
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

PEKKA TUKIA
The limit map of a homomorphism of discrete Möbius groups

Publications mathématiques de l’I.H.É.S., tome 82 (1995), p. 97-132
<http://www.numdam.org/item?id=PMIHES_1995__82__97_0>

© Publications mathématiques de l’I.H.É.S., 1995, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1995__82__97_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


THE LIMIT MAP OF A HOMOMORPHISM
OF DISCRETE MOBIUS GROUPS

by PEKKA TUKIA

1. Introduction

Let G and H be discrete groups of Mobius transformations of the closed (n + 1)-
ball B71 +1 and let <p : G -> H be a homomorphism. There are several situations where
it has been important that there is a mapV: L(G) ->-L(H) of the limit sets inducing cp,
that is, f satisfies the compatibility condition

W fgW = ?Q?)/W
for x e L(G) and g e G. The proofs of Nielsen's and Mostow's theorems that any iso-
morphism (p of two discrete Mobius groups corresponding to compact hyperbolic mani-
folds can be realized by a homeomorphism ( i f ^ = = l ) o r b y a hyperbolic isometry ofB"'^1

(ifn> 1) were based on the fact that in their situations there is a homeomorphism of the
limit sets inducing 9. The limit set was in these cases the whole ^-sphere S".

Thus it might be useful to make a general study of this situation. In the above
mentioned occasions the map has been a homeomorphism of the limit sets but in the
general situation this might be too strong a condition. Instead, we require thatyis defined
in a dense set A of L(G) such that A is G-invariant, i.e. gA == A for g e G. In addition,
we often have a measure on L(G) and require that f is a.e. defined with respect to the
measure. The measures we consider are so-called conformal {G)-measureSy and a measure (A
on B" +1 is such a measure if [L is a finite Borel measure satisfying the transformation rule

{U) ^(X))==Jj^|8^

for measurable X and g e G; here | g ' \ is the operator norm of the derivative g ' ofg
and 8 ̂  0 is the dimension of the measure. Usually, [A will be supported by L(G) but
of course we can extend by zero and regard (JL as a measure ofB714'1. A familiar example
of a conformal measure is the ^-dimensional Hausdorff measure on S" satisfying (16)
for all Mobius transformations g. Sullivan [Sl] has developed a method ofPatterson [P]
and shown that there is always a non-trivial measure supported by L(G) if G is non-
elementary.
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We say that a map / is a limit map of the homomorphism <p : G -> H if/ maps a
non-empty G-invariant subset A of L(G) into L(H) and if/ satisfies the compatibility
condition (\a) (note that any non-empty G-invariant subset of L(G) is dense in L(G)
if G is non-elementary). We often have a conformal measure ^ on L(G) and/will be
defined in a set of full ^.-measure. The limit map will often be uniquely determined,
perhaps up to a set of zero pi-measure.

There is a class of limit points having a special position in our study. This is the set
of Myrberg points M(G) ofL(G). The most convenient definition for us is that M(G) is
the set of points x e L(G) C S^ with the property that, given distinct u, v e L(G), there
is a sequence g, e G, such that g,{x) -> u and g,{y) -^yfor j /+ x as i -> oo; the conver-
gence will be locally uniform for y eB^^A:} by Lemma 2A. If G is non-elementary,
i.e. if L(G) contains more that two points, then M(G) is a dense subset of L(G) (see
the discussion in Section 2).

Myrberg points were considered by P. J. Myrberg [Ml] in the context ofFuchsian
groups of finite volume. Myrberg's condition for these points was weaker and was essen-
tially the same as the one in [T5] where x e M(G) if, given distinct, u, v e L(G)
and ^eB^^ there are & e G such that g,(x) —u and g,{z) ->v. However, these
two definitions are equivalent by Lemma 2A since obviously if g^z) -> v e S~ for one
z eB"-^1, then g,{z) ->v for all z eBn+l, as can easily be seen by the preservation of
the hyperbolic metric.

Myrberg points are a subclass of the so-called conical limit points A(G). These
can be defined by the property that x e A(G) if there is a sequence g, e G such that
giW -> u and, ifj =|= x, then^(j) -> v where u, v are distinct; here necessarily u, v e L(G).
Again the convergence g^y) -> v is locally uniform outside x by Lemma 2A. This is
not the standard way to define conical limit points but it makes clear the difference of
conical and Myrberg points.

The usual definition is obtained as follows. Let x eA(G). Fix z eSn\{x} and
ZQ eB714'1. Let L be the hyperbolic line with endpoints z and x. Since x eA(G), there
are distinct u, v e S" and g, e G such that g,{x) -> u and g,{y) ->v if j/ + x. Let L' be
the hyperbolic line with endpoints u and v. Thus g, L approaches more and more L'
as i -> oo, and obviously the hyperbolic distance d{zQ, g, L) -> d{zQ, L'). Thus the distances
^o^i L) == ^r^o)? L) are bounded. Furthermore, g^'1^) -> x since otherwise there
would be a subsequence (denoted in the same manner) such that g^^^o) -> z ' =t= x.
However, this is impossible since the local uniform convergence of ^ outside x implies
ZQ == lim^^&Q^'1^)) == lim,_^^(^') == y, contradicting the fact that ZQ eB71'^1 and
v e L(G) C S\

This argument can be reversed and we see that A: is a conical limit point if and
only if, given ZQ e B"4'1 and a hyperbolic line L with endpoint x, there are h, e G and
M> 0 such that h,{Zo) -> x and that the distances d(h,(zo), L) are bounded. The set
of z e B714'1 with d{z, L) < M is similar to a cone in neighborhoods of x and so we can
approach x in a cone-like set; this gives the name to conical limit points.



THE LIMIT MAP OF A HOMOMORPHISM OF DISCRETE MOBIUS GROUPS 99

Similarly, taking advantage of the fact that an (oriented) hyperbolic line is defined
by a point ZQ e B"4"1 and a direction a at ZQ, we could show that x e S" is a Myrberg
point if and only if the following is true. Let L be a hyperbolic line with endpoint x, ZQ a
point of Bn + \ and a a direction at ZQ such that if L' is the hyperbolic line through ZQ
with direction a, then both endpoints of I/ are in L(G). In this situation there is a sequence
gi G G such that/as i -> oo, g^Zo) -> x and d{g^Zo), L) -> 0, and such that the direction
to which the derivative of g, at ZQ maps a tends more and more towards the direction
of g^z) to x. Thus L and g^ L' become closer and closer and more and more parallel
at the point g^Zo).

We can also describe the situation in the quotient Q,= Bn+l|G. If x eA(G) and
we travel on a hyperbolic line L with endpoint x towards x, then projecting to the
quotient Q, we return infinitely often to a compact set of Q^, to the set corresponding
to a closed ball with center ZQ. However, if x e M(G) and L(G) == S71, then given any
z in Q^ and any neighborhood U of z, we visit U infinitely often as we travel. And we
come infinitely often to U from a direction arbitrarily close to a given direction.

Conical limit points have either full or zero measure for any conformal measure [A
and the case of full measure occurs if and only if the product action {x,y) \-> {g(x), g{y))
of G is ergodic with respect to p. X [L ([S I], [NI]); a group action is ergodic if every
invariant measurable set is either a nullset or the complement of a nullset. It was shown
in [T5] that A(G)\M(G) is a nullset for any conformal measure, and hence this result
is also true for Myrberg points. In particular, the Hausdorff ^-measure of conical or
Myrberg points is the same and is either zero or full. If the quotient B^^G is compact,
then every point ofS^ is a conical limit point and hence in this case Myrberg points have
full measure.

Our results fall into two types: topological and measure-theoretical. In the topo-
logical part we consider a map f of a G-invariant set A into B"+1 inducing a homo-
morphism 9 : G -> H of non-elementary groups and prove the following dichotomy
(cf. Corollary 3E):

Either f is already defined or can be continuously extended to the Myrberg points so that we

obtain a homeomorphism of M(G) onto M(H) uniquely determined by 9, or f(V n A) 3 L(H)
for any open set U intersecting L(G).

Here the basic idea is that if U is an open set such that there are a e U n L(G)
and b e L(G)\U, then, given a Myrberg point A?, there are & e G such that g^{x) —>- a
and gi{jy) ->b locally uniformly on B"'1"1^^}. Thus if V is a neighborhood of x,
some g,(Kn+l\V)CKn+l\U and so ^UCV. It follows that {^ 'U} is a basis of
neighborhoods of x. If f is continuous at a and b and f{a) ^f(b), then the sets
/(&~1 U) = vO^'^/U will converge towards a point which is, or will be, f{x), provided
that/(&) ^/U.

Actually, all our topological results are also valid for the so-called convergence
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groups. This class of groups seems to be the topological counterpart of discrete Mobius
groups. We define these groups in Section 2.

In the measure-theoretical part we study the case where Myrberg or, equivalently,
conical limit points have full conformal measure. In this case we can show that a measu-
rable map/defined a.e. in L(G) and inducing a homomorphism <p is unique up to null-
sets (Theorem 6B). In addition,/^) is a Myrberg point ofH for a.e. x. Like in the topo-
logical part one of our results can be stated as a dichotomy (cf. Corollary 6F):

Either/can be changed in a nullset so that f is a homeomorphism of the Myrberg points or
^(/"^[U] n V) > 0 for any open U intersecting L(H) and any open V intersecting L(G).

The basic idea in the measure-theoretical part is not unlike the one in the topo-
logical part but must be supplemented by ergodicity and approximate continuity of
measurable maps.

In section 7 we study the existence of/. If G is geometrically finite, then there is
a canonical G-measure pi of mass 1 on L(G) (see [Sl, S2] or [NI]). We will prove the
following results in Theorems 7B and 7C:

If^ is any isomorphism of a geometrically finite G onto an arbitrary discrete Mobius group H,
then there is a limit map f of 9 such thai f is defined a.e. on L(G) with respect to the canonical
G-measure (JL. More generally, even if G is not geometrically finite, whenever the Myrberg points
have full measure with respect to a conformal measure [A, we can show that either there exists a.e. a
measurable limit map or alternatively, for a.e. x and any Stolz angle G at x, the set of accumulation
points of{ (p(^) {yo) : g e G and g{Xo) e G } must be the whole limit set ofH whenever Gxo n C
is infinite.

Above a Stolz angle is a cone-like set as defined in (la) $ here XQ andj^o are arbitrary
basepoints in B"4'1.

Our method to define f[x) is to take all the elements g, == g^ e G whose distance
from the hyperbolic ray L, joining 0 and x is less than a certain M and to show that <p(^) (0)
converges as i •— co for a.e. x. The exponential growth of hyperbolic volume is mirrored
in the exponential growth of the set A^ of g e G such that d(0, g{0)) ^ r. The relative
number of g e Ay such that d(Q, (p(^) (0)) ^ ^r for some small y >0 also decreases expo-
nentially. Hence the average hyperbolic distance of(p(^) (0) from 0 grows at least linearly
as a function of d(Q, g(Q)), allowing us to infer that the euclidean distance of cp(^) (0)
and 9(^+1) is so small that y(^) converges as i -> oo for a.e. x.

Definitions and notation. — We let Mob(^) be the group of Mobius transformations
(orientation preserving or not) ofS"; Mob(^) can be identified with the group of Mobius
transformations of B" +1 since every Mobius transformation of S" has a unique extension
to a Mobius transformation otBn+l. Similarly, we can extend a Mobius transformation
of S" to a unique Mobius transformation of S" +1 preserving the components of S" +1 N^. In
this manner we can regard Mob(^) as a subgroup of Mob (n + 1) or of any Mob(m), m> n.
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A Mobius group G acting on Y is a subgroup of some Mob(^) acting on a set
Y C y+1 such that GY = Y. The group G is discrete if it is a discrete subset in the
natural topology of Mob(^). Since Mob{n) C Mob(w) for n < m, we can regard two
Mobius groups G and H as groups of Mobius transformations of the same ball B71 +1

without sacrificing generality.
When we say that/: A -> B induces <p : G -> H, then this includes the assumption

that A and B are invariant under G and H, respectively, in addition to the validity
of (la) for g e G and x e A. When we say that/: A ->- B is G-compatible, this means that/
induces some homomorphism <p : G -> H where H is a Mobius group acting on B.

We often have a map/: X -> Y of two metric spaces such that there si a measure pi
on X. We say that/is measurable if/"1 U is measurable with respect to [L for any open
U C Y. If we speak of the measure of a subset A of X, this implies that A is measurable.
In particular, A is of full measure if A is measurable and its complement is a nullset.

The hyperbolic metric of B^1 is d and it is given by the element of length
2 |^ | / (1- |^ | ) .

L(A:,J^) == the hyperbolic line, ray or segment with endpoints x andj\
D{x,r) =={z ey^^.d^x) < r}.
Q(G) == the ordinary set of G == the set where G acts discontinuously.
L(G) == the limit of G = the complement of Q(G).
A(G) = the set of conical limit points of G.
M(G) == the set of Myrberg points of G.
B\x,r) =={z eR^. \ z - x\< r}.
B^r) = B^O, r) and B^ == B^l).
Sk == the boundary of B^.
el9 ' ' * ? €n+l ls tne t^tural basis of R71'1"1, ^ = (1, 0, . . . , 0), etc.
( ) == the topological boundary.
diam = the euclidean diameter.
dist(^, V) = the euclidean distance of z from V.

2. Mobius groups, the convergence property and convergence groups

Many of our arguments are based on the convergence property of discrete Mobius
groups. That is, given distinct g^ in a discrete Mobius group of X == W +1, we can pass
to a subsequence (denoted in the same manner) in such a way that there are a, b e X
such that
(2a) ^ [X \ { ^ } ^6 , and
(26) g^\X\{b}-^a

uniformly outside neighborhoods of a and 6, respectively. These conditions are not
independent: (2a) implies (2&) and conversely. For topological reasons a and b must
be points of Sn if X = B^^

If (^) is a sequence such that (2fl) and (2b) are true for some a,b e X we say that (^)
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is a convergence sequence and b is the attractive point and ^ the repelling point of (^). Note that
when passing from the sequence (^) to (&"1), the attractive and repelling point are
interchanged.

The convergence property makes possible to define a class of groups of homeo-
morphisms which somehow seems to be the topological counterpart of discrete Mobius
groups. We say that a group G of homeomorphisms of a space X is a convergence group
if any sequence of distinct elements g, e G has a subsequence (denoted in the same
manner) so that {2a) and (26) are true for some a, b e X. This notion is due to Gehring
and Martin [GM] and corresponds to their definition of a discrete convergence group.
It is also possible to define non-discrete convergence groups (see [GM] or [T9]) but we
will here considerer only the discrete case. Gehring and Martin considered convergence
groups of Sn or of 'Kn+l.

All our topological theorems in Section 3 are valid also for convergence groups
on a compact metric space X. Therefore we formulate them in this situation. Conver-
gence groups occur, for instance, in connection with groups of isometrics of metric
hyperbolic spaces in the sense of Gromov. Therefore we believe that the extension to
general spaces is not without interest, and in any case the proofs are the same. The
auxiliary results we need are well-known for Mobius groups and are available for conver-
gence groups in [GM] if X = S71 or X == B^. The general case was treated in [T9].
When we say that G is a convergence group of X, it is understood that X is a compact
metric space. Actually, all our arguments, like those of [T9], would be valid if X is a
compact Hausdorff space such that every point has a countable basis of neighborhoods
but for simplicity we assume that X is metrizable.

Many notions like the limit set L(G) and the ordinary set ^l(G) can be defined for a
convergence group G of X exactly like for discrete Mobius groups of S71 and of B^1.
Thus Q(G) is the subset of x e X having a neighborhood U such that U n^U =t= 0
for only finitely many^ e G and L(G) is the complement ofO(G). Note that the attractive
and repelling points of a convergence sequence of G are limit points.

These notions were studied in [GM] and [T9] and it was shown that they have
the same properties as for discrete Mobius groups, for instance L(G) is a closed perfect
set if it contains more than two points. Only in the definition of a non-elementary conver-
gence group one must be careful. We say that a convergence group G is non-elementary
ifL(G) contains more than two points. If G is a discrete Mobius group, this gives the usual
class of non-elementary Mobius groups. Since L(G) is perfect in this case, it follows
that L(G) is then actually infinite. For discrete Mobius groups, but not for convergence
groups, this is equivalent to the fact that G is not a finite extension of an abelian group.
We refer to [GM] for a discussion of these matters.

Like elements of discrete Mobius groups, we can divide elements of a convergence
group G of X into three types (cf. [GM] and [T9, Theorem 2B]: g e G is elliptic if it is of
finite order). Ifg is of infinite order, then^ has either one or two fixed points and in the
first case g is parabolic and in the latter loxodromic. A sense-preserving loxodromic map
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ofS" is topologically conjugate to the map x (-> 2x ofR71, see [GM, 7.33] and [M, p. 420].
In all cases, if g is a loxodromic element of a general convergence group, it is true that
(^)i>o ls a convergence sequence such that the fixed points are the attractive and repel-
ling points. This is a consequence of the convergence property, as it is easy to see that
there is a neighborhood U of one of the fixed points such that g^ U C U for some k
(cf. [T9, Lemma 2D]).

Our definitions of conical and Myrberg limit points are topological and so can
be defined also for convergence groups. It is known that M(G) 4= 0 for all discrete
Mobius groups of the first kind (i.e. L(G) = S71; cf. [NI, Theorem 2.2.2]$ Myrberg
point were called "line transitive points55 in [NI]). The proof easily adapts to show
that M(G) 4= 0 for all non-elementary convergence groups; note that the theorem by
Gottschalk and Hedlung on the density of fixed point pairs of loxodromic g e G on
L(G) X L(G) to which Nicholls refers is available for all non-elementary conver-
gence groups in [GM, 6.17] (if X == S71) or in [T9, Theorem 2R]. It follows that
for non-elementary G, M(G) is a dense subset of L(G) [T9, 2S].

We now give a criterion for finding out whether (^) is a convergence sequence.

Lemma 2A. — Let G be a convergence group of a compact metric space X, for instance
a discrete Mobiles group ofK71^1. Let g^ e G be a sequence such that there are x, a e X as well
as a sequence ^ e X such that x^ -> x and &(^) ->• a as i -> oo. Suppose in addition that there
are b =[= a in X and distinct jy , z e X such that &(j^) -> b and g^{z) -> b as i -> oo. Then (^)
is a convergence sequence with b as the attractive point and x as the repelling point.

Proof. — Suppose that g^. is a convergence subsequence. Clearly, either a or b
must be the attractive point. If a is the attractive point, then both y and z must be the
repelling point and this is impossible.

Thus, if g^. is any convergence subsequence, then b is the attractive and x the
repelling point. Applying the convergence property, it easily follows that if Q^) is not a
convergence sequence with b as the attractive and x as the repelling point, then there
are ^ -> z ' =(= x and a subsequence g^ such that gn^z) -> V =t= b. The sequence (g^)
must be infinite since either {^0} or {g^{z)} is infinite. Hence we can pass to a conver-
gence subsequence of (^.) (denoted in the same manner). Then, as we have observed,
b is the attractive point of (^.). This is impossible since ^.(^) -> a =)= b ' <- gn^z)'

The next two lemmas are fairly obvious. In connection with the first lemma, it
is useful to remember that if (^) is a convergence sequence, then the repelling point
of (&) is the attractive point of (&~1).

Lemma 2B. — Let G be a convergence group of a compact metric space X. Then x e L(G)
if and only if there is a convergence sequence (&) whose attractive point is x.

Lemma 2C. — IfG is a convergence group o/*X, and AC X contains more than two points,
then {h e G : h\ A = g\ A} is finite for any g e G.
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3. Continuous limit maps

In this section G and H are non-elementary convergence groups on compact
metric spaces X and Y, respectively, for instance discrete Mobius groups on Bn+l. In
this section we study the situation where we have a homomorphism 9 : G -> H and a
map/of a G-invariant set AC X onto a H-invariant set BC Y inducing cp (i.e. (la) is
true). We study what happens if/is continuous or can be extended continuously to
some limit points. It turns out that if/ is or can be extended continuously to a single
limit point, then / is, or can be made, a homeomorphism of the Myrberg points of G
onto Myrberg points of H, at least if 9 is surjective.

We start with a lemma on the uniqueness of the extension to limit points. Note
that if/ is defined at z and iflim^/^) == c exists, we do not assume that/0) == c. We
now have also another map h of a G-invariant set A' C X onto an H-invariant set B' C Y.

Lemma 3A. — Let f: A -> B and h: A' -> B' be non-constant and induce 9 : G — H.
Ifboth f and h have a limit at z eL(G), then the limits are equal.

Proof. — By Lemma 2B, we can find a convergence sequence (&) of G with z as
the attractive point. Letjy be the repelling point.

Let b be the limit of/at z. Since/is not constant, there are u^ u^ eA such that
/(^i) =t=/(^)- we can always replace ^ by g(u^), g e G, and hence we can assume that
^ + V\ we can ^l^ ̂ r g a suitable power of a loxodromic h e G as there are loxodromic
elements in G not fixing ^ ([GM, 6.17] and [T9, Lemma 2QJ). Then

?(&)/(^) =J^z(^) -^

since the limit exists at z, at least if&(^) 4= z. We can obtain by passing to a subsequence
that either (a) g,{u^) =f= z for all i and k or ((B) g,(u^ == z for all i and one k. If we have
case ((B), we simply replace as above ̂  by g(u^ with some suitable g e G. Thus we can
in fact always have case (a) which we now assume.

The first consequence of the existence of the above limits for k == 1, 2 is that{ <p(&)}
is infinite and hence we can pass to a subsequence so that (<p(^)) is a convergence
sequence. The second consequence is that b is the attractive point of (y(&)).

Let c == lim^.^^ h{x). A similar but simpler argument shows that c is also the
attractive point of (<?(&)) and hence b == c. Here we do not pass to subsequences but
start from the sequence (<p(^)) given above which was already a convergence sequence.

From now on 9 will be surjective. Then, if/has a limit at z e L(G), the limit is
not only unique but we can extend to Myrberg points as well. Although we will present
a more general version later, we start with the basic situation giving the essential ideas,
even at the cost of some redundancy.

Theorem 3B. — Let /: A -> B induce a surjective homomorphism 9 : G -> H of non-
elementary Mobius groups or, more generally, of non-elementary convergence groups. Assume that
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linx,^/(A?) exists for a single point z eL(G). Then f can be extended to A u M(G) in such
a way that the extended map (still denoted/) is continuous at all points o/M(G) and satisfies:

a) f\ M(G) is a homeomorphism of M(G) onto M(H) and is uniquely determined by 9,
b ) fW +/(j0 for all distinct x eM(G) and y e A,
c ) ifV is a neighborhood of x e M(G), then there is a neighborhood V off{x) such that

/^vcu,
d) ker 9 is finite and g \ L(G) == id if g e ker 9.

Proof. — We will now prove all other points except c ) and of a) we will only show
that/] M(G) is a continuous injection into M(H), uniquely determined by 9. The
remaining parts will be proved in connection with Theorem 3D.
__ Let w == lim^/(^). Now, if g e G , then/has the limit 9^) (w) at g{z). Since
HwDL(H) (cf. [GM, 6.13] and [T9, Theorem 2S]) and L(H) is infinite, there are
a, b e Gz such that/has limits a' and b' at a and 6, respectively, such that a' 4= b ' . In
addition, we can assume that a' 4= f(b) iff is defined at b.

We will now show that/has a limit at every x e M(G) and that if/is defined
at ^ then this limit is f{x). Note that M(G) 4= 0 (see Section 2) and hence
GA 3 L(G) 3 M(G) and that M(G.) is dense in L(G) (see [GM, 6.13] or [T9, Theorem 2S]
for these results).

Pick x e M(G). By the defining property of Myrberg points, there is a sequence
g, e G such that g,{x) -> a and that g,[y) -> b if y 4= x locally uniformly outside x. We
can assume that g,{x) 4= a for all i which we can obtain as follows. Pick ̂  e L(G)\{ a, b}
such that ^ ->fl. Use the Myrberg property to find g^ such that g^(x) -> a, and
&(j0 -^ as z -> oo locally uniformly for any other point y. It is clear that we can take
a sequence of the form ^ ==&•••

Let U' and V be neighborhoods of a' and b\ respectively, such that U' n V = 0.
If/is defined jit b, set V" == V u{/(6)}, otherwise set V" == V. Since a' +/(&), we
can still have U' n V" == 0. Ify 4= x, then 9(&)/(j0 ̂ i^) eV" for big z. When
defining V", we can use an arbitrary small neighborhood V of V. Hence, since Im/
is infinite by non-elementariness, { 9(&)} must be infinite and thus we can pass to a
subsequence so that 9(&)) is a convergence sequence. It is clear that the attractive
point b" of (9^)) is in V". Let c be the repelling point of (9(&)).

We claim that lim^/(^) == c. Let W be a neighborhood of c. Let U be a neigh-
borhood of a such that/(A n (U\{ a})) C U'. Now b" and c are the repelling and attrac-
tive point of (9(&r1), respectively. Since 6" ^U', 9(&)-1U /CW for big z. Pick
some i for which this is true. Let V be a neighborhood of x such that g, VC U$ since
&W + ^ w^ can assume that a ^g, V. Then

/(VnA) = 9(&)~1/&(V nA) C 9(&)~7(A n (U\{<Q) C 9(^)~1U'CW

and so/has the limit c at A;. In addition, if/is defined at x, then/is continuous at x
with value f{x) == c.

14
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Thus we can assume that f is defined and continuous in M(G), and we will
prove that/(M(G),)CM(H). Let x ' e/(M(G)). If a'.V e/(M(G)) are distinct, find
x, a, b e M(G) mapped by f onto x ' y a\ b. The Myrberg property with respect to G, as
well as the G-compatibility and continuity of/in M(G), easily imply that there is a
sequence ^ eH such that h^x') -> a! and that h^y') ->b' for any other y e/(M(G))
and hence for any pointy =t= x ofB'14'1 by Lemma 2A. One easily sees by a limit process
that actually here a\ b' can be points of/(MG) == L(G). It follows that x ' eM(H).
By Lemma 3A,/[ M(G) is uniquely determined by 9.

To prove b ) , pick a, b e M(G) such that f{a) +f{b). If x e M(G), pick & e G
such that g^{x) -> a and g^y) -> b for any other point. By continuity in M(G),
fgiW == <P(&)/W -^fW ^fW^- PC?,)/^) =^z(j). and so we obtain a contra-
diction i!f{x) ==/(j0.

To prove d ) , let N == ker 9 and note that if g e N and g{x) ==j/, then
f{y) = <y{g)f{x) ==f{x) and so y = x if x e M(G) by part b), now known to be true.
Hence g \ L(G) = g [ M(G) == id for g e N. In addition, N is finite by Theorem 2C.

We have now almost proved Theorem 3B. The remaining points are to show that
/(M(G)) == M(H) and thaty"1 is continuous in M(H), as well as c ) . It turns out that
in the proof of these points we need to consider a more general situation.

If Z is a topological space, we let ^(Z) be the set of all closed and non-empty
subsets of Z. If Z is a compact metric space, ^(Z) has a natural metric p, the Hausdorff
metric, making ^(Z) into a compact metric space, and p is defined by
{3a) p(A, B) = sup { d{a, B), d{b. A) : a e A, b e B }

where d(a, A) is the distance of a from A. We will make use of this topology of ^(Z) in
Sections 6 and 7 but the considerations in this section are independent of any topology
on ^(Z).

If H is a group of homeomorphisms of Z, then H acts naturally also on ^(Z)
by the rule A h-> AA. If G is another group of homeomorphisms on a space W and
f: W -> ^(Z) is a map, then/induces a homomorphism 9 : G ->H if it satisfies {la)
for A; e W and g e G with this action of H on ^(Z).

When we apply this, H is a convergence group on Y and we denote ^ = ^(Y).
The group G will be a convergence group on X and /: A -> ̂  will be a map of a
G-invariant set A inducing a surjective homomorphism 9 : G -^ H.

We use the following notation in connection with a map/: A -> ̂  when V C A
and x e A

/(V) = U /(^),
% e v

(36) 7W=n/(UnA)
u

where the intersection is taken over all neighborhoods U of x. Thus/is defined on A
if/is defined on A. If a non-empty A is G-invariant, then the set of accumulation points
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includes L(G) when G is non-elementary and thus/is defined in L(G) in this situation.
Obviously, / induces 9 if/does.

The "inverse" of/as a set function is defined on/A and is

\3c) f-\z) ==d{xeA:zef{x)}.

^""'(^J^ ^h this means that/(A;) == {y} and thatj^ ef{z) for no z + x. Obviously,
/-^^ C/-^^) for z e/A, and actually the sets are equal although we will not need
this latter fact.

We regard ordinary point functions / as special cases of set functions (thus, if
fW =={j}, we identify/(A;) andj/) and for these/A =/(A) is just the image of A.
For point functions, continuity at x is equivalent to the fact that/I^) =={/(A;)}.

We first prove

Lemma 3C. — Suppose that f{z) ̂  L(H) for some ^ e A n L ( G ) . Then there is
y eA n L(G) such that f{z) n/(j») == 0.

Proof. — Let z eA n L(G) be a point such that f{z) + L(H). Thus there is
w e L(H)\/(2:). Let W be a neighborhood of w such that W n/(^) = 0. There is h e H
such that hf{z) C W, for instance a suitable power of any loxodromic h e H whose fixed
points are in W will do; such an h exists since the fixed point pairs of loxodromic h e H
are dense in L(H) x L(H) by [GM, 6.17] or [T9, Theorem 2R]. If h = <p(^),
then hf{z) ==fg{z) C W. Hence f{g{z)) r^f(z) = 0.

The next theorem concludes the proof of Theorem 3B. Note that the fact that/^
is a point function on M(H) gives c ) of Theorem 3B.

Theorem 3D. — Suppose that f{x) ^ L(H) for a single x eL(G). Then f is a point
function on M(G) and is a homeomorphism of M(G) onto M(H) whose inverse {as a point
function ofM(H) onto M(G)) isf-1 and with the property thatf^x) r\f{y) = 0 for all distinct
x e M(G) andy e A. In particular, iff is defined at x e M(G), thenf{x) is a point a and also
f[x) == a.

Proof. — The set of z such that/(^) + L(H) is obviously open and G-invariant
by the definition (36) of/(^). Hence the assumption that/(A;) + L(H) for a single x e L(G)
implies that/^) + L(H) for all z eL(G), since Gz is dense in L(G) [GM, 6 13] or
[T9, Theorem 2S].

Pick arbitrary x eM(G). We show that/(A?) is a single point.
We apply Lemma 3G to/and pick two points a, b e L(G) such that/(^) and/(6)

are disjoint^ Pick then neighborhoods V and W' of f(a) and/(6), respectively, such
that V n W' == 0. By the definition of/ there are neighborhoods V and W of a and b,
respectively, such that/(V) C V and/(W) C W'.
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By the defining property of Myrberg points, there is a sequence & e G such that
g,{x) -> a, and&(j/) ->bi£y^p xis any other point. Thus, ifj/ + x.fg^y) = (p(^) /(^) C W
for big i. On the other hand, taking y near x, we can find for every i suchj/ 4= x in A such
that <f>{gi)f{y) C V; recall that x is an accumulation point of A since G is non-elementary
[T9, Theorem 2S], Hence { 9(&)}»>o is infinite. Let A, = <p(&). Then { A , } is infinite
and it follows that we can pass to a subsequence so that (A,) is a convergence sequence.

These same arguments also show that /(A\{ x }) is infinite and if u ef{A\{x}),
then (p(^) {u) == h^(u) C W for big z. Hence the attractive point h' of (A,) is in W.

Similarly, if i is big, f{g,{x)) C V. Now 6 ' ^V is the repelling point
of (^-1), and so h^^fg^x) tend towards the attractive point a' of (A,"1). Hence

y~(^) == (pO^)"'1/^^) = lhlfg^x) must be the point <z'. Soy must be a point function
on M(G), obviously coinciding with f on the points ofM(G) where/is already defined.

The definition (36) implies that this point function is continuous on M(G). Thus,
by Theorem 3B,y[ M(G) is a continuous injection of M(G) into M(H). Actually,
we can prove exactly like Theorem 3B b) the stronger fact that f{x) f^f{y) = 0 if
x e M(G) and y e A are distinct. We will now complement Theorem 3B and show
that f defines in fact a homeomorphism of M(G) onto M(H).

Let h be the set function f~1 defined onfA by (3c). Then the function A of (36)
is defined on/A3L(H). By our assumptions, there is x eL(G) such thaty(.v) :f> L(G).
Since M(G) is dense in L(G), we can assume that x e M(G). It follows that there are
y e M(H) and x e M(G) such that f{x) =[= y. Let U' be a neighborhood of y such
that f{x) n U' == 0. By the definition of f, there is a neighborhood U of A: such
that f{x') n U' = 0 if x ' e U. It follows that x ^ h{y) and hence h[y) +L(G).

Obviously fA and fA are H-invariant. If 9 is an isomorphism, then ~h clearly
induces (p~~1 and we can conclude by the first part of the proof that Ji{x) is a continuous
point function on M(H). Obviously, y and ~h are inverses to each other and so the
theorem is proved in this case.

If 9 is not injective, then let N = ker 9 and apply Theorem 3B d ) to the point
function/] M(G) and obtain that N is finite and g \ L(G) == id if g e N. Consequently
orbits Nz are either points of L(G) or finite subsets of Q(G). It follows that X/N is a
compact metrizable space on which G/N acts as a convergence group. We can regard
L(G) as a subset of X/N with G/N acting on L(G). We compose 9 as G -> G/N -> H
and/as A —^ A/N -> ^. Since Theorem 3D is now known for A/N -> V and the isomor-
phism G/N -> H, we can conclude that it is also true for /: A -> ̂  and 9 : G -> H,
as obviously M(G/N) = M(H).

We now return to point functions. We will enhance Theorem 3B in the following
manner. Let the point function / be as in Theorem 3B. Define the duster set ^(/, x)
off at x by

{3d) ^(/, x) === {y e Y:/-1 V n U =h 0 tor all neighborhoods U of A; and V ofy}
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and this is defined for x eADL(G) . This is the set function/defined by (36) when
we regard / as a set function. In the situation of Theorem 3B we have the following
dichotomy by Theorem 3D:

Corollary 3E. — Either the conclusions of Theorem 3B are valid or the cluster set %'(/, x) 3 L(H)
for every x e L(G).

Above we have basically considered the situation that we have a map which is
G-compadble and continuous at some x eL(G). Iff is continuous and defined at a
G-invariant closed set A, then there is additional information concerning inverse images
of conical limit points [MT]. Combining [MT] with the results of this section, we have

Theorem 3F. — Letf: A -> B be a continuous map of a closed and non-empty set A inducing a
surjective homomorphism 9 of two non-elementary groups. Then ADL(G) andf{'L(G)) = L(H).
Furthermore, f maps M(G) homeomorphically onto M(H) so that f~1 M(H) = M(G). If x is
a conical limit point (/H, thenf~^{x) consists of a single conical limit point of G and any right
inverse off is continuous at x.

Proof. — Since A is closed, ADL(G) by [GM, 6.13] and [T9, Theorem 2S].
Similarly, since fA is closed, L(H) C/A. To see that/L(G) = L(H), we can reason as
follows. Pick any x eL(G). By these same references, Gx = L(G) and hence x is an
accumulation point of Gx. Thus either (a) f(x) is an accumulation point of Uf(x)
or (P) /I U n Gx is constant for some neighborhood U of x. In case (a), f[x) eL(H).
We will show that ((B) is impossible and hence always f{x) eL(H). It follows that
/L(G)CL(H) and, being H-invariant and closed,/L(G) == L(H).

To prove the impossibility of ((3), we show that in this case/is constant in the
whole orbit Gx. This would imply that H fixes f{x) and this is impossible by non-
elementariness. Letj/ e Gx. Ify e U, then/(x) =-f{y). If not, then there is h e G such
that h[x),h[y) e U. We can take for h a suitable power of some loxodromic element
of G whose both fixed points are in U (cf. [GM, 6.17] or [T9, Theorem 2R]).
Thus/(AW) =f{h[y)} implying ^h)f(x) == ^h)f(y) and finally/^) =f{y).

The part concerning Myrberg points follows from the results of this section. The
remaining part of the theorem is a slightly stronger form of [MT, Lemma 3.4]; conical
limit points were called points of approximation in [MT]. Since we can simplify the
proof of [MT], we indicate it below.

If xe A(H), we pick elements ^ e H such that h^x) -^ a and h^[y} -> b + a for
any other y. Thus h^ is a convergence sequence with x as the repelling and b as the
attractive point (Lemma 2A). We can assume that ^ are distinct. Find g, eG such
that y(^) == h^. Then ^ are distinct and thus it is possible to pass to a convergence sub-
sequence, denoted in the same manner. It is easy to see that the attractive point of (^)
is a point of/'^A). Since/^[/~1 (A:)] = h,{x) -> a 4= b it follows that any point off~l{x)
must be the repelling point. Hence f~l(x) consists of just one point x ' and obviously
is
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x ' eA(G) since for big i, g^x') and ̂ (./),y =t= A;', are in arbitrarily small neighborhoods
off~l(a) and/"^), respectively, and these sets are disjoint.

It is a general topological fact that iff is a continuous map of a compact space,
then any right inverse of/is continuous at a point w such th3Ltf~l{w) is a single point.

In contrast to Theorem 3F, note, however, that it is not necessary that/I^) e A(H)
even ifx eA(G). For a counterexample, see the remark in the next section.

4. Examples: Kleinian groups of S2

We conclude the topological part of our study by giving a couple of examples on
how to apply our theorems to some Kleinian groups of S2 defined as discrete Mobius
groups of S2.

Example 1. — Let H be a non-elementary Kleinian group of S2 whose ordinary set
i2(H) contains an invariant component U, i.e. gU = U for all g e G. If U is simply
connected, there is a conformal homeomorphism f from the unit disk D = B2 C R2

onto U, the group G ==/~1 H/'is a Fuchsian group and cp(^) ==/§/~1 is an isomorphism
G->H. Since H is non-elementary, L(H) has positive conformal capacity [M2] and
hence f has the radial limit a.e. in 8D = S1 with respect to the linear measure of
S1 [NE]. We denote the radial limit by/,.

If H is finitely generated, then U/H is a finite Riemann surface and hence the
Fuchsian group G is of the first kind. In addition, G is geometrically finite since for
Fuchsian groups finite generation is equivalent to geometrical finiteness. Thus in the
finitely generated case Theorem 7G would also imply the existence of an a.e. defined
map/, onto L(H) inducing 9. By Theorem 6B the radial limit/, and/, coincide a.e. with
respect to the linear measure. However, we concentrate on the map/ and thus H can be
any non-elementary Kleinian group of S2 with a simply connected invariant domain U.

We will now apply results of Section 3 to the map/. Here the measure on S1

is the linear measure.

Theorem 4A. — Suppose thatfy is not infective. Then the radial limit / exists at all Myrberg
points ofG and the map defined byfandfy is a homeomorphism ofB2 u M(G) onto U u M(H).

If H is finitely generated, / is always injective outside a nullset of S1.

Proof. — Suppose that/ exists at distinct points a, b e S1 such that/(^) ==/(6).
Let L be the hyperbolic line joining a and b in B2. Then S ==/L u {/(^)} is a topological
circle. Let X and Y be its complementary domains and let X' and Y' be the components
of B^L such that/X' C X and/Y' C Y.

Since H is non-elementary, L(H) contains more than one point and hence at least
one of the components, say X, contains a point x of L(H). Then x ^Y. Letj/ be any
point on 8Y'\L. If we define/as in (36), then f[y) C Y and hence x <^/(jQ. Thus
f{y) 4> L(H) and Theorem 3D implies that/is a point function on M(G) which is a
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homeomorphism of M(G) onto M(H). The definition (36) of/implies that the map
defined by/and/on B2 u M(G) is a homeomorphism of B2 u M(G) -> U u M(G).
This implies the first part of the theorem since obviously/ and/ coincide on M(G).

Thus if/ is not injective, it maps M(G) homeomorphically onto M(H). Since M(G)
has full measure in the finitely generated case, we can conclude that in this case / is
always injective outside a nullset.

A parabolic element h e H is accidental if g === ^~l(h) eG is loxodromic; such
parabolic elements always exist unless H is quasi-Fuchsian or degenerate (i.e. the inva-
riant component U is ii(G)) [MA, Theorem 4]. In this case the radial limit exists at
both fixed points ofg and the limit is the fixed point of A. Thus in this case the conclusion
of Theorem 4A is true and we can prove

Corollary 4B. — Suppose that H is finitely generated and not degenerate. Then the conclusions
of Theorem 4A are true.

Proof. — As we have observed, there are accidental parabolic elements unless H
is degenerate or quasi-Fuchsian. Thus, what we have said implies the theorem if we
observe that in case H is quasi-Fuchsian, / can be extended to a homeomorphism
B2 ->U (see [T6, Corollary 3.5.1]).

If the radial limit / does not exist at x e S1, we can define the radial cluster set
as a generalization of the radial limit as

f,{x) = L(0, x) n L(H)

where L(0, x) is the hyperbolic ray with endpoints 0 and x. We can now generalize
Theorem 4A as

Theorem 4C. — If there are distinct x,y e S1 such that fr{x) n/(j^) =t= 0 and/^ /%»»
frW ufr{y) ̂  L(H), then the conclusions of Theorem 4A hold true.

Proof. — The theorem is proved exactly like Theorem 5A if we know that, when L
is the hyperbolic line joining x and y, then /L u/y(A;) u/(j/) divides S2 into two
components. We prove this as follows.

We can assume that H is degenerate, i.e. U is the ordinary set f2(H) ofH, cf. Corol-
lary 4B above. Note that /.(^) and/(j/) are connected (each of them is the intersection

r^i /^/

of a descending sequence of connected compact sets) and hence so is /y(A?) u/(j/).
Also the complement of/(^) u/y(j/) must be connected since otherwise the comple-
ment of L(H) could not be connected contrary to the degeneracy.

f^t r^i

It follows that S2^/^) ^/,0)) is homeomorphic to the euclidean plane and
/M t^

hence, if we collapse fy{x) u/y(j/) to a point, S2 remains homeomorphic to S2. In this/^/ /^/
collapse/L u/(^) u/y(j/) becomes a Jordan curve whose complement has two compo-/M /^/
nents. Consequently, S2 /̂!. ufy{x) u/y(j^)) also has two components.
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Remark. — I fHis geometrically finite, then f can be extended to continuous map
/: B2 ->U (cf. [T4, Section 4G] where we have discussed this). If h = ^{g) e H is an
accidental parabolic element, then f maps the fixed points a and b of g onto the fixed
point v of h. Since a, b eA(G) but v <^A(H), this provides an example of a situation
where a conical limit point is not mapped onto a conical limit point by a continuous
limit map.

Example 2. — As another, somewhat strange and unusual, example we mention that
Cannon and Thurston [CT] have shown that there is a finitely generated Fuchsian group G
with limit set L(G) == S1 and a Kleinian group H of S2 with limit set L(H) == S2 and
a continuous map f:S1 ->• S2 inducing an isomorphism 9 : G -> H. Here f must be
surjective and so f is a continuous map of 1-dimensional sphere onto 2-dimensional
sphere and hence f cannot be injective. By Theorem 3F, f is still a homeomorphism
of M(G) onto M(H) and in addition, M(G) ^/^M^H). Thus the non-injectivity
off is concentrated on non-Myrberg points.

We note that both M(G) and M(H) have full linear or planar measure on S1 or
on S2, respectively. For M(G) this follows from [Ml], The group H is geometrically
tame [B, Theorem A], Hence [T, 9.9.3] implies that the geodesic flow is ergodic on
the tangent space of B71 + ̂ H, and this is equivalent to the fact that conical limit points
have full measure, cf. [Sl] or [NI, Theorem 8.3.5]. Hence also M(H) has full measure,
cf. the Introduction.

Thus/maps homeomorphically the subset M(G) ==f~1 M(H) of S1 of full linear
measure onto the subset M(H) of full planar measure ofS2. Corollary 3D of [T4] adds
the following feature. There is a subset A of M(G) of full linear measure such that the
planar measure of fA vanishes.

5. Shadows and conformal measures

From now on, with the exception of Theorem 7A, we will consider only Mobius
groups and study properties of limit maps in the presence of conformal measures. We
will present here general results needed later.

Lemma 5A. — Let VCB"4"1 and z e'Qn+l. Suppose that g e Mob{n) and that there
is c> 0 such that the euclidean distance dist(<s', V) > c and dist(^(^), gV) > c. Then there is
M == M{c) > 1 such that, for all x,y e V,

HM<^.M.i g (j) i
Proof. — This can easily proved using the fact that

1 _\g'W\\g'{j>)\
\ x - j y \ 2 \ g(x) — g{jy)\2
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for all x,y, cf. [NI, eq. (1.3.2)]. Consequently

[ z ^ x \ ^ _\g\z)\\gf{y)\\g{z}-gW
l ^ - ^ l 2 \gf^\\gtW\\g^-gW

implying the lemma for M = 4c~2.

In section 6 we will consider "shadows" of the hyperbolic open disks D(.y, r) of
radius r and center x. Let n : B^^ 0 } -> y be the map

(5a) n{x) == the projection of x from 0 to S71,

that is, x is on the hyperbolic ray from 0 to n{x). The shadow of the disk D{x, r) from 0 is
(56) S(^r) =7c(D(A;,r)\{0}).

We will now prove some simple lemmas for this situation. First we note that if
x e Bw + \ then a simple calculation shows that

(5.) l^<^o.^^_^i_|^

Lemma 5B. — For ^77 r > 0, there is c == c(r) > 1 such that the euclidean diameters
of D{x, r) and S(x, r) are in the interval [c~1 ^-d(o•a;), ce-^01^] for all x eBn+l.

Proof. — To prove this, it is easiest first to consider the situation in the halfspace
model H"4'1 == R" x (0, oo) of the hyperbolic space. Let z = {y, t) e H714-1 where
y e R71 and t > 0. Let -KQ : H714^1 -> R^ be the projection z == (j/, f} \-^y and let
So(^ r) === ^o(D(^, r)). Let p(-2;, r) be the euclidean diameter diam D{z, r) which is also
the euclidean diameter ofSo(^, r). Since there is a euclidean similarity of I-P4'1 mapping z
onto an arbitrary w eHn+l, the number CQ = p(-2', r)/^ depends only on r and not on ^.

We now obtain the present case as follows. We can assume that x e Bn +1 is on the
ray L(— ^+1, 0) joining — ^+1 and 0. Let g be a Mobius transformation 1&n+l ->• H^1

suchthat^(O) = ^+1,5(^+1) = ooand,?(- ^+^) = 0. Let^) = 2; == (0, ^) eL(0,^+,).
In small neighborhoods of — ^4-1, g is more and more like a similarity which implies
that ^{z, r)ft = <:o and diam D{x, r)/(l — | x |) are almost the same if | x \ is close to 1.
By continuity, they are in bounded ratio for all | x ]. By {5c)y they are in bounded ratio
if we replace (1 — | x |) by <r-d(o'a;).

For diam (S [x, r)) we still need the observation that diam(S(^, r))/diam(D(A:, r))
tends to 1 as | A: | —^1. This and continuity imply that they are in bounded ratio for all x.

We will need the following information on the conformal measure of shadows.

Lemma 5C. — Let G be a discrete Mobius group of B^ +1 and let (A be a non-trivial conformal
G-measure of dimension 8 supported by L(G). Let x eB^^ Then there is MQ > 0 such that
for every M > MQ there is 0 1 such that for g e G

(5d) C-1 e-8^0^ ^ (A(S(^), M)) ^ Ce-8^0^.
15



114 PEKKA TUKIA

Proof. — This is a consequence of [NI, Theorem 4.3.2], and of the preceding
lemma. Nicholls proved that the inequalities are true except possibly for finitely many
g e G but we can remove this exception by making M.Q and G big enough. Alternatively,
we could adapt Lemma 2G of [T5] for the half-space Hn+l to the ball B^; this would
give the lemma for all conformal measures of S71 without assuming that the support
is L(G).

Usually we have a conformal measure (JL on A such that the product action of G
on A X A is ergodic with respect to [JL X pi. Letjf: A -> Y be a measurable map which
induces a homomorphism 9 : G -> H. Here H need not be a Mobius group. We take Y
to be a metric space and H can be any group of Borel maps of H.

Lemma 5D. — Suppose that G acts ergodically on A X A with respect to ^ X (JL. If
f: A ->- Y is measurable and induces <p : G -> H, then no pro-image of a point under/has positive
[L-measure unless f is a.e. constant. In particular, if 13. is a Mobius group on YC B714'1 and <pG
is non-elementary, then no pro-image of a point has positive [L-measure.

Proof. — Suppose that [^{f~ l{a)) > 0 for some a. Then B = Gf~l{x) is a G-invariant
set of positive measure and since the ergodic action of G on A x A implies that G also acts
ergodically on A, it follows that B equals A up to a nullset. Let b = ^{g) {a) for some g e G.
Then ^/-1W) = ̂ {gf-W > 0. If b + a, G[{fxf)-1 (^ ^)] and G[(/ x/)-1 {a, b)
are disjoint G-invariant subsets of A x A of positive measure. By the ergodicity of the
product action, this is impossible and hence b == a and so (<pG) a == { a }. Thus f is cons-
tant on the set B of full measure and, if G is a Mobius group on Y, then <pG is elemen-
tary [GM, 6.13].

6. Properties of measurable limit maps

We will now turn our attention to the situation that we have a discrete Mobius
group G and a conformal G-measure [L on a G-invariant set X. We usually assume
that G is non-elementary and that the product action of G on X X X is ergodic. Then
obviously [J(.(X\L(G)) = 0 and so we can assume that X = L(G). Let us recall from the
introduction that the product action is ergodic if and only if a.e. x e X is a Myrberg
point. However, at first the assumption of ergodicity is not needed.

There are similarities between the method of Section 3 for the continuous case
and the present situation but basically the problem is that ifyis not continuous, it may
be that x^ —^ x but not thatjf(^) ->f{x). The methods used to circumvent this difficulty
are ergodicity and approximate continuity. We need also to consider the situation
where f(x) can be a more general object such as a closed subset ofB714'1.

We recall the definition of approximate continuity. Let A and X be metric spaces
whose metric is denoted by d. Suppose in addition that (JL is a Borel measure on A and
let B(a, r) == { x e X : d^Xy a) < r}. A mapy: X ->- Y is measurable if the inverse image
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of every open set is measurable and / is approximately continuous at a point x e A, if
for every s > 0 there is 7-0 > 0 such that whenever 0 < r < y-o,

^eB{x,r):d{f{y)J{x))>^}) ̂
^(B(^r))

We include in the definition of approximate continuity at a point x the assumption that
(i(U) > 0 for every neighborhood U of x. Later / will always be defined at a subset
of a euclidean space and the metric will be the euclidean metric. In addition, [L will
be a Borel measure and hence Borel regular and X will be a separable metric space.
Hence we can conclude by [FE, 2.9.13] that a measurable map/: X ->Y is approxi-
mately continuous a.e. in X.

We start with a general situation and study the uniqueness of measurable maps
inducing a homomorphism 9. It turns out that at conical limit points approximate
limits depend only on 9 if they exist. We first prove a general lemma.

^In the following lemma, we have a discrete Mobius group G C Mob(^), a G-invariant
XCB714'1 and a non-trivial conformal G-measure (A on X, a metric space Y and a
measurable map/: X ->Y inducing a homomorphism 9 : G -> H (i.e. {la) is true for
x e X and g e G) where H is a group of Borel maps of Y.

Lemma 6A. — Suppose that f is approximately continuous at a point x e X. If (^) is a
congervence sequence ofG with x as the repelling and b as the attractive point, and if g,{x) -> a + b
asi -> oo, then (9^)) has a subsequence (denoted in the same manner) such that 9(^1) "^(^ ->f^}
as i -> oo for z e X' where X' C X\{ b } has full ^-measure in X\{ b }. If H is a Mobius group
such that 9G is non-elementary, thenf^K.' is infinite.

Proof. — Let L be the hyperbolic line joining a and b. Pick w e L. Let P^, be the
hyperbolic n-plane intersecting L orthogonally at w and let V^ be the component of
B^VP,, such that aeV^, .

Let L' be the hyperbolic line with endpoints x and — x ; note that x e L(G) C S"
since x is the repelling point of (^). Since g,{x) -> a, and x and b are the repelling and
attractive point of (^), respectively, it follows that g,{— x) ->b and so g, L' -> L. Hence,
ifw, is the orthogonal projection of w (in hyperbolic geometry) onto g^ L', then w^ -> w.
It follows that if P, is the hyperbolic n-plane orthogonal to g, L' at w,, then, at least for
big i, there is a^component V, ofB714-1^ such that a eV,. In addition, V, ->V^.

Now g^~1 V, form a basis of closed neighborhoods of x of the form B71 +1 {x, r) n B71 + \
Since / is approximately continuous at x, it follows that we can pass to subsequence
so that if

^={ue^•.\f{g^\u))-f(x)\<2-i},

then (^rWVVi])/^.-1^^ 2-1. Applying Lemma 5A to the sets ^V, and
maps g^ with z = — x, we obtain that the maps g^11 V, preserve the ratios of p-measures
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of sets, up to multiplication by a constant which is bounded away from 0 and oo. It
follows that for some c > 0,

^)>^){l-c2-i).

Since V^ -> V^,, we can again pass to a subsequence so that ^(Vy,\V^) < 2~\ It follows
that, passing once more to a subsequence, we can find a subset Vy, of V^, of full measure
such that every z* eVy, is in V '̂ beginning from some i, i.e. \f(gi~l{zf)) ~f{x)\ ̂  2~\
It follows that <p(&)~W) -^f{x).

To obtain that this is true in a subset of X\{ b} of full measure, we choose a
sequence w^ e L such that w^ -> b and choose for each w^ appropriate subsequences
{gkz)i>o so ^^ PO^i1)./!^) ^fW as i ̂  co when -2: e X^ and X^ has full measure
in V . We choose g^ so that the sequence for ^4.1 is a subsequence of the sequence
for w^. Having chosen these subsequences, we pass to a diagonal type subsequence (^)
such that ^{gi)f{z) -^fW when ^eU^o^-fc anc! this has full measure in X\{6).

Suppose then that (pG is a non-elementary Mobius group. Observe that X' u { b}
has full measure in X. Hence X' u { b} has a G-invariant subset X" 4= 0 having full
measure in X. Since <pG is non-elementary, it follows thatjOC" 3 L(<pG) (cf. [GM, 6.13]).
Also since <pG is non-elementary, L(cpG) is actually infinite [GM, 4.5] and hence both^X"
andyX' must be infinite.

Remark. — We could allow f to be any map, possibly not measurable, if we define
approximate continuity at x using the outer measure p.* corresponding to p.. In addition,
^ need not be Borel regular: it suffices that all open sets are measurable.

This same remark applies to the first part of the next lemma (up to the last sen-
tence). Of course, for the last sentence we need^ to be measurable and (JL Borel regular
in order to have that^ are a.e. approximately continuous.

Theorem SB. — Let \L be a conformal G-measure on X and let X^, X^ C X be G-invariant.
Let f^: X^ ->• B71 +1 be measurable maps inducing a surjectiue homomorphism 9 : G -> H of
non-elementary Mobius groups ofBn+l. Ifboth f^ andf^ are approximately continuous at a conical
limit point x e X^ n X^ of G, then f-^{x) ^f^x). In particular^ if X^ = Xg = X and if the
product action of G on X X X is ergodic with respect to ^, thenf-^ ==f^ a.e. in X.

Proof. — Since x eA(G), there is a sequence g^ e G such that g^x) —> a and
Si{y) ~^ ^ ^or B^y dherj/ and where a ={= b. By Lemma 2A, (^) is a convergence sequence
with b as the attractive point and x as the repelling point. Hence, by the preceding
lemma, there is a subset X' of X^\{ b} of full measure such that, after passing to a sub-
sequence, yO^)"1/!^) ~^fiW for x ' eX'. In addition we know that/X' is infinite
and hence there are .^3 x^ e X' such that f^{x^) ̂ fi^).

Since <p(&)~~l./l(^) ~^fi{x) for two points f^{x^) and f^{x^)y we can first conclude
that{ cp(&)} is infinite and then, after passing to a subsequence so that (<p(&)) is a conver-
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gence sequence, thsitf^x) must be the attractive point of (9(&)~1) and hence the repelling
point of (<?(&))•

Exactly the same argument shows that f^ {x) is also the repelling point of (<p(&)).
Here were start from the subsequence obtained in the end of the last paragraph so
that (<p(&)) is already a convergence sequence. Hence fi{x) ==f^{x).

Finally, we note that the ergodicity of the product action is equivalent to the fact
that conical limit points have full measure, as explained in the Introduction. Everything
is now proved.

We now come to the part using ergodicity. From now on until the end of this
section, G is a discrete non-elementary Mobius group and \L is a non-trivial conformal
G-measure such that the product action of G is ergodic on X x X. As we have remarked,
then a.e. x e X is a Myrberg point and hence we can assume that X == L(G). Observe
that in this situation every open non-empty subset of X has positive measure.

The next lemma combines ergodicity and the convergence property of Mobius
groups.

Lemma 6C. — Let W C X X X be measurable and have positive ^ X [^-measure. Then
there is Z C X X X of full ^ X [L-measure such that if z == {x^y} e Z, then there is a convergence
sequence (^) of G such that g^{z) e W for all i and that x is the repelling point of (^) and that
the attractive point is b such that (a, b) e W for some a.

Proof. — Since there are no atoms (follows from Lemma 5D if we setf= id in it),
the set W has a subset Wg of positive measure such that WQ C U X V where U n V == 0.
It is not difficult to see by ergodicity that there is a subset Z C X x X of full
measure such that if z == {x,y) e Z, then there is a sequence of distinct g^ e G with
g^{z) e WoC U X V. Since g^ are distinct, it is possible to pass to a convergence subse-
quence. Hence we can assume that (^) is a convergence sequence. Suppose that g^x) -> a
and gi{y) -> b as i -> oo. Then a e U and b e V and hence a + b. This is compatible
with the convergence property only if either

1° x is the repelling and b the attractive point, or
2° y is the repelling and a the attractive point.

Let Z^ be the set of points {x^y) e X X X such that there is a sequence of distinct
gi e G such that g^x^y) e W. Thus we can express Z^., up to a nullset, as the union of
sets Zi == Zi(W) and Zg ^ Zg(W) defined by the requirement that Z, is the set of
points z = [x^y) e Z^ for which there is a convergence sequence (^) such that we have
the situation ofi° with the additional information (if we have case 1°) that there is a
such that (a, b) e W or (if we have case 2°) that there is b such that {a, b) e W.

Clearly, all the sets Z^ and Z^ are G-invariant and since Z^ U Zg = Z^y, at least
one of them must have full measure by ergodicity. IfZi(W) has, we are done. Otherwise
we note that Z^(W) is a nullset and so is Zi(W') for any measurable W'C W. It follows
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that Z^W') must have full measure for any W C W of positive measure. Furthermore,
if W" C X x X has positive measure, then there are by ergodicity g e G and W C W
of positive measure such that gW C W". Since Z2(W) has full measure, it follows that
also Z^W") has. The conclusion is that Zg(W) has full measure for any W of positive
measure.

If AC X X X, set A* ={(u, v) : {v, u) eA}. Since Zi(W) = Z^W*)*, it follows
that also Z^(W) has full measure for any W of positive measure.

In Lemma 6G we had only the group G acting on X with ergodic action on X x X.
Now we take another group H acting on a separable metric space Y. Although G was
a Mobius group, we first assume of H that it is only a group of Borel maps of Y. Let
j f : X - > Y b e a measurable map which induces a surjective homomorphism 9 : G —> H.
This means that {la) is true. We define for x eX = L(G) the essential cluster set of f
at x by

(6<z) ^{f, x) = [y e Y : pi(/-1 V n U) > 0
for every neighborhood U of A; and V ofj/}.

Theorem 6D. — There is a G-inuariant subset A C X of full [^-measure such that for
every x e A, there is a subset A^ C X\{ x } of full measure such that f is approximately continuous on A
and on each A^ and with the following property. Let x e A and y e A^ and let a, b e X == L(G),
u e ̂ {f, a) and v e ̂ {f, b). Then there is a sequence g^ e G of distinct elements such that

W g,(x)-^a, gi[y)->b, ?(&)/W-^ and ^[gi)f{y)->v

as i -> oo. In addition, (^) is a convergence sequence whose repelling and attractive points are x
and b, respectively, and ^C^)"1/^) —^/W when z varies in subset A' of A of full measure
(possibly depending on x and on the chosen sequence g j . Furthermore, f A andfA are infinite.

If H is a discrete Mobius group on YC B714'1, then H is non-elementary, f AC M(H) and
(?(<?i)) ls a convergence sequence whose repelling and attractive points are f(x) and v, respectively,

Remark. — IfY = B"4'1 and H C Mob(yz), it follows from the convergence property,
that we can actually take above A^ = X^"1!'/^)] at least if we do not require approxi-
mate continuity on A^. We know by Lemma 5D that ^(/"^/(.v)]) = 0.

Proof. — We find countable open covers U^., j e I,, of X x X and V^, k ej,,
o f Y x Y such that d{U^) < 1/i and ^(VJ < 1/i when d is the product metric. Let I
be the set of {i,j, k) such that U,^ = U^. n (/ x /)~'1 (V^) has positive (JL X ^-measure.
Let B^ be the subset Z of full measure of X X X which is given by the preceding lemma
with respect to W == U^ and set B == n^^jB^. Thus B has full measure.

Let now [x,y) e B, a, b e X, u e e^(/, a) and v e ̂ (/, b). We claim that there
is a convergence sequence (^) of G with x as the repelling and b as the attractive
point and satisfying (66). To see this, find for each i indexes j\ and k, such that if U, == U .̂p
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U; = U,,^C U, and V, = V^., then (a, b) e V, 3 U; and {u, v) e V,. Let (^jQ e B.
Then, for each i, there is a convergence sequence ^5^ > 0, such that (^-(A;), ̂ ^0) e U^,
and hence (<p(^.) (/W), <p(^) (/(j0) eV,, and x is the repelling point and the
attractive point is a point b' such that (a', 6') e U,' C U, for some a\

It is clear that we can choose for each i a (big) index m^ such that the sequence
§i = gimi ls a convergence sequence and has x as the repelling point and the attractive
point is 6" such that (a", 6") e n,>oU, = {(^, &)} for some ^". Thus the attractive
point must be b. In addition, g,(x,jy) e U,'C U,, implying the first two limits of (6&)
since ^(U,) < 1/z and {a, b) eU,. Similarly, the last two limits of (6&) follow from
the fact that (/^W,/^(jQ) = (?(&)/M, ?(^)/(jQ) is in the set V, containing (u, v)
with diameter < 1/z.

We now apply the Fubini theorem to the set B. Thus there is a set A C X of full
measure such that for every x e A there is a measurable Ag C X of full measure such
that {[x,y) : x eA,j eA^} has full [L X (Ji-measure in B. We can assume in addition
that/is approximately continuous in the sets A and A^. Since G is discrete and hence
countable, we can assume that they are G-invariant. These sets A and A .̂ satisfy the
first paragraph of the lemma except for the assertion concerning A' to be proved now.

Since the product action is ergodic and G non-elementary, there are no atoms
(follows from Lemma 5D if we set f == id in it). Hence, if a 4= b, Lemma 6A implies,
after passing to a subsequence, that there is A' C A of full measure such that
^{gi)'1/^) -^fW ^ z GA/- If a == b, we find sequences a^-^a, b^->b such that
a^ 4= ^, and u^ e J^(/ a^) and v-^ e ̂ {f, b^) such that u^ —^ u and ^ -> y. We choose
for each k a sequence gj^ as above. It is not difficult to see that there is a diagonal type
sequence g^ of g^s which satisfies everything above, including the claim involving A'.

The sets/A' and/A are infinite as follows by Lemma 5D since each/"1 w is nullset.
Similarly, /A^ is infinite for every x e A' as we need to know below.

Assume then that YCBn+l and that HC Mob(^). Since/A' is infinite, it follows
that/(^) must be the attractive point of ((p^)"1). Similarly, the infinitiness of/A^ implies
that v is the attractive point of (<p(&)). It follows that/(A;) and v are the repelling and
attractive point of (<?(&)), respectively.

Finally, we show that in this case H is non-elementary and that/ACM(H).
Let z e/A. We show that if u, v e/A are distinct, then there are ^ e H such that
h^z) ->u and h,,(w) -> u for any other point weB714 '1. Clearly, it suffices to prove
this for u, v e/A. Find x, a, b e A mapped to z, u, v by/. Now/is approximately continuous
in A, and so u e ̂ (/, a) and u e e^(/, b) and hence, as we have seen, there are conver-
gence sequences (^) and (<p(^)) of G and H, respectively, satisfying (6&) for
y eA,, and such that/(A:) is the repelling point and v the attractive point of (9(&)). So
9(&) (/(^)) -> ^ and <p(&) (V) ->v if y +/(AQ. This proves our claim with h, == <p(^).

Thus any point v e/A is the attractive point of some convergence sequence of H.
Hence/ACL(H) and so L(H), like/A, must be infinite. It follows that H is non-
elementary. Thus/A = L(H) and we have shown that every z e/A is in M(H).
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We now apply this in the situation where the space Y is the set ^(B^1) of
all closed and non-empty subsets ofB^1 and H C Mob (n) is discrete and non-elementary.
Recall from Section 3 that Mob(^) acts naturally on ^(B"^) which is compact in the
Hausdorff metric given by {3a).

Corollary 6E. — Let f: X -> <iS>(Bn+l) be a measurable map inducing a surjective map
<p : G -> H. Suppose that f{x) 4? L(H) in a set of positive measure. Thenf is a point function
on the subset A C X of full measure given by Theorem 6D.

Proof. — By Lemma 3C there are two points a, b eA such that f {a) f^f(b) = 0.
Then u ==f[d) e ̂ {f, a) and v ==f{b) e ̂ {f, b) by approximate continuity in A.
Let x e A. Find the sequence & e G given by Theorem 6D such that (66) is true for
jeA^. Since there is a subset A 'CA of full measure such that 9(&)'~\/(2'') ^fW
for z ' eA', there are points ^ and ^ suc^ tiiat ^C^)"1/^) -^./I^) as ^ -> oo and that
f{z-^ ^f{z^) == 0. The latter condition is true by the approximate continuity for some ^
near a and z^ near b. In the present situation {<p(&)~1)} must also be infinite.

Pass to a subsequence so that (<p(&)~1) is a convergence sequence whose attractive
and repelling point are a' and b\ respectively. Since b' ^/(^i) n/(-2'a) = 0? one of the sets
f{Zk), say f{z-t) does not contain b ' . Thus the sequence of sets ^{gi)"1/^) ->{^'}•
Hence f{x) == { a ' } . So f is actually a point function on A.

Let us compare the essential cluster set c^(/, x) of {6a) to the cluster set %'(/, ^)
defined by {3d) when y is a measurable map X -> Y. Clearly, ^(/, A;) 3 ̂ (/, x) for
every ^. On the other hand, it is also easy to see using the fact that open sets have a
countable basis that there is X' C X of full measure such that if U C X and V C Y are
open, then V n/(X' n U) + 0 if and only if ^(/"^[V] n U) > 0. In addition, X' can
be taken to be G-invariant. It follows that ^(/ | X', x) = ̂ (/, x) for every x e X'.

Actually, we can define e^(/, x) for any map / if we use the outer measure (JL*
corresponding to [L in the definition {6a) of ^/{f,x). As above, there is G-invariant
X' C X of full measure such that (S{f\ X', x) == ̂ (/', x) if x e X'. Hence we need not
assume measurability in the next analogy of Corollary 3E, obtained by applying
Corollary 3E to the map/|X'. Recall that if the product action ofGis ergodic on X X X,
as we assume, then X == M(G) modulo nullsets. Hence the set where ^{f, x) is defined
is L(G). As above, H is a discrete and non-elementary Mobius group.

Corollary 6F. — Letf: X -> B71 + 1 be a map inducing a surjective homomorphism 9 : G -> H.
Either f coincides outside a nullset with a homeomorphism of M(G) onto M(H) or the essential
cluster set ^(/,A:)DL(H) for all x eL{G).

Proof. — We only remark that since the set ofx's such that j^(/, x) 3 L(H) is closed,
we can have that the second alternative is true for all x e X instead of a.e. A; 6 X. Note
that if<^(/, x) ̂  L(H) a.e., then, as we have seen, we could replace X by a set of full
measure so that all the conclusions of Theorem 3B are valid and for this conclusion we
do not need to assume ergodicity for the action of G on X X X.
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We can now combine Corollary 6F and Theorem 6D and show that in the situation
there is a form of the Myrberg property also involving the map /. We include it since
the non-continuous case seems rather strange and this result might be useful in unraveling
the properties of such a situation, including the question whether it can exist.

Corollary 6G. — Let the situation be as in Corollary 6F except that/needs to be measurable.
Either there is a homeomorphism M(G) -> M(H) of the Myrberg points inducing 9 and coinciding
with f a.e. or we have the following situation. There is a set AC X of full measure and for every
x e A there is a set Ag of full measure such that the following is true. Let x e A andy e Ag;. Let
a, b e L(G) and u, v e L(H). Then there is a convergence sequence g^ e G such that

&W ->^ g,{y) ->b, ?C?i)/W ->u and <p(&)/(j0 -> v.

In addition^ x and f[x) are the repelling points of the convergence sequences Q^) and (<p(&)),
respectively^ b and v being the attractive points.

Remarks. — 1. A continuous limit map is necessarily injective in M(G) by
Theorem 3B. A non-continuous limit map need not be as is shown by the example in
[T4, Section 4F]; in this example the homomorphism which the limit map induces is not
injective. Whether there exist non-injective limit maps inducing an isomorphism is
not known. However we can recall the result [T4, Theorem 3B], concerning injectivity
ofjf, where we proved that ifG acts ergodically on A X A and iff: A —>• L(H) is any map
(measurable or not) which induces a homomorphism <p : G ->- H, then either/is injective
outside a nullset or it has "locally dense image" which implies that [^(f~l[fV] n U) > 0
for any open sets U and V of A of positive measure. Here p* is the outer measure corres-
ponding to pi.

We can add to this dichotomy the following observation. Let F be the map
X -> ^(B71^1) such that F{x) ̂ T"11!/̂  which induces id : G -> G. IfF is a measurable,
we can apply Corollary 6E to F and obtain that either f~l[f(x)] 3L(G) for a.e. x orf
is injective outside a nullset.

2. We can complement the dichotomies of Sections 3 and 6 by recalling Theorem 3G
of [T4]. It follows from this theorem that if/is a measurable injection ofM(G) into B^14"1

such that/"1 is also measurable and such that/induces 9, then there is the dichotomy
that either f is a.e. the restriction of a Mobius transformation or f is singular in the
sense that/maps a set of full ^-measure onto a set of zero v-measure for any conformal
H-measure v.

7. The existence of the limit map

We first remark that if <p : G -> H is an isomorphism of geometrically finite
groups, then there is a fairly good picture of the limit map inducing (p. If the groups are
convex cocompact, i.e. do not contain parabolics, then there is a homeomorphism
L(G) -> L(H) inducing 9. This was an essential observation in the proof of Mostow's
rigidity theorem. More generally, this is true if both 9 and 9""1 preserve parabolic ele-

16
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ments of rank 1 [T2, Theorem 3.3]. Even without the condition on parabolic elements,
there is a map/: L(G) -> L(H) which is continuous at all points x e L(G) except when x
is fixed by some rank-1 parabolic g e G of such that <p(^) is loxodromic. This follows by
a theorem of Floyd [FL] as was noted in [T3, Corollary].

We will prove later in this section that there is a limit map inducing an isomorphism
of a geometrically finite G onto an arbitrary discrete H. Before it we examine the general
situation.

A natural way to define the limit map/y for an isomorphism 9 : G -> H would be
the following. Take base points XQ.^Q eB'14"1, for instance XQ == 0 ==^o? sucn that XQ ls

fixed by no g e G\{ id }. Thus there is a natural map/y: Gxo -> B.XQ of the orbits such
that/pQ^o)) = (p(^) {xo) and this is a bijection ifj^ is fixed by no A e H\{ id }. If we
can extend/p continuously to a point x eL(G), it is natural to define f^x) to be this
continuous extension. The extension, and its existence, is independent of the choice
ofA;o andj/o-

This method works if G and H are geometrically finite without rank-1 para-
bolics [T2]. However, in the general case, there is no guarantee that there is such a
continuous extension. However, we have the dichotomy that either it exists at all Myrberg
points M(G) ofG, or, the cluster set ^(/^, x) of/,, (cf. {3d)) is the whole L(H) at every
x eL(G). Note that ^(/p, x) is contained in the set of accumulation points of Hyo,
that is ^(/^ x) C L(H) [T9, Theorem 2S].

Thus we have the following theorem. Like our other topological theorems it is
actually valid for convergence groups. Thus G and H can be convergence groups of
compact metric spaces X and Y, respectively, 9 any isomorphism G -> H and
XQ eQ(G) any point not fixed by any g e G\{ id } and y^ can be any point of Q(H).
The map /y is defined as above and we have

Theorem 7A. — Either the duster set ^(/p, x) of f is L(H) for all x eL(G) or f^ can
be extended to a continuous map Gxo u M(G) ->• H^ u M(H) inducing <p such that the extension
to M(G) is a homeomorphism ofM{G) onto M(H); iff^ is a bijection ofGxo onto Hĵ o, then we
have a homeomorphism of GXQ u M(G) onto H )̂ u M(H).

Conversely, if there is a map f: A -> Y of a non-empty G-invariant set A of X inducing 9
such that a == lim^^f^z) exists at some x eL(G), then also }im^_^^fy{z) = a.

Proof. — By Corollary 3E, we need only prove the last part. By Theorem 3B, it
suffices to prove that if/: M(G) -> M(H) is continuous and induces 9 and has the limit
a at x e L(G), then also/y has the limit a at x.

If/y does not have the limit a at x, then there is a sequence (^) e G such that
^i(^o) -> x but that cp(^) (jo) +-> a. Since XQ e t2(G), the set of g^s is infinite, and hence
we can assume that (^) is a convergence sequence. Necessarily x is the attractive point
of (g,) since otherwise XQ would have to be the repelling point and this is impossible
since XQ ^L(G).
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Let h, == <p(^). Since x is the attractive point of (&), it follows that g,{z) -> x
if z eA\{b} where b is the repelling point of (&). Thus /(&(^)) = ^(/(O) -> a if
2? e A\{ b }. Since H is non-elementary and/A 4= 0, the H-invariant set/A is infinite and
we can conclude that h,[z') -> a for an infinite number of points z\ Thus { h,} is
infinite and if we pass to a subsequence (denoted in the same manner), we see that
the attractive point of (AJ is a.

Since j/o eQ(H),;^ is not the repelling point of (^). Thus h^y^) -> a contrary
to the assumption. Our claim is proved.

If G is geometrically finite and H is any discrete Mobius group, we will obtain the
limit map by a procedure which resembles the taking of the radial limit. We explain
this below for general discrete G.

We concentrate on the conical limit point set A(G) ofG. Now the characterization
ofA(G) by means of approach in a Stolz angle is appropriate. We define a Stolz angle
sit x eS" to be a set of the form

w { z eB714-1:^^)^ m}

where S is a hyperbolic ray with endpoint x, the other endpoint lying in ^n+l. Conical
limit points can be defined as the set of x e S71 such that there is a Stolz angle G at A;
and z e B71 +1 such that Gz n G is infinite. Another form of this definition is that there
are g, e G such that g,{z) -> x and that, if z eB714'1 and L is a hyperbolic line with
endpoint x, then the distances d{g,(z), L) are bounded. For the equivalence of these defi-
nitions and our original definition, see the discussion in the Introduction (cf. also [BM]).

Characterization using the Stolz angle gives the following characterization by
means of the shadows. Recall from section 5 that the shadow S{x, M) of the open
hyperbolic disk D{x, M) was the projection from 0 of D{x, M) onto S", cf. (5&). Using
this notion, we can characterize the conical limit point set A(G) as the set of points
z e S71 which are in the shadow of D(^(A:o), M) for infinitely many g e G for some M
which may depend on x and on the base point XQ. Thus if

A{XQ, M) == { x e S" : x e S{g{xo), M) for infinitely many g e G },

then A = A(G) = U^o^^ M) (from now on we omit the group G, which is fixed,
from the notation of conical limit points). The set A(A:o, M) need not be G-invariant
but if we set

A(^, M) = n A(^, M'),
M'>M

for M ^ 0, we obtain a G-invariant set. It is not difficult to see that Myrberg points
are a subset of A(^o, M) for all M > 0 and all XQ such that XQ is on a hyperbolic
line joining two points of L(G). Hence, for such XQ and all M ^ 0, A(^o, M) and
A{XQ, M) have full pL-measure for a G-measure [L if conical limit points have (cf. the
Introduction).
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If xeA{xQ,M), we can associate to x in a canonical manner a sequence
gi == Sil^ ^05 x] so that

(7&) { & : i> 0} ={g e G : x eS(^o), M)}.

This does not fix the order of ̂  but this is not so important since we are interested only
of the convergence of y(&) (0). Anyway, we set that if | ^(0) [ < \g,{0)\, then i<j.
This fixes the order up to finite indeterminacy since there is a fixed N = N(M, Xo) so
that at most N disks D(^(^), M), g e G, can intersect. In any case, if the limit

W /M.oW = lm ?(&[M, X^ X]) (j^o)

exists, it does not depend on the ordering nor does it depend on the basepoint y^ e V +1

though it might depend on XQ.
I f M ' > M + d{xo, x'o), (^[M, XQ, x]) is a subsequence of (&[M', x^ x\) (up to the

finite indeterminacy of indexes). It follows from this observation that if x eA(xQ, 0)
is fixed and if the limit {7c) exists for all M and for some XQ, then it exists for all M and
for all XQ such that x eA{xy, M) and the limit does not depend on XQ nor on M.

More generally, we define the set functions

FM.oW = ̂ { ^[M, XQ, x]) ^o) : i > 0 }

where ace is the set of accumulation points (it does not depend on j/o). Then F^ is
a set function defined for x eA(^, M) with values in %'(L(H)), the family of all non-
empty and closed subsets of L(H). It need not induce (p but if we set

^Ma-o = n FM,,
M'>M °

for x eA{xo, M) when M ^ 0, then F^ induces 9 as a map A(^, 0) -> ^(t^H)) in
the sense of Section 3.

We can now state a dichotomy similar to Theorem 7A.

Theorem 7B. — Let 9 : G -> H be an isomorphism of two discrete Mobius groups. Suppose
that there is a conformal G-measure (JL on L(G) such that the product action of G is ergodic with
respect to pi x pi. Then there is A C L(G) of full measure such that either (a) there is a measurable
map f: A -> M(H) inducing 9 such that the limit {7c) exists/or all M>0 whenever
^eA(^o ,M)nA and equals f[x), or (p) ¥^{x) = L(H) for all M> 0 whenever
x eA(^o, M) n A.

Conversely, suppose that there is a measurable map of a G-invariant set AC L(G) of positive
measure into B7'4'1 inducing 9. Iff is approximately continuous at a point x eA(xo, M) with
respect to {JL, then the limit {7c) exists and is equal tof{x). This part of the theorem is true even if
the product action is not ergodic.

Remark. — If the product action is ergodic, then M(G) has full measure and so
we can assume that AC M(G). Recall that if XQ is on a hyperbolic joining two points
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of L(G), then M(G) C A{XQ, M) for every M > 0. Thus if L(G) = S71, then
M(G) C A(^o, M) for every ^ ̂  B^1 and M > 0.

If we have above case (j3), and x eA{xo, M') for some M' < M, then F^ 3L(H)
since F^(x) 3 F^/^. Thus in this case we can replace F^^(^) by F^JA:)
in (p). The problem is that it seems perfectly possible that xeA(M,Xo) but that
x ^A(M', Xo) for no M' < M. However, as we have seen, if XQ is on a hyperbolic line
joining two points ofL(G), then M(G) C A(^, M) for any M. Thus in this case we can
replace F^) by ¥^{x) in ((B).

Proof. — We first prove the last part. Let x eA{xQ, M). Let g, = &[M, XQ, x].
We claim that the limit (7c) exists and isf{x) if/is approximately continuous at x. If
this is not true we can pass to a subsequence, denoted in the same manner, so that
?(&) (-^o) —^=t=/M. We derive a contradiction from this.

Let L == L(;v, — x) be the hyperbolic line joining x and — x. Then d{g^Xo), L) < M
and hence ^(^o^^L) < M. Thus by passing to a subsequence we can assume that
SF1^) ~~>u ^d Si~l{~ x) ~^ v where u 4= v. In addition, a geometric argument easily
shows that &-l(w) -> v as i -> oo for any w e L. Hence, by Lemma 2A, Q^"1) is a conver-
gence sequence with v as the attractive and x as the repelling point. We can now apply
Lemma 6A and find a subset A' of A\{ v } of full measure such that <p(&)/(^) ->f{x)
for z e A'.

In addition, by Lemma 6A, /A" is infinite. Hence we can pick distinct ^ e A',
i ^ 3, such that also/(^) are distinct. If a, b, c e ̂ n are distinct, define

p(a, b, c) = the orthogonal projection (in hyperbolic geometry)
of c onto L(a, b).

Since the existence and value of (7c) do not depend onj^o, we can takej^o to be the point
^(/(^i)? yi^)?./!^))* Let h^ = <p(^). Obviously j& commutes with Mobius transforma-
tions, and hence A^o) =^/(^i), ̂ /(^), ̂ /(^)) ->/^) since A,/(^) —/(^) for all k
as z —^oo. This contradicts the assumption that h^yo) ~^c+f{x).

Having proved the last part, we note that if there are XQ e B" +1 and M > 0 such
that F^(A;) ^ L(H) in a set of positive measure, we obtain by Corollary 6E, that ¥^
equals a point function/: A -> M(H) in a set A == A^ of full measure. We can assume
that /1 A is approximately continuous. The first part of the proof implies that in fact
^•M'zoW ^fW for a11 M' > 0 whenever x e A n A(^, M'). Thus either we have case (a)
or ^MasoW = L(H) for x eA where A has full measure. To begin with, A may depend
on M and XQ but passing to a countable intersection of sets of full measure, we can obtain
that A is independent of XQ and M.

We will now prove the existence of the limit map ifH is any discrete Mobius group
when G is geometrically finite, that is, G has a finite sided fundamental domain (for a
more precise definition see e.g. [T2]). We will not use directly the existence of a finite
sided fundamental domain but rather the following.
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Let BQ be the hyperbolic convex hull of L(G), that is the smallest (hyperbolically)
convex and closed subset of B714'1 such that BQDL(G). The simplest geometrically
finite groups are such groups G for which B^/G is compact. In this case G is called convex
cocompact. If a geometrically finite group G is not convex cocompact, then G contains
parabolic elements. In this case we can still find a smaller set B^ C B^ such that B^/G
is compact by removing certain horoballs at parabolic fixed points. This is explained
in detail later but it is this decomposition of B^ into a part with compact quotient and
ends corresponding to parabolic fixed points which allows us to prove the theorem in
the non-compact case.

By Sullivan [S2], there is a canonical conformal measure \L on L(G) of mass 1
whose dimension is the so-called exponent of convergence 8^ of G. It is up to multipli-
cation by a constant the only conformal measure of dimension 8^ on L(G). The exponent
of convergence is positive by [Sl, Corollary 2]. If there are parabolic elements in G,
we need also to know that no parabolic fixed point is an atom of (A (cf. [S2] or [NI,
3.5.10]). Since in this situation a limit point is a conical limit point unless it is fixed
by a parabolic g e G, A(G) has full measure and hence the product action ofGis ergodic
and so in this regard we have the situation of Theorem 7B.

The dimension of a conformal measure giving non-zero measure to A(G) must be 8^
by [Sl, Theorem 21]. Since the complement of A(G) is the set P of parabolic fixed
points of G, a conformal measure of dimension 8 =t= 8^ would have to be supported by
the countable set of parabolic fixed points of G. Hence the canonical conformal measure
seems to be the only reasonable conformal measure on L(G) (up to multiplication by
a constant) for geometrically finite G. For convex cocompact groups it is not only the
only reasonable measure but even (up to multiplication by a constant) the only conformal
measure supported by L(G).

Theorem 7C. — Let G be a non-elementary and geometrically finite group and let \x be the
canonical conformal measure of dimension 8 on L(G). Then every isomorphism 9 of G onto another
discrete Mobius group is induced by a measurable map f: A -> L(H) where AC L(G) has full
^-measure in L(G). The map f is uniquely determined by 9 up to \L-nullsets.

Remark. — If (JL is not a multiple of the canonical conformal measure, then, as
we saw above, the mass of ^ is concentrated on the countable set of parabolic fixed points
ofG. If A; is fixed by a parabolic g e G, then 9(5) is parabolic or loxodromic and choosing
f{x) to be a fixed point of 9(5), we obtain an a.e. defined measurable map/inducing 9.

From now on [JL is the canonical conformal measure. By Theorem 6B, f is essen-
tially unique if it exists since the action of G is ergodic on L(G) X L(G) [S2]. Thus it
suffices to prove by Theorem 7B:

Lemma 7D. — There is a set AC L(G) of full ^-measure such that the limit (7c) exists
for all M > 0 whenever x e A n A(A:o, M).
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Proof. — Clearly, we can fix XQ ==j^ = 0 and prove that the limit (1c} exists in a
subset of full measure of A(XQ, M) if M exceeds a lower bound. This will imply the
existence of the limit (1c) a.e. for arbitrary M> 0 and whenever x eA(xo, M).

The proof is simpler for convex cocompact groups, and we first present the proof
in this case and later give the modifications for the non-compact case.

We can assume that 0 eB^. Since BJG is compact, there is M > 0 such that if
z €=BG, then GD(^, M)3B^ where D{x, r) is the open hyperbolic disk with radius r
and center x. From now on we assume that M is so big that this condition is met.

Let A(r, M) be the annulus

( I d ) A(r, M) = D(0, r + M)\D(0, r).

The basic idea of the proof is to compare the growth of the number of points
of GO in A(r, M) and of HO in D(0, ^r) for suitable (small) y > 0. In the first case we
need an exponential lower bound and in the latter an exponential upper bound as a
function of r. A consequence will be that the average hyperbolic distance from 0 of
points of { 9^) (0) : g e G, g{0) e A(r, M)} is ^ ar for some a > 0. It will follow that
if ^i = ?(<?i[M,0,A;]), then | ̂ +i(0) — A,(0)| is on the average so small that (1c)
converges. Actually, we only use exponential growth for H explicitly (cf. (Ie) below),
the exponential growth for G is coded into the properties of pi.

We can assume that 0 is not fixed by any h e H, h =1= id. Hence there is m > 0
such that D(0,m) n D(^(0), m) = 0 for any ^eH\{id}. This and the exponential
growth of the hyperbolic volume imply that the number Nn(r) of elements A e H
such that A(0) eD(0,r) satisfies the inequality

(Ie) N^^AH^

for some positive A^ and (B (we could take (B == n + 1).
The next step in the proof is to consider the measure of the "shadows" S(^(0), M)

of the balls D(^(0), m) on S", cf. (5&). By Lemma 5C, there is C > 1 such that

(7/) G-1 e-8^0^ ^ pi(S(^(0), M)) ^ Ge-^0-0^,

provided that M is bigger than the constant MQ of Lemma 5G. We can assume this.
Ghoose Y ̂  0. We want to estimate the measure of the union of the shadows

8(^(0), M) when g is in the set

G. - { g e G : g{0) e A(^M, M) and 9^) (0) e D(0, k^ }.
Set

x,= U SM.M)
QGGk

and Y, = U X,.
^fe J
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We know by ( I e ) that there are at most Ag^ elements in G^. Hence, using (7/*),
we obtain the estimate [i(X^) ^ Ag G^"^^. Since 8 > 0, we can choose y so small
that py — M^ < 0 and now

(1g) (X(Y,) ^ An Ce^-^ -——^.
i — e

Thus if we finally set

z == n Y, = n u SQKO), M),
A>0 f c > 0 j ^ f c , ffEGy

then Z is a {ji-nullset.
Notice that so far we have not made use of the fact that G is convex cocompact:

Z is a nullset for arbitrary discrete G and any M > 0.
We can now define the limit map f for x eA(0, M)\Z. Here Z depends on M

but of course it will follow that there is a (x-nullset ZQ such that the limit (1c) exists
whenever x eA(^o, M)\ZQ for any M and XQ.

Let^ == &[M, 0, x] and h^ == <p(&). To prove that the limit {7c) exists for a.e. x we
first note that D(^(0), M) and D(^_^(0), M) intersect and hence ^(&(0),&+i(0)) ^ 2M
and so g^~1 ̂  +1 and hence also h^ 1 ̂  4. i, vary in a finite set. It follows that there is
s>0 such that rf(A,(0), A^i(O)) < ^ for all z. Let ^ be the number such that
&(0) eA(A, M, M). If x eL(G)\Z, then there is k such that x ^Y^.. This means that
rf(0, A,(0)) ^ y^ if ^i ^ A- Thus5 ̂  Lemma 5B, there is c = c{s) such that

(7A) |^^(0)-^(0)|<^-^

if k^ k and ^ ^ Y^. Finally, we note that the length of the hyperbolic segment
L^ == L(0, x) n A(AM, M) is M. Furthermore, L^ is contained entirely in B^ whose
G-quotient is compact. It easily follows that the number of i such that ^(0) G A(AM, M)

z — N
is bounded by a number N == N^. Thus k^ ^ —_,—. If x ^Y^, then the estimate (7A)
is valid for i ̂  AN + N = r^ and hence

(7z) S | A,+i(0) - A,(0) | ̂  S ce-^-^ < oo.
z^rjfc ^^A

Thus indeed in this case the points A^(0) converge towards a point y which must be a
point of L(H) since y is in the accumulation set of HO.

The non-compact case. — We now give the modifications if the group is not convex
cocompact, that is, there are parabolic elements. Here we need some knowledge on the
behavior of the group near parabolic fixed points.

Let P be the set of points fixed by some parabolic g e G. A horoball based at
v e S71 is an open ball B C B71 +1 such that 3B is tangent to ^n at v and a complete set of
horoballs B^, v e P, is a disjoint set of horoballs B^ where By is based at v and such that
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g(B^ = B^) for g e G. By [Tl, Lemma B] there is a complete set of horoballs satisfying:
if we set B^ == B^\(U^p BJ, then the quotient B^\G is compact. We assume that
the number M above is so chosen that GD(z, M) D B^ for any z e B^. We can still define
the sets X^, Y^ and Z as above and Z is still a ^.-nullset.

We assume that 0 e B^. Suppose that ^ e L(G)\P, and define g, == g,[M, 0, x] eG
and ^ == cp(<^) as earlier. The problem is that it may happen that D(^(0), M)
and D(^i(0), M) do not always touch. This can happen when L(0, x) dives deeply into
some B^ after touching D(^(0), M). We will show that we can define a p-nullset Zp
such that if x ^Zp , then L(0, x) dives into the horoballs in a controlled manner. In
addition, we will define another nullset Z' whose definition is similar to Z and show
that ( I c ) converges if the limit point ^ P u Z u Z ' u Z p . Since P, the set of points
fixed by some parabolic g e G, is countable and there are no atoms, P u Z u Z' u Z
is a nullset.

The set Zp is defined by means of smaller horoballs B^ C B^. If t e (0, 1), and B is
a horoball based at v, we let tB C B be the horoball based at u such that the hyperbolic
distance of BB\{ v} and ^B)\{ v } is | log t |. Let ^ be the euclidean diameter of B^.
We set for p > 0

B:=iiog^j-^.
Since 0 ^ B^ for all v, d^< 1 and B^ are well-defined. A point x e S71 is in shadow of B^
if the hyperbolic ray L(0, x) intersects B^. The set Zp is the set of points which are in
the shadow of infinitely many B^, v e P. It is a nullset if p is big enough by [T7, Lemma 3A
and Remark 1 after it]. We fix some p such that Zp is a nullset.

The set Z' is defined by means of the horoballs B^ as follows. Let q^ e ̂  be the
point closest to 0 (with respect to the euclidean metric) and let p^ be the number such that
^ e A(^ M, M). Thus P is the disjoint union of P^'s where P^ == { v e P :j^ == k}.
Define

P; = { v e Pfc : DG?(O), M) n 8Q^ 0 for some g e G
such that d{^{g) (0), 0) < y^ }.

Let S(BJ == 7r(BJ, n as in (56), be the shadow of B^. We now estimate the measure
of u { S(BJ : v e P^ } quite like above in the proof that Z was a nullset. Since the number
of horoballs B ,̂ whose euclidean diameter exceeds a given e > 0 is finite, there is a
number N' such that each D(0, M) can touch at most N' horoballs B^, v e P, and this
is true also for D(^(0), M). Hence we have by ( I e ) the estimate

card(P^) ^ N' A^ e^

when card(P^) is the number of elements of P^.
It is geometrically evident that there is M'> 0 such that S(BJ C S(^, M').

Since ^eL(0,y) , ^eB^ and hence ^ is in D(^(0), M) for some g e G and so
S(BJ C S(^(0), M' + M). Thus we can conclude by Lemma 5C that there is c ' > 0

17
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such that pi(S(BJ) ^ ^(S(^(0), M' + M)) ^ c ' e-^-^ since d(0, g{0)) ̂  {p, - I) M.
Hence there is c" > 0 such that ^(U^p, S(BJ) < ," N' A^-8^ Consequently,
if py ~ MS < 0, and this we can assume,

z'= n u ,S(BJ
fc>0 j$?A,i7ePy

is a {ji-nullset.
We claim that if x e L(G) and x is not in the pi-nullset P u Z u Z' u Zp, then {7c)

converges. By the definitions of the sets Z, Z' and Zp, there is x ' e L(0, A:) such that the
ray L(^', x) does not intersect any B^, y e P, nor any D(^(0), M) such that g e \Jj,>o G^
nor B^ such that v e U^o ̂  Choose z'o such that D(&(0), M) does not intersect L(0, x ' )
if i ̂  ?o. We now consider only i ̂  ^.

If D(&(0),M) nD(&+i(0),M) + 0, we still have the estimate (7A). If not,
the situation is as follows.

Let L, = L(0, .v) be the hyperbolic ray with endpoints 0 and x. The balls
^{giW^ M) an(i ^i+iCO), M) as well as L, intersect some BB^ in such a way that B^
is "between95 D(^(0), M) and D(^^(0), M). As above, let k, be the number such
that &(0) eA(^ M, M). Then rf(0, ^) ^ (^ + 1) M and hence, in view (5^),

,-^+i)M^^^diam(B,).

This allows the following estimate. Now, L^ does not intersect B^ = | log ̂  ["^ B^
but intersects B,, at points which we denote by a and b so that a is closer to 0. Hence a
simple calculation, which we have done in [T7, Lemma 4A a)} shows that the hyperbolic
length of the (non-hyperbolic) geodesic of 8By n B^ joining a and b is not more than

(7j) 2 | log^ | p ^2[ (^+ l)Mp.

Now a is the first point where L^ intersects ̂ . Then a eD(^(0), M) and a is
on the part of 8Ky which is "visible95 from 0. Hence, if as above q^ is the point of 8K^
where L^ intersects 8Q^, then ^(^, a) is bounded by an absolute constant and hence
rf(^,^(0)) is bounded by some r = r^. It follows that there is an integer p == p^ such
that B^ n D(0, (k, — p) M) = 0. Hence k, — p < p^ and, since y ^ P^,

(7k) d^ 9(^(0))^ (^-^)Y

whenever ^ e G and d{g(0), M) n B ,̂ 4= 0.
Since (^ n B^)/G is compact (cf. [T7, Lemma 2A]), we can find a sequence

to == &? /i? • • •5/a == &+i of elements of G such that

D(y,(0), M") n D(/,^(0), M") n (BB, n BJ + 0

for some M" > 0 and that f^^ ===fj Gj where < .̂ e G and < .̂ vary in a finite set. In
addition the number q is proportional to the length of the geodesic of 8B^ (i.e. a geodesic
as a subset of BJ joining the point a eD(&(0), M) and the point b eD(^i(0), M)
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and hence by (7;), there is CQ > 0 such that q ̂  CQ k?. Since each d[f^(Q}, M) intersects B^,
[7k) implies that d(0,fy(0)) ^ (^ — p) y and hence we have the situation of (7A) and
so (7A) is valid with a new constant <;i ^ we substitute k^ — p for k^ and^. for A^. Adding
up, we have the estimate

(71) \h,W-h^W\^c,c,k!e^-ki)\

As in the first part, there is N such that k^ ^ {i — N)/N. The convergence of {7c) follows.

Remark. — It is apparent from our estimates that if a rather modest estimate on
the growth of d{0, <p(^) (0)) as a function of d{0,g(0)) is available, then the limit {7c)
exists. For instance if G is convex cocompact and if, for big values of d{0, gW))

{7m) d{0^{g){0))^logd{0,g{0)r,

where a> 1, then instead of (7A) we have | A,+i(0) — h,{0) \ < cd(Q, ̂ O))"". Since
rf(0, ^(0)) has a lower bound which is proportional to z, this guarantees the convergence
of (7z) and hence of (7^). Furthermore, the limit map will be continuous in this case.

If G is geometrically finite and contains parabolic elements, then we obtain the
convergence if a > p + 1 tor x e L(G)\(P u Zp); this follows since now (7/) is true
with suitable constants if we substitute in it ^(0,^(0))"°' w k^"- for ̂ -^

If both G and H are convex cocompact, then the map fy : GO ->• HO is pseudo-
isometric, so that d(0, (p(^) (0))/fl?(0, g(0)) is bounded away from 0 and oo for big enough
d(0,g(0)). The proof of the existence of the limit map in Mostow's rigidity theorem
was based on the pseudo-isometric condition. We have seen that if G is convex cocompact
(and H arbitrary discrete), the pseudo-isometric condition is far stronger than is necessary
for a continuous extension to the limit set.
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