ^ F, and a cyclic extension l/k
in which v is inert such that the extension IJk^ is isomorphic to K/F. As usual, w here
denotes the unique place of / above v. We also observe all the subsidiary conditions
of loc. cit. Those constructions first give a cuspidal automorphic representation Z of
GL(N, A,) whose ^-component is o, and then a cuspidal automorphic representation II
of GL(N^, Afc) whose y-component is w. Let II' denote the automorphic representation
of GL(N^, AJ automorphically induced by S, in the sense of [AC] Ch. 3 § 6. By cons-
truction, the ^/-components of II, II' agree at almost all finite places v' of k. Since 11
is cuspidal and II' is induced by cuspidal ([AC] Ch. 3 Th. 6.2), we have II ^ II' and,
in particular, n^. Tl^. The assertion follows from combining [AC] Gh. 3 (6.5) and
(6.6). D

We now come to our main result.

(16.8) Theorem. — Suppose that F has characteristic zero, and let K/F be a finite, tamely
ramified Galois extension. Let [%, n, 0, [B] be a simple stratum in M(N, F) with n > 0 and
[F[(B] : F] == N. Let 6p e ^(%, 0, (B). Define a subgroup H^ of GL(N, K) and a character 6^
ofH^ as in ( 1 1 . 1 ) .

Let n be an irreducible smooth representation of GL(N, F). Then n contains the simple
character 6p if and only if the KIF-base change b^rc of n contains the character 6^ of H .̂

Proof. — We identify

GL(N, F) = Autp(F[p]),
GL(N, K) = Aut^K® F[(3]).

We write K®F[(B] as the product of the fields K[(3J, where (B,, 1 ̂  i^ r, are the
K/F-lifts of p. We let M^ be the Levi subgroup H, Aut^(K[pJ) of GL(N, K), and we
choose a parabolic subgroup P^ with Levi factor M^. As in (11.2), H^ has Iwahori
decomposition with respect to (M^, P^). In particular, there is a unique hereditary
o^-order C, in End^K^J) normalized by K[(3J, and we have

H^nM^riH1^,,^).
i

Moreover, the character 6^ | H^ n M^ is the tensor product of characters
9K^(^0,(B,).
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(16.9) Lemma. — For 1 ^ i^ r, let p^ be an irreducible representation of Aut^(K[(Bj)
containing 9^. TA^ p^ ^ super cuspidal. Moreover^ the representation pi X pg X ... X py
o/ GL(N, K) is irreducible.

Proof. — The first assertion is immediate. By (9.6)5 the K-endo-classes defined
by the 6^ are distinct, so in the terminology of [BK1] (8.4), the representations p, are
inertially inequivalent. The second assertion now follows from [BK1] (8.5.1). D

Note that (16.9) does not require the hypothesis that K/F be Galois. However,
if K/F is Galois and y e Gal (K/F), we can form

(pi X . .. X p^ ̂  p? X . .. X p^,

since we can take the p^ in any order [BK1] (8.5.1). In particular, this induced repre-
sentation is Galois-stable if and only if the p^ form a single Galois orbit. Of course, the
simple characters 0^ do form a single Galois orbit, by construction.

Now we need a fundamental property of the character 9 :̂

(16.10) Let a be an irreducible smooth representation o/*GL(N, K). The representation a
then contains the character 8^ if and only if

a ̂  pi X . . . X p,,

where p, is an irreducible smooth representation o/'Aut^(K[pJ) containing the simple character 6^.

The proof of this will appear elsewhere.

(16.11) Lemma. — Let L/F be a tamely ramified Galois extension^ and let K/F be a Galois
subextension of L/F. Suppose that (16.8) holds for the extensions L/K and K/F. It then holds
for L/F.

Proof. — Let (3, be the set of K/F-lifts of (B and (B^ the set of L/K-lifts of (3,. Use
the notation 9^, 6^ for the associated simple characters.

Let TC be an irreducible representation ofGL(N, F) containing 6p. By hypothesis,
the representation b^y n is of the form pi X ... X p,, where p, is supercuspidal and
contains 6^. We then have

^(^ = ̂ (Pl) X . . . X ^/K(Pr).

and, by hypothesis, AL/K(PI) ls a product of supercuspidal representations c^., with o .̂
containing 9^. By (16.10) therefore, A^p(7c) contains the character 6^.

The argument reverses to give the converse. D
We can now prove the theorem. The transitivity lemma (16.11) first reduces us

to the case where K/F is cyclic and either unramified or totally tamely ramified. A second
application further reduces us to the case where either K®pF[(B] is a field or K/F
embeds in F[(B]/F. The first of these cases is dealt with by (14.21). Let us now assume
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that K/F embeds in F[(B]/F and, when K/F is totally ramified, that F[[3]/F is totally
ramified. Choose some index i, that is, some K/F-lift (3, of p. By (15.18), an irreducible
smooth representation n of GL(N, F) contains 6p if and only if it is automorphically
induced from a smooth representation a of some GL(M, K) containing 6^. We have
o7 ^ a, for any y e Gal (K/F), y 4= 1, by (15.3). In this case therefore, (16.7) shows
that A^/pir is the Zeievinsky product of the o^ and the result follows from (16.10).
In particular, we see that (16.8) holds unconditionally when K/F is unramified.

We therefore assume that K/F is totally tamely ramified and that F[(3]/F is not
totally ramified. We also assume that K/F embeds in F[(3]/F. Let L/F denote the maximal
unramified subextension of F[(B]/F. If n is an irreducible representation of GL(N, F)
containing 6p, we then know from (15.18) that n is automorphically induced from a
supercuspidal representation o of GL(N/^, L) containing a simple character 6^ corres-
ponding to an L/F-lift (Bi of p. Here, d = [L: F], and we have implicitly identified L
with the unique unramified extension of F of degree d in a given algebraic closure (which
also contains K). By (16.7), the base change b^y n is the Zeievinsky product of the CT^
with Y ranging over Gal (L/F). However, the " Iwahori components " of the character 9^
are just the Galois conjugates of 6^. Thus Aj^ n contains the character 6^, by (16.10).
For each L/F-lift (3' of (3, the field extension L[(B']/L is totally ramified. Thus, when
we apply KL/L-base change, we can use (15.18) in each of the blocks a^ and deduce
that AKL/F 7t contains the character 8^. Since the extension KL/K is unramified, we
deduce that A-g^p TC contains 6^, as required. The converse argument is similar. D

(16.12) Remarks. — (i) It needs to be emphasized that the main theorem (16.8)
is conditional on the statement (16.10). This is best treated elsewhere as a special case
of the rather different arguments of [BK4],

(ii) It is worthwhile to consider the places where the characteristic zero hypothesis
enters the arguments above. First, we use it in § 14 and § 15 to get the character formulae
which define local base change and local automorphic induction. The Jacquet-Langlands
correspondence likewise enters, but only via its consequence that discrete series characters
are linearly independent on the elliptic regular set. In the present section, we only
use the statements (16.3), (16.4) and (16.7). All other arguments are characteristic-
independent.

Appendix: Some character formulas

We gather together the explicit character formulas we need in §§ 14, 15. These
are scattered in the literature, and usually proved under inconvenient and unnecessary
restrictions. We are thus forced to give this fairly detailed survey in the degree of
generality we require. Apart from some comments on the supercuspidal case (see (A. 14)),
there is nothing new here: we follow the relevant parts of [HG1], [HC2], [RS] quite
closely. We deal only with (variations on) the group GL(N). However, many of the
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arguments can be carried through much more generally; we comment briefly on this
at the end.

As before, F is a non-Archimedean local field of arbitrary characteristic. We shall
be concerned here with three different groups G:

(A.I) (i) G = GL(N, F), for some N ^ 1;
(ii) G -= GL(N, F) X3 F, where F/F() is a finite cyclic field extension and

r ==Gal(F/Fo)$
(iii) G is an open subgroup of GL(N, F) containing SL(N, F).

We refer to (A.I) (i) as the standard case, to (A.I) (ii) as the twisted case, and to
the remaining one as the subgroup case. In all cases, we put

G° = GL(N, F),
9 =M(N,F).

An element g e G° is called regular, in the terminology of, e.g., [HG1], if its characteristic
polynomial in F[X] has N distinct roots in an algebraic closure of F. This is equivalent
to saying that the centralizer ofg in M(N, F) is a product of separable field extensions
of F. We write G^g for the set of regular element of G°. It will be convenient for us
to use a slightly more general notion. We say that g e G° is quasi-regular over F if its
centralizer in M(N, F) is just a product of field extensions ofF. Equivalently, g is quasi-
regular if its characteristic polynomial has no repeated irreducible factor in F[X]. We
write G .̂ for the set of F-quasi-regular elements of G°.

One can describe this property of quasi-regularity in various ways. We view Q as the
Lie algebra of G°; both groups G, G° act on g by conjugation, for which we use the notation

g : x h-> Ad g{x) = gxg~\ x e 9,

where g is in G or G°.

(A. 2) Proposition. — Let G° = GL(N, F) as above, and let g e G°. The following are
equivalents
(i) g is quasi-regular over F;
(ii) the vector space tg == Ker(Ad^ — 1) contains no nonzero nilpotent element of g;
(iii) if U is the unipotent radical of a parabolic subgroup of G° and u C g is the Lie algebra of U,

then 1y n u == { 0 }.

Proof. — The equivalence of (ii) and (iii) is immediate. The equivalence of (i)
and (ii) is a consequence of the rational Jordan canonical form. D

Of course, (A. 2) holds without change in the subgroup case when g e G, and we
say that g e G is quasi-regular if g e G n G^. In the twisted case, we say that g e G
is quasi-regular if it satisfies the conditions (A. 2) (ii), (iii) (which are again equivalent
in this context). Indeed, in all cases, we could equally well define g e G to be quasi-
regular if it satisfies (A. 2) (iii). We write G^ for the set of quasi-regular elements ofG.
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It is well known that the set G^g is open dense in G° with respect to the Zariski
topology, hence also the F-topology. Indeed, G^g is defined by the non-vanishing of
the principal coefficient in the characteristic polynomial of the endomorphism Ad g — 1
of 9. On the other hand, our set G^ is not geometrically defined, but we now show
that it inherits the density property.

(A. 3) Proposition. — The set G^ is open and dense in G in the F-topology.

Proof. — To save a little notation, we first assume we are in the standard case,
so that G° == G. For a matrix x === (x^) e g, we define

x\ == max ]|^. [I,

where || |[ denotes the absolute value on F. The set 89 of elements x e g with | x | = 1
is then compact in g. The set S§Q of nilpotent elements of S3 is closed, being the set of
zeros in S8 of the function x i-> x^. Thus 9?o is compact.

We show that the set G — G^ is closed. To that end, let {g^ }^^ be a convergent
sequence of elements of G — G^ with limit g e G. By (A. 2), we can find x^ e SS^ such
lhat g^1 x^ g^ = x^, for each n. Since S9^ is compact, we can pass to a subsequence and
assume that x ^ - > x e ^ Q as n -> oo. It follows that g^1 x^g^ ->g~1 xg == x, whence
g f Gqr- Thus G — G^ is closed and Gq, is open. Since G ,̂ D G,gg, is it certainly dense,
and we have proved the Proposition in the standard case.

The subgroup case is now immediate. In the twisted case, the identical argument
shows that G^ is open. Take an element g-f e G, with g e G°, y e r- Write Fi for the
fixed field of y and d = [F : FJ. Nothing will be changed if we replace ^y by a
G°-conjugate, so we can assume that the element h == {g^Y actually lies in GL(N, Fi).
(Of course, h is just the y-norm of g as in [AC], and § 12 above.) Suppose that h is a
regular element of GL(N, Fi). Using the characteristic polynomial characterization, it
follows that h is a regular element of G° and so the kernel of Ad h — 1 on g contains
no non-trivial nilpotent. The same therefore applies to ^y, whence g^ e G ^ . However,
the condition on h amounts to saying that g is y-regular: see [AC], proof of Prop. 2.2
in Ch. I. Such elements can be equally defined by the non-vanishing of a certain
polynomial function, and they are therefore dense in G°. Thus G,. n G° y is dense
in G° Y? and we have proved the result. D

It is perhaps worth pointing out that, in the twisted case, we have proved more
than necessary. We have shown that, if we fix y, the set of g^ e G° y such that ̂  g
is regular in GL(N, F^) is dense in G° y, and this set is contained in G^ n G° y.

(A. 4) Theorem. — Let g e Gq, and let P° be an 7-parabolic subgroup of G°. In the
subgroup case, put P = P° n G, and P = P° in the other cases. The maps

9,:G-^G/P, ^ : G x P - ^ G ,
/TnHand

x i-> x~1 gxf, {x, p) ̂  x~1 gxp
are submersive.
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Proof. — For g e G^g, this is proved in [HG2] Th. 1, which we essentially copy.
We have the relations

9o(^) = 9y-i<wW.
^(-^^) = 4v-i<w(^) 9

for x,jy e G, ^, y e P. Thus we need only check that <p^ is submersive at x = 1 and that
4^ is submersive at {x,p) = (1, 1). The subgroup case will therefore follow from the
standard one, so we can now exclude it. Computing derivatives at these points, we see
that both submersivity statements are equivalent to

(A.5) ( A d ^ - l H ^ + P ^ g ,

where g == M(N, F) is the Lie algebra of G and p C Q that of P. However, g carries
the Ad G-invariant symmetric bilinear form {x,_y) }-> Trp^(tr(^)), where ~FQ is the
fixed field of F in the twisted case, FQ = F in the standard one. Relative to this form,
the orthogonal complement of p is the Lie algebra u of the unipotent radical of P. The
orthogonal complement of (Adg~~1 — 1) (g) is, by an elementary computation, just
Ker(Ad^ — 1). Since g e Gqr, we have

Ker(Ad^- 1) n u = { 0 )

by (A. 2). Taking orthogonal complements, we get the desired relation (A.5). D
We now take g e G^ and a subgroup P of G defined by a parabolic subgroup P°

of G° as in (A. 4). We fix a Haar measure dx on G and a left Haar measure ^ x on P.
We use the symbol C^° to denote < c smooth functions of compact support95 (with complex
values). Appealing to [HC1] Th. 11 p. 49 (which, we note, involves no hypothesis on
the characteristic or connectivity), we get:

(A. 6) For each a eC^(G x P), there is a unique function f^y eC^(G) with the
property

JGXP^^ ^{x-^xp) dxd.p ==J^/^) ^{x) dx

for all functions * eG^(G).

(A. 7) Lemma. — Fix a eG^(G X P). The mapping

G^G^(G),

S^f^o
is locally constant.

This is proved exactly as in [HC3] Lemma 1, noting that Gy. is open.
We now need the standard Cartan decomposition in G°. We let P° denote the

usual Borel subgroup of upper triangular matrices in G°, and T° the maximal torus
29
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of diagonal matrices. Further, we let K° be the maximal compact subgroup GL(N, Op),
so that G° == K° P°. We write T .̂ for the set of matrices diag(^i, t^ ..., ̂ ) e T° such
that [ I ^ I ) ^ [ I t^ || ^ ... ^ || ̂  |[. This gives us G° = K° T°. K°. In the standard case,
we put P == P°, K == K°, T^_ = T^. In the twisted case, we put P = P°, T^. = T^,
K = K° r. In the subgroup case, we put P = P° n G, T+ = T°_ n G, K == K° n G.
In all cases then, we have

G = KT+ K.

(This is immediate in the standard and twisted cases. In the subgroup case, if we have
k^ tk^ e G, with k^ e K°, t e T^, then t e T^. and there are diagonal matrices ^ with
unit entries such that ^1^1, u^k^ have determinants in det G and hence lie in K. It
follows that u^1 tu^1 e T\.)

We fix a compact open subgroup Ki of K, and let dk^ be the Haar measure on K^
normalized so that dk^ = 1.

JKi
Let (w, ^) be an admissible representation of G. We write Endo(^) for the

canonical image of ^ ® ̂  in Endc(^), where (ft, ^) is the contragredient of .̂
Equivalently, Endo(^) is the space of linear maps T : ̂  -> ̂  with the property that
the maps G -> Endc(^) given by g h-> n{g) T, ^ i-> TTt(^) are both locally constant:
see [Ga] p. 122.

(A. 8) Theorem. — Let {n, i^) be a smooth representation of G of finite composition length.
For g eGq,, define

T, = f n{k^ gk,) dk,.
v JY.I

Then Tg eEndo(^), and the mapping G^ ->Endo(^), g ̂  T^, ^ foc^ constant.

proof. — In the case ^ e G^g, K == Ki, this is [HC2] Theorem 2. The hypothesis
K == KI is removed in [RS], whose proof we follow (assuming only g e G^).

We can assume without loss of generality that K.i is a normal subgroup of K.
Let KI, Kg, . . . , K^ be the distinct cosets of Ki in K. For g e G^ and 1 ̂  i^ n, put

T^^f^k^g^dk,

where dk is the Haar measure on K which extends dk-^. Thus Tg == T^ i. Moreover:

(A. 9) Ifk e K, there exists i == i(k) such that

T,o7t(A) =7^)oT^.

Since Y^ has finite composition length, we can find an open normal subgroup KQ
of K such that ̂  is generated over G by its subspace i^0 of K^-fixed vectors. Moreover,
i^ is admissible, so ^Ko is finite-dimensional. We further choose a compact open
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subgroup PQ of P with the property t~1 Po^C Kg for all t eT^: in all cases, we can
choose an integer n ̂  1 such that K contains the group C^ === 1 + p^ M(n, Op) and
then set Po == P n G^. Let o c , e C ^ ( G x P ) denote the characteristic function of
K, X Po, for 1 ̂  i^ n. By (A. 6), there is a unique function f^.g e C^(G) such that

jK.xPo^"1^ ̂  ̂  = U.̂ ) *^) ̂

for all 4> e C^° (G) and 1 ̂  i ̂  n. This same formula is true when <^ is only locally
integrable on G: see [HC1] Corollary p. 49. Applying this to the coefficients of n (which
are smooth, therefore locally integrable, functions on G) we get

(A.10) J^T^ n{p) d,p == j^^k^gkp) d k d , p = ̂ J,

for 1 < i^ n. Each function g i—^-,^? § 6 Gqi.? is locally constant by (A. 7). Therefore,
given gQ eG , we can choose a neighbourhood W of go in G and an open normal/•»«/ /^/ /^/
subgroup K of K, with K C K^, such thatj^-,^ ls K-bi-invariant for all i and all g e W.

Our definitions say that i^ is spanned over C by the elements n(x) v, x e G,
v e ̂ Ko. However, we have G = KT_^. K, and ^Ko is invariant under K. Thus i^ is
spanned by the elements n{kt) v, for k e K, t e T^. and v e y^^. For such A, ^ v and
g e W, we have

T,7T(^)V=7^)T^7^)V,

by (A. 9), where z == i{k). But, substituting in the relation (A.10), we get

"(/a,.) "M ^ = J^T,,, n{p) n(t) v rf^

=T^J^7T(^)V^^

=T^n(t)( ^F1?!)^,?
Ji.0

= c.(f) T^, »t(f) v,

for some c,(f) > 0, since t~1 P^tC Kg. Hence

T, it(^) v = n{k) T^ n{t) v

^(f)-1^)^./,,,,)^)^

Now let %g denote nieas(K)~1 times the characteristic function of K. We then have

"(X£) T, Tt(^) V = 7t(x£) ^W-1 "W "(/a,,,) "W ^•

The operators w(yfe), w(%g) commute, since K normalizes K. This last expression is
therefore

c,{t)-1 n[k} Ttte */„,,,) n{t) v = c.(f)-1 TC^) TI(/̂ ,,) Tt(t) v

= T, Tt(^) V,
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since, by the choice ofK, we have %g */^ , ==/^. ^ when g e W. Since the vectors n(kt) v
span ̂  we conclude that

^(X£) T, = T,,

for all ^ e W. Returning to the original definition of T^, we see that it commutes with
^Cce). so T^ eEndo(^). Moreover, the equation 7c(^g) T^ = T^^g) = T^ says that

T^ == T^ A;^ 6 K, ^ e W,

so ,? h-> T^ is a locally constant mapping G^ -> Endo(^), as required. D
The elements of Endo(^) are finite-rank linear operators on Y .̂ In pardcular,

the trace tr(T^) is defined, for g e G^.

(A. 11) Corollary. — The character ofn is represented on Gq, by the locally constant function

e^-tr^), geG^

That is, if 9 e G^(G) has support contained in Gy,, then

tr(^(<p)) =^0^)9^)^

where dg is the Haar measure on G used to define 71(9) = f <p(^) n(g) dg.

Proof. — For 9 e C^(G), put

9°M==J^9(^^r1)^, xeG.

Then 9° G C^(G) and tr 71(9) = tr ^(9°). If 9 e 0 (̂0,,), then 90 e C^(GJ and

^9Wtr(TJ^=tr(^9MT^)

since g h-> T^ is locally constant and Ty e Endo(V^). Hence

J^ 9W tr(TJ dx = tr J^ J^ 9^) 7r(A,-1 ̂ ,) ̂  dx

= ^JoxKi9^1^"1) "W ^1^

=tr^9<>M7rW^

= tr 71(90),
as required. D

Let (7t, y^) be an irreducible discrete series representation of G, i.e. such that the
matrix coefficients of n are square-integrable modulo the centre of G. Write Z for the
centre of G. Let < , > be some G-invariant Hermitian inner product on ^ We write
^(7t) for the vector space of coefficients of TI. We fix a Haar measure dx on G/Z and
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let d(n) be the corresponding formal degree. Thus we have the Schur orthogonality
relation [HG1]

< u^ ̂  > < v^ v^ > = d{n) J^ < n{x) u^ ̂  > <n(x)u^v^y dx

for u^ ^ e ŷ .

(A. 12) Theorem. — Let (w, Y^) be an irreducible discrete series representation of G. Z^
0, be as in (A. 11). TAw

9(1) Qn(g) == ^(") j^ J^ q)(^-1 ^-1 ̂ ) ̂  ̂ ,

/or any g e G ,̂ 9 G ̂ (w). T^ ou r̂ zW^ra/ here converges absolutely and uniformly on compact
subsets of G^.

Suppose that n is supercuspidal, and let G be a compact subset ofG^. There exists a compact
mod centre subset S = S^ of G such that

f ^x-lk-lgkx)dk==0
JKi

whenever g e G and x ^ S.

Proof. — This is copied from [RS] Th. 2. It is enough to treat the case where n
is unitarizable and 9 is of the form

<p(^) = < n(x) u, v >, x e G,

for some u, v e V .̂
We suppose given a compact set G in G^. For 50 e C, we saw in the proof of (A. 8)

that there is a neighbourhood W(^o) of go in G^ and a compact open subgroup K(^)
of G such that Tg is constant on the double coset £(^o) g^(go) tor all ^ e W(^). We can
cover C by a finite collection of these W's, so there exists a compact open subgroup £
of G such that Ty is constant on double cosets KgK for all g e G. In particular, we
have

n{k) T, = T, n(k) = T,, A e K, g e C.

This means that Tg lies in the subspace ̂ K ® ̂ K of Endo(^). We abbreviate ̂  = ^K

and set M == dime ̂ . We choose an orthonormal basis { e^, e^ .. ., ̂ } of ^ In our
present terms, Ty is then the operator

M

T,: w t-> S < T, ̂ , ̂ , > < ̂ , ̂  > e^ w e ̂ .
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f <p(^-1 k~1 gkx) dk == f < n{k~1 gk) n{x) u, n{x) v > dk
JKI JKi

== < T, 7i(^) u, n{x) v >

M
= S < T^ ̂ , <?, > < n{x) u, e, > < TC(A;) y, ^, >

i, 3 = 1

M

= S <T^,^,> <^-1) ^ , , y> <7l^-l)^^>.
», .»•= i

If TC is supercuspidal, this last expression vanishes identically outside of some compact
mod centre set, which proves the last assertion of the Theorem. Returning to the general
case, the local constancy of Tg now implies

(A.13) f ^{x-^-^kx^dk
JKI

^ &c ? I < n(x-1) e,, v > | | < n(x-1) e,, u > |, g e G,

for some b^ > 0.
Returning to the original equality, we now have

d(n) f f ^x-lk-lgkx)dkdx
JG/Z Jpi

= S <T,^,>^)f <^- l)^,y><7l^- l)^,M>^
»,3'=1 JG/Z

M
= S; < T e^ e, > < e^ e, > < M, v >

i, 3 = 1

= S < T ^ , ^ > < p ( l )
i = 1

= tr(T,) <p(l) = Q^g) y(l),

as required for the Theorem. Moreover, the bound (A.13) and the Schwarz inequality
give

f f ^x^k^gkx^dk ^6cS||<p,,Jl2ll9,JL ^G.
J G/Z J KI t' •»'

where [| \\^ is the L^norm on G/Z and (p^e^(Tc) denotes the function
x h-> < n(x) ̂ , ̂  >, 1 ̂  ^ ̂  M, w 6 ̂ . Uniformity of convergence then follows from the
<( Weierstrass M-test9). D

Of course, (A. 12) applies equally to essentially square-integrable representations
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of G. In particular, it holds whenever n is supercuspidal. We apply this theorem to
the case where n is induced from an irreducible smooth representation p of an open
compact mod centre subgroup H of G (and therefore supercuspidal). Moreover, if we put

„ , , ftr(pW), x e H ,
Q (x) =

[ 0, x e G, x f H,

then Op lies in ^(^r), the space of coefficients of TC.

(A. 14) Theorem. — Let n == c-Ind^ p, as above. We have:

(i) d{n) == dim p/meas(H/Z, dx);
(ii) for geG^,

0^g)= S f Q,{x-lk-lgkx)dk.
x e G/H J KI

Moreover, the series in (ii) has only finitely many terms: ifC is a compact subset ofG^, there is
a finite subset S^ of G/H such that the inner integral vanishes when g e C and xH. ^ S^.

Further,

O.(g)= S; ( S O^g^ geG^
a;eKl\G/H !/GKia;H/H

For g e G, all but finitely many of the terms

s e,(j-1^)
V G KI a?H/H

ar^ identically zero.

Proof. — The definition of^(Tt) gives

W \ ®pW ©pW dx = dim p,
JG/Z

while

f ®pW ®pW ̂  = ! OpW OpM ̂  = meas(H/Z, rf^)
^G/Z JH/Z

since p is irreducible. This proves (i).
Applying (A. 12) with <p = Op and g e Gq,, we get

dim(p) Q^g) = d(n) f f Op(^-1 ^-1 ̂ ) ̂  ̂ x.
•/G/zJKi

As a function of A;, the integrand here is constant on the coset xH, so we can use (i) to get

0,QO= S f Q,{x-lk-lgkx)dk,
x 6 G/H J KI

which proves (ii). The next assertion follows from (A. 12), and the others are immediate. D
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The second formula in (A. 14) (ii) generalizes that of [Sy] (1.9) (which does not
have the finiteness observation).

Remark. — The ideas above can be generalized quite considerably. Indeed, they
apply virtually without change when G is a connected reductive group over F. They
thereby extend the arguments of, in particuler, [HG1], [RS], to quasi-regular elements
(as defined by (A. 2) (iii)) and arbitrary characteristic. However, we defer discussion
of this matter to another occasion.
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