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CRYSTALLINE DIEUDONNE MODULE THEORY
VIA FORMAL AND RIGID GEOMETRY

by A. J. DE JONG*
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Introduction

Let S be a base scheme in characteristic p. Consider the crystalline Dieudonne
module functor D on the category of ̂ -divisible groups over S to the category of Dieudonne
crystals over S. We ask whether D is fully faithful or fully faithful up to isogeny over S.
If so, we can ask whether D is even an equivalence.

The idea of associating Dieudonne crystals to ^-divisible groups goes back to
Grothendieck. We refer to his letter toj. Tate of 1966, his Montreal lectures in 1970 [Gl]
and his talk at the Nice congress [G2]. In Section 3 of [G2] Grothendieck mentions
two constructions of the Dieudonnd crystal; one using the exponential, another using
the method of ^-extensions. The first approach is developed in [M], the second in [MM],
In [M] the Dieudonne crystal is constructed using universal extensions by vector groups,
and Messing proves the deformation theorem. In [MM] the authors prove the compa-

* The research of Dr. A.J. dejong has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences.
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rison theorem, which compares the de Rahm cohomology of an abelian scheme with
the Dieudonn^ crystal of its ^-divisible group. Open questions in the theory at that
time were the full faithfulness/equivalence questions mentioned above and the problem
of extending D to the category of finite, locally freej&-groups. These questions were raised
in [Gl] and [MM].

In [B] and [BBM] Grothendieck's formalism of crystalline sites and crystals is
developed and extended. Using this the Dieudonn6 crystal is defined in [BBM] as an
<^-sheaf on the crystalline site. This definition generalizes to give the crystalline Dieu-
donn^ module functor on the category of finite, locally free /^-groups.

There are partial results on the full faithfulness/equivalence problem. Berthelot
and Messing [BM] prove that D is fully faithful on schemes having locally a j^-basis.
There are unpublished results of Kato proving that D is an equivalence over schemes
smooth over perfect fields of characteristic p > 2. This continues work of Bloch on
^-divisible formal Lie groups (1974, unpublished). Messing proved (unpublished) that
the result of Kato for arbitrary characteristic follows from the results of[dj]. However,
the full faithfulness question does not have a positive answer in general; there are
counterexamples given in [BM].

In this paper we extend the results of Berthelot, Bloch, Kato and Messing. The
first result is an equivalence theorem.

Main Theorem 1. — Let 3£ be a formal scheme in characteristic p, formally smooth over
Spec(Fy), such that 3£^ is locally of finite type over a field with a finite p-basis. The crystalline
Dieudonne module functor D is an equivalence over X. D

In particular D is an equivalence over regular schemes which are of finite type over
a field with a finite ^-basis.

Our second main result is that D is fully faithful up to isogeny over schemes of
finite type over a field with a finite /»-basis. This assertion (Corollary 5.1.2) follows
from the following slightly stronger theorem.

Main Theorem 2. — Let S be a reduced scheme of finite type over afield with a finite p-basis.
Let GI, Gg be p-divisible groups over S. We have the following equality'.

HomDc/s(D(G2), D(Gi)) == torsion subgroup ® D(Homg(Gi, Gg)). D

For certain schemes S it is known that the torsion subgroup is zero, for example if S is
a locally complete intersection. If S is such a scheme and satisfies the conditions of the
theorem, then the crystalline Dieudonne module functor is fully faithful.

We turn to an overview of the contents of the chapters. Chapter 1 contains some
algebraic preliminaries. In Chapter 2 the crystalline Dieudonne module theory is
extended to formal schemes. We start with the definition ofD from [BBM]. We analyse
what it means to have Dieudonnd crystals over formal schemes. After this the fully
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faithfulness in the Main Theorem 1 follows from the fully faithfulness result of [BM]
by a rather formal argument.

In Chapter 3 we deform Dieudonn^ crystals and ^-divisible groups. An important
technical point is the introduction of special Dieudonnd modules. This allows us to
deform Dieudonnd crystals. We want to deform a ̂ -divisible group given a deformation
of its Dieudonn^ crystal. Here we use the precise description of the deformations of a
/^-divisible group G in terms of filtrations on its Dieudonn^ crystal. We can do this
since D(G) agrees with the crystal defined in [M], as is shown in [BM].

In Chapter 4 we prove essential surjectivity in Main Theorem 1. We use induction
on the dimension of Xyed- The crucial step is the case dim (3^) = 0. Here we have to
prove that D is essentially surjective over a field with a finite j^-basis. The proof uses
two ingredients: the description, in [dj], of formal ^-divisible groups in terms of
Dieudonn^ modules, and a result on extensions of ^tale by multiplicative ^-divisible
groups.

The Main Theorem 2 is proved in Chapter 5. The proof uses ideas of Berthelot
on convergent isocrystals ([B2]). By Main Theorem 1 we already know the result over
the regular part of S. Over the singular part of S we get the result by induction on the
dimension. Hence, we need to show that the two resulting homomorphisms glue. Using
the ideas of Berthelot it is proved that they glue rigid analytically over a tube U of S.
See the beginning of Chapter 5 for the definition of a tube. We are able to descend
from U back to S using certain results, proved in Chapter 7, relating rigid geometry
and formal geometry.

The result of Chapter 6 is that on a connected rigid analytic variety X over a
discretely valued field any two points may be connected by curves on X. This result
is used in Chapter 5. In Chapter 7 we describe Berthelot's functor 3£ \-> X^. Here X is
a formal scheme over a complete discrete valuation ring R, where X need not be of
finite type over R. The result X"^ is a rigid analytic variety over the quotient field of R.
In Theorem 7.4.1 we compare bounded rigid analytic functions on X"8 with formal
functions on X. In Proposition 7.5.2 we prove a result on rigid descent of closed formal
subschemes.

This work is strongly influenced by the work of Prof. Berthelot, indeed, this paper
might not have existed had I not attended a talk by Berthelot on convergent isocrystals.
I would like to thank him for stimulating conversations. Furthermore, I would like to
thank Prof. Messing, Prof. Zink and R. Huber for discussions on subjects related to
this paper.

1. Some algebra

In this chapter we introduce a class of formally smooth Fy-algebras and give
some of their properties. Further, we recall some notations and definitions. All rings
considered are assumed commutative with 1.
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1.1. Rings with p-bases

1.1.1. Definition. — A subset { x^} of an Fp-algebra A is called a p-basis of A if A,
considered as an A-module via the Frobenius of A, is a free A-module which admits as
a basis the set of monomials x1, where I runs over multi-indices I = (zj, 0 ̂  iy^ < p and
almost all ^ are zero.

This definition is taken from [BM] (Definition 1.1.1). It implies that A is reduced
and is a formally smooth Fp-algebra. If A has a j&-basis then any localization S~1 A has
a j&-basis and any polynomial ring A[TJ has a j&-basis. Any field of chraracteristic p
has a ^-basis.

1 .1 .2 . Lemma. — For any Ty-algebra A having a p-basis the natural augmentation of the
cotangent complex of A over Fp:

T __ Ql
^A/Tp -> ̂ A/¥p

(see [III, II (1 .2 .4 .1)~\ ) is a quasi-isomorphism. (Here L^/p is viewed as an object of the derived
category D(A).^)

Proof. — We first remark that for any ring A in characteristic p the Frobenius
endomorphism A -> A induces an endomorphism of L^p which is homotopic to the
zero morphism. Indeed, the augmentation Pp (A) ->A [111, I (1.5.5.6)] is a homotopy
equivalence. Hence any endomorphism of Pp (A) lifting the Frobenius endomorphism of A
is homotopic to the canonical one (the one from [111, II 1.2]). Therefore, we may take
the Frobenius morphism of Pp (A) (i.e., the Frobenius endomorphism on each Pp (A)J
to compute the action of Frobenius on L^/p . As (L^/p )„ = ̂ (A)^/F ? tnls induces the
zero morphism on L^/p •

Let us write for A^ C A the subring of j^-powers of A. Frobenius induces an iso-
morphism A -> A^, hence by the remark above the inclusion A^ C A induces the zero
morphism L^/p -> L^/p • Consider the distinguished triangle associated to Fp C A^ C A
(see [111,11 (2.1.2.1)])^

LA^ ®A? A -^ LA/F^ ^> L^ ̂ > LA^ ®AP A[l].

We have seen that (1) induces the zero map on homology. It is easy to see that (2)
induces an isomorphism Q^/p ^^A/A?' r^0 fi^sh the proof we have to show that (3) is
injective on H_i(L^/^) and that H_^(L^/^j&) === 0 for all i^ 2.

Let { x^ }j g j be a ^-basis of A. Consider the ideal I generated by the elements
T^ — x^j ej in the polynomial ring P := A^T '̂ ej]. It is easily shown to be Koszul
([111, III 3.3]). Since A ^ P/I we get by [111, Proposition 3.3.6] that

LA/A^ ̂  (0 ̂  I/I2 dp^ ̂ P ®p A -^ 0).
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Of course in our situation dp^p == 0. We leave it to the reader to show by an explicit
calculation that (3) induces an isomorphism

I/P-^^O^A.

(It maps T^ — x] to — dx^ ® 1.) n

1 .1 .3 . Lemma. — Let A be an F^-algebra with a finite p-basis, I C A a finitely generated
ideal. The completion A of A with respect to 1 has a finite p-basis also.

Proof. — Choose a j^-basis { ^3 ..., x^ } of A and generators /i, .. .,^ of I. We
denote by x i-> x the map A -> A. We want to write any element a == lim a^ of A (with
a^ e A/I") in the form

a== S Wx3, a,eA.
J-O'l, ...^.O^Ja^

By assumption we can write a^ == ^(flj^)^ xJ mod I". We see that

S^^-^J^eP.

Considering the effect of

/^"i / a y^
[ox,] ' " [ ^ ]

on elements of the form S b^ x3 and on P, it becomes clear that
[ n _ ^ \ P / = 1 » » — PN
^J, n 4-1 ^J, n/ e A

Next, we can write any element of P ~ PN (in particular the element ( ^ n + i — ^ j n ) 2 ' )
as

S ^(/^^ a^eA.
|K |^»/p-N-(p- l )M

Here the sum runs over multi-indices K = (^, . . . , A M ) with total degree

| K | : = = ^ + ... +AM

at least ^) := nip — N -- {? — 1) M. Wridng o^ = 2(0^^)" ̂  we see that

(^.n-H-^n)'-^ S ^^yx^
3 lK|^c(n)

The only non vanishing term on the right is the one with J = 0. Therefore, we conclude
that

^n+l-^.n6!^-
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Thus, putting

dj : == Urn dj „ mod P^ e A,

we get

a === 2(^ X'1

as desired. Unicity is proved in the same manner. D

1.2. Lifts of rings in characteristic p to characteristic 0

1.2.1. Definition. — Let A be a ring of characteristic p. A lift of A (resp. a lift of A
modulo p") is a radically complete ring X, flat over Zy (resp. flat over Z/^ Z) endowed
wiAan isomorphism XlpA ̂  A. A /z/i? ofFrobenius on such a lift X is a ring endomorphism
a : A -> A such that a {a) == a^ modpA. In this situation we will also call the pair (A, a)
a lift of A (resp. a lift of A modulo p " ) .

1.2.2. Lemma. — Suppose A is an fy-algebra whose cotangent complex L^/p is quasi-
isomorphic to Q^. If, in addition, 01^ is a projective A-module then a lift (X, a) of A exists.

Proof. — We are going to find a lift (A^, or) of A modulo ̂ n. We argue by induction
on n (the case n = 1 is clear). The obstruction to find A^i given A^ lies in

Ext^(L^/z/ynZ? A)

by [111, III (2.1.3.3)]. Since L^/z/,," z 0 A ^ L^ (see [111, II (2.3.10)]) we get

ExtlJL^nz, A) ^ ExtKL^, A) ^ Extl(^, A)

and the last group is zero by assumption. Similarly, given A^i, the obstruction to lift
<r : A^ -> A^ to A^ ̂  i lies in

Kxt^L^z/^z^oA^A).

(Use [111, III (2.2.2)]; we remark that a subscript o is missing from [111, III For-
mula (2.2.1.4)].) In this case we have the quasi-isomorphisms

LA^Z ®o A, ® A ̂  L^,z/pnz ® A ®, A ^ L^ ®, A ^ i^ ®, A

and we conclude in the same manner that the obstruction is zero. D

1.2.3. Remarks. — a) Combining Lemmata 1.1.2 and 1.2.2 we see that any
Fy-algebra A with a^-basis has a lift (X, a). In [BM] an explicit construction of such
a lift is given.

b) Although the lift A of the lemma is always unique up to isomorphism, this is
not true in general for the pair (X, a).
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1.3. Formally smooth rings in characteristic p

1.3.1. Let A be an Fp-algebra and I C A an ideal of A. We consider the following
condition on the pair (A, I):

(1.3.1.1) — A is Noetherian and complete with respect to the I-adic topology on A.
— The ring A is formally smooth over Fp (see EGAOjy 19.3.1 or [Mat,

28. C]; we use the I-adic topology on A).
— The ring A/I contains a field with a finite j&-basis and is a finitely gene-

rated algebra over this field.

We will say that an F^-algebra A satisfies (1.3.1.1) if there is an ideal I C A such that
(A, I) satisfies (1.3.1.1) above. Usually, we will assume that the ideal I is as big as possible,
i.e., I = VI. We remark that this assumption and (1.3.1.1) uniquely determine I C A.
This follows from the fact that a ring finitely generated over a field has only one adic
topology for which it is complete: the discrete topology.

1.3.2. Examples. — Let A be a field of characteristic p with [k: k^] < oo, i.e., k has
a finite ^-basis.

(1.3.3.1) Any completion of a polynomial algebra k[x^ ..., A:J with respect to an
ideal satisfies (1.3.1.1). By Lemma 1.1.3 such a ring has a finite j&-basis.

(1.3.2.2) Any finitely generated ^-algebra A = A/I which is a regular ring satisfies
(1.3.1.1). (To see that A is formally smooth over F^ use EGA O^y 22.6.7.)

From Lemma 1.1.3 we see that rings of the type described in (1.3.2.1) have
a finite /»-basis. Hence by [BM] we know that crystals over such rings can be described
in terms of modules with connections over lifts. The next lemma will imply the same
for rings as in 1.3.1.

1.3.3. Lemma. — Let A be a ring satisfying ( 1 . 3 . 1 . 1 ) .
a) There exists a ring B of the form described in ( 1 . 3 . 2 . 1 ) and a subjection n: B ->A

such that the inverse image of an ideal of definition of A is an ideal of definition of B. We may
then choose i : A -> B such that n o i = id .̂

b) The homomorphism ^1\ -^^\ (continuous differentials) is an isomorphism; ^1\ is a
finite projective A-module.

c) The morphism L^/p ->^ ls a quasi-isomorphism.
d) If we have B, i and TT as in a) then we can find an isomorphism

B ^ A[[M]] = n Syml(M)
n^O

where M is a finite projective A-module. We can find a lift (X, a) of A (1.2.2); as a lift ofB
we can take

B = A[[%]],

for some lift M of the module M. Furthermore, we can find a lift of Frobenius a on S satisfying
a{M) C Sym ĵRl) and inducing a on X.
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Proof. — Let I C A be an ideal as in (1.3.1.1) and let k C A/I be the field which is
supposed to exist by (1.3.1.1). Take a lift k -> A of the homomorphism k -> A/I (this
is possible, k is formally smooth over Fy). Next we take a homomorphism

9:^1, . . . ,A; , ,^+i , ...,A;J -^A

such that the images of x^ ..., Xy generate A/I as a ^-algebra and 9(^+1), ..., <p(^»)
are generators of the ideal I. Let B be the completion of k[x^, ..., A-J in the kernel of
k[x^, ..., A;J -> A/I. The homomorphism 9 induces a surjecdon TC : B -^ A, Let J C B
(resp. K C B) be the kernel of B -> A/I (resp. B -> A/P). The ring A is formally smooth
over Fy by (1.3.1.1), hence we can find a ring homomorphism ^: A ->B/J2 fitting
into the diagram:

A ——> A/I2 —> A/I

!*• 1s t"
B/J2 —> B/K —> B/J.

(Remark that J 2 C K C J and that ^2 need not be ^-linear.) We see that PC Ker(^)?
as ^2(1) c J/J2? therefore we get ^: A/I2 -> B/J2. By induction on n we choose homo-
morphisms ({/„ : A/P -> B/J" (^3), such that ^ mod P~1 === 4^_i (use that A is
formally smooth over Fy). We put

+00 = Hm +n : A -^ B.

Our choice of ̂  implies that TC o 4/00 := ^A mod I2, so it must be an automorphism of A.
If we take i := ̂  o {n o ^oo)~1 ihen we see that TC o i = id^. This proves a).

The usual argument shows that, since B is formally smooth also, we must have
B ̂  A[[M]] with M a finite (B Noetherian) projecdve A-module (cf. EGAO^v 19.5.3).
This implies that the ideal MB == Ker(B -> A) is regular and that the sequence

0 ->M -^B^A-^^ ->0

is split exact. Our result LB/F ^ ^a (Lemma 1.1.2) gives c ) by [111, III 3.3.6]. State-
ment b) follows from the fact that Qg ls a finite free B-module and is isomorphic to the
module Qg of continuous differentials (with respect to the J-adic topology). This fact is
easily proved using the finite ^-basis of B (compare with the proof of Lemma 1.1.3).

We already proved the first part of d ) . There are no obstructions to lifting finite
projecdve modules, so we can find the lift M of M. This is a finite projecdve X-module;
let us take a finite free module © A. ̂  and homomorphisms © A. x^ -^ M and
Q) A. x^ <- M with s o t == idg. For a we take the composition

A[[M]] -^ A[[<1] -^ A[[^]] -^ A[[%]]
f>/ */^ \ 'n / \772 h-> t(m) x^ h^ x? x^ i-> J(^J

id^ CT on A id^.

This concludes the proof of Lemma 1.3.3. D
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1.3.4. Remarks. — a) The lift A of the lemma above is also complete for the T-adic
topology; here I denotes the inverse image in X of an ideal of definition I of A.

b) The module

Q.^ = differentials continuous for thej^-adic topology on A :== limQ^n^

is a finite projective A-module $ it is flat over A and we have Q^lpO^ ^ 0^. To see this,
use 1.3.3 d) to reduce to the case that A has a finite j&-basis and apply [BM, 1.3.1].
More generally for any lift A as constructed in Lemma 1.2.2 the module 0^ is a flat
lift ofQ^. The reader may enjoy proving this general result for himself.

c ) The natural homomorphism

Q^ — 01- ~ -^ O1- ~
""A — "(A, pA) ""> "-(A, I)

is an isomorphism. The A-module on the right denotes differentials continuous in the
I-adic topology (see a)). This follows from 1.3.3 b).

2. Crystals, formal and ^-divisible groups

In this chapter we describe crystals in terms of modules with connections. We
are a bit more general then [BM], In addition we do the same for Dieudonnd crystals.
Finally, we define a Kodaira-Spencer map for Dieudonn^ crystals on certain formal
schemes which measures in a certain sense how versal the crystal is.

2.1. Crystalline sites and crystals

2.1.1. We always work in the absolute case, with base scheme (S, ̂ , y) where
S = Spec(ZJ, ^ == pO^ and y denotes the canonical divided powers on ^. For any
S-scheme T we also denote by y the canonical divided powers on the ideal p(Py. If S is
a S-scheme such that p is locally nilpotent on S then we write GRIS(S/S) for the big
fppf-crystalline site of S over (S, ̂ , y) (see [BBM, 1.1]). We will always endow it with
the fppf-topology.

We refer to [BBM] for the notation and conventions we use regarding these sites,
sheaves on them, etc. For example, recall [BBM, 1.1.3] that a sheaf S on CRIS(S/S)
is given by the following data:
(2.1.1.1) a sheaf ^T.S) (usually denoted S^) on the small fppf-site T^ of T for

any object (U, T, S) of GRIS(S/S),
(2.1.1.2) for any morphism (u, v} : (U', T', 8') -> (U, T, 8) of GRIS(S/S) a sheaf

homomorphism v~l{Sy) -> €r^,.

These have to satisfy a number of obvious conditions.
Let ^ be a site, ^ a sheaf of rings on ^ and ^ a sheaf of c^-modules. We say

that y is a quasi-coherent sheaf of ^-modules if^is locally on ^ isomorphic to the cokernel
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of a map ̂ (I) -> ̂ (J). More precisely, for any X e Ob^, there exists a covering { U, -> X }
of X such that <^[u. is isomorphic to the cokernel of a morphism ^^[n. -^^^lu. of
^-modules. Compare [EGA, Oj 5.1.3]; see also [B, Section 1.1] for this and the fol-
lowing definition.

2.1.2. Definition. — Suppose s/ is a sheaf of rings on CRIS(S/2). We say that a
sheaf of J^-modules <fis a crystal of quasi-coherent ^/-modules if the following conditions hold:
(2.1.2.1) < ,̂ is a quasi-coherent sheaf of ^-modules on T^ for any object (U, T, 8)

ofGRIS(S/S),
(8.1.2.2) the transition homomorphisms (2.1.1.2) induce isomorphisms

^"W^-Wr^r -^T'-

We get the definition of crystals of finite locally free ^/-modules by replacing in (2.1.2.1)
the word quasi-coherent by finite locally free. In the same manner one can also define
crystals of ^/-modules of finite presentation over GRIS(S/2).

2.1.3. Let X, Y be S-schemes on which p is locally nilpotent. Let i: Y —^ X be
a closed immersion. To i is associated a morphism of functoriality

^CEIS = (^CEIS? ^CRIS*) : (^/^JcEIS -> (-^V^'JcEIS

of crystalline topoi, see [B, III 4.2.1] and [BBM, 1.1.10]. We want to study the effect
of ic^is* on crystals of ^y^-modules.

Let us describe ICEIS*- For any object (U, T, 8) of CRIS(X/S) we write
(V, Dy(T), [ ]) for the divided power envelope of V :== Y x xU in T, the divided
powers [ ] taken compatible with those on the ideal o fUinT (i.e., 8) and with y onpffly.
The triple (V, D^(T), [ ]) is an object of GRIS(Y/2). For a sheaf € on GRIS(Y/S)
we have the following isomorphism

(2.1.3.1) ZCBIS*WT ^ (Ar)* (^DV(T))-

Here ̂  is the canonical morphism Dy(T) —^T; it induces a functor (^)^: Sheaves on
Dy(T)fpp^ -> Sheaves on T^p^. This is proved exactly as in [B, IV 1.3]. We remark that
for T' -> T flat we have D^(T') ^ Dy(T) x^ T' (see [B, I 2.7.1]). Clearly, if V = U,
that is, if the morphism U -> X factors through Y, then (V, Dy(T), [ ]) == (U, T, 8).

The description ofz^ig is easier. For any object of CRIS(Y/2), say (U, T, 8), we
denote by z,(U, T, 8) the triple (U, T, 8) considered as an object of CRIS(X/S), i.e., U is
considered as a scheme over X via the composition U -> Y -> X. For a sheaf € on
(CRIS(X/2) we have
ff> \ Q 0 \ <* f ̂ >\ ^
{d.l.S.d) ^CBIsWdJ.T.S) = '"iKU.T.S)'

(See [BBM, 1 . 1 . 1 0 . 3 ] . ) Thus, for any sheaf S on CRIS(Y/S) we have

(2.1.3.3) ^is^is.Ws^.
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2.1.4. Lemma. — In the situation of 2.1.3, the functor Z^EIS* induces an equivalence of
the following categories:

V\. The category of crystals of quasi-coherent (resp. finite locally free) (Py^-modules on CRIS(Y/S).
^2. The category of crystals of quasi-coherent (resp. finite locally free) i^^{(0^i^)-modules

on GRIS(X/S).

A similar statement holds for crystals of finite presentation.

Proof. — Suppose € is an object of ^1. Take any object (U, T, 8) of CRIS(X/2).
The sheaf <?DV(T) ls a quasi-coherent sheaf of ^py^-modules on Dy(T)fppf. By descent
theory, it arises from a quasi-coherent sheaf of fl^^-modules on Dy(T)^. The mor-
phism py : Dy(T) -> T is affine, hence covering T by affmes we may assume there is
an exact sequence

(2.1.4.1) ^T>-^<T>-^(T>-^0

on Dy(T)^ppf. (If € is of finite presentation then the index sets I and J may be chosen
finite; if € is finite locally free then we may choose 1=0 and J finite. Adding such
remarks, the rest of the proof will go through in each of the three cases.) Since the
morphism pr^ : Dy(T) -> T is affine this gives an exact sequence

(2.1.4.2) ^CEIS^Y/S)? -^CEIS^Y/S)^ -^CEIS.WT -> 0

on Tfppf. Therefore, we have proven that ^cRis*(^) satisfies (2.1.2.1) with
^ = ^cEis^y/s)- Let {u, v) : (U', T', 8') -> (U, T, 8) be a morphism of CRIS(X/2).
The crystal property of S implies that S-^,^^ is the pullback of <?DV(T) vla ̂  morphism
Dy^T) -> Dy(T). Hence we also have a sequence (2.1.4.1) overDy,(T') and a sequence
(2.1.4.2) over T'. Thus, the sheaf ZCEIS^) satisfies (2.1.2.2) with ^ = icjtis^w)
since this is clearly true for ^'cEis*(^Y/s)- ^e conclude that ^CEIS*(^) rs an object of ^2.
By (2.1.3.3) the functor ^sis*: ^1 -> ^2 is fully faithful.

Suppose <^e0b^2. Take any object (U, T, 8) of CRIS(Y/S). By assumption
we can find a covering family

(U,,T^)-^.(U,T,8)

in GRIS(X/S) such that on each T, ^pp^ there is an exact sequence

7 ( ^ ^(I) s t (f0 \(J) _ ^ . n
^CEIsA^Y/SyT, '~> ^CEIS+^Y/SJT, "̂  ^T, "̂  v-

Since U^ == U X T T,, the given map U, -> X factors through Y <->- X. The system
(U,, T,, 8J -> (U, T, 8) can thus be viewed as a covering of (U, T, 8) in CRIS(Y/2).
By (2.1.3.2) we get exact sequences

(^Y/S)^ -> (^Y/^ ^EIS^T, ->0.
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We conclude that i^isW is in <g?l (verification of (2.1.2.2) is trivial). To finish
the proof we need only to show that the natural homomorphism

"CBIS* "CKISY

is an isomorphism. This may be checked locally on CRIS(X/2), hence on objects (U, T, 8)
of CRIS(X/2) where we have an exact sequence

i (fo ^(I) s f (' fo ^(J) —^ /p ^ n
"CKIS+^Y/SyT ' ^CEIS+^Y/S^T ' ®T ' u*

The descripdon of i^i^ implies that this is the exact sequence

((A-). ̂ (T))^ -> ((Ar)* ^(T))^ -> ^T ->0

on Tf^f. Hence ^ ^ (A1)* ̂  ̂  some quasi-coherent sheaf of fl^rD-modules 3^ on
Dy(T)fppf. By the crystal property (2.1.2.2) for S we must have ^ ^ ^(T) (here
(V, Dy(T), [ ]) is considered as an object of CRIS(X/S)). Since it is also true that

^CEIS* ^EIS^JT ̂  (PT)* ®Dv(T)?

the proof is complete. D
The sheaf ^BIS* ^Y/S 0^ Lemma 2.1.4 is not in general a crystal of ^/^••"^dules.

For instance if i is the closed immersion Spec(Fy) -> Spec(Fp[T]) the sheaf i^s.^ ^y/s
satisfies (2.1.2.1) but not (2.1.2.2). The following proposition shows that we may
replace ?CEIS* ^Y/S by a crystal.

2.1.5. Proposition. — In the situation 2 . 1 . 3 there is a sheaf of Q^^-algebras ^
on CRIS(X/S) and a homomorphism (of 0^^-algebras)

(2.1.5.1) ^^CEIS^Y/S

such that:

a) The sheaf ̂  is a crystal of quasi-coherent (P^^-modules.
b) For any object (U, T, S) of GRIS(X/S) such that the morphism U ̂  X is flat the

homomorphism (2 .1 .5 .1 ) induces an isomorphism
/^

^T •"=> (^CEIS* ^Y/s)T-

The category of crystals of quasi-coherent Q^^-modules is equivalent to the category of crystals of
quasi-coherent ^/-modules. This equivalence induces an equivalence of the subcategories consisting
of crystals of finite presentation (resp. the subcategories consisting of crystals of finite locally free
modules).

Proof, — We remark that a) and b) determine ^ up to unique isomorphism,
hence it suffices to construct ̂  in the case that X is affine. Say X == Spec(R) and Y ̂  X
given by the ideal J C R.
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Let us take a surjection P:= Z^] -^R with kernel 1C P and let us denote
by (D, I, 8) the divided power envelope of I in P, the divided powers taken compatible
with Y on j&P. Similarly for the exact sequence

0 -^1(2) -^P(2) := P®^ P ̂  Z^.jJ ->R ->0

we get (D(2),I(2),8(2)). Next, we write J:= Ker(D -> R/J) and put

D(J) = divided power envelope ofj in D,
divided powers taken compatible with 8 on I and y on pD.

In the same way we getj(2) C D(2) and its divided power envelope D(2,J(2)).
Suppose (U', T, 8') is an affine object of CRIS(X/S):

(U', T, 8') = (Spec(B7F), Spec(B'), 8; : P -> V).

By construction of D we can find a homomorphism of PD-algebras

<p : (D,T, 8) -> (B', I', 8')

Ufting the given homomorphism R -> B'/I'. We define ̂  as the sheaf on T^ associated
to the B'-module B' ®p D(J). To prove this does not depend on the choice of 9 we remark
that the natural maps

D(J)®DD(2) ^D(2,J(2))<~D(2)®^D(J)

are isomorphisms, see [B, I Proposition 2.8.2]. These isomorphisms satisfy an obvious
cocycle condition. By construction, the sheaf ^ so defined is a crystal of quasi-coherent
0^-modnles.

The value of ^Eis*(^Y/s) on T;p^ is the sheaf associated to the B' module
^'CD ==the divided power envelope of J' := Ker(B' -> (B7P)/J(B7r)) in B', the
divided powers taken compatible with 8' on I' and y onpW. The map (2.1.5.1) is defined
as the sheaf homomorphism which on T^ is determined by the homomorphism of
B'-algebras

(2.1.5.2) B'(x^D(J)->D^(J').

Therefore [B, I Proposition 2.8.2] gives &/: assertion b) for (U, T, 8), where U -> X is
an open immersion. A slight generalization. Proposition 2.1.7 below, gives b) in general.
However, for the proof of the last assertions of 2.1.5 we do not need 2.1.7. Indeed,
we use 2.1.4 to go from (Pyymodules to i^is* ^Y/s-^dules. Since these crystals are
determined by their values on (U, T, 8)'s with U->X an open immersion (for
example T = Spec(D/J&n D) we derive the equivalence from A;'), n

2.1.6. In this section the conventions and notation are those of [B, I Section 2.8.1],
excepting (2.8.1) of [B], which we replace by:

(2.1.6.1) The ring homomorphism B/I ->B7I' is flat and J7? ==J/I.B7I'.
3
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Thus, we are given a commutative diagram

(B,I,8) —> (B',r,8')\ /
(A,Io,y)

of algebras, 8 and 8' compatible with y, B -> B' is a PD-homomorphism and ideals
J C B (resp. J' C B') containing I (resp. I'). The divided power envelope Dg(J) ofj in B
(divided powers taken compatible with 8 and y) and similar Dg,(J') are given.

2.1.7. Proposition. — In the situation 2.1.6, the homomorphism

DB(J)®BB'^D^(J')

is an isomorphism.

Proof. — The proof of this is the same as the proof of [B, I Proposition 2.8.2]
except that one has to replace the sentence beginning on line 2 of page 55 by the following
arguments: "Suppose a section ^ o f j ^ n Im(K®B') is of the form

^ = S (^-^00 a,

with ^ ej, ^ eB and o^ eB'. Transferring the elements ^ to the other side of the
®-sign we may assume ^ == 1 for all i. The degree zero component of x lies in the
degree zero component ofjg, which is I'. Hence we see that 2^ ̂  a^ == 0 in B'/I'.
Flatness of B'/F over B/I implies that there are elements b^ e B and o^ e B' such that

c, :== a, -- S^a^ eP

and d^ := SA:, b^ el.

(See [Mat, Theorem 1].) Thus we see that

x = S (^1] - x,) ® a,

= S (^1] - x,) 0c, + S (^ - ̂ ) ®^ a;
i »,»

= S (^1] - ̂  e> c. + S (^" - <4) ® a,.
t A;

Each of the terms lies in Jg n Im(K ® B').9' D

2.2. Crystals and modules with connections

2.2.1. Suppose A is an Fy-algebra satisfying (1.3.1.1). Let A be a lift of A and
let J C A be an ideal of A such that p " ' A C J for some n e N. We are going to describe
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crystals of fl^-modules, with S == Spec(A/J) in terms of modules with connections.
We put

(2.2.1.1) (£) , J , [ ] )=the ^-adic completion of D^(J).

We denote by 0.^ the module of continuous differentials of A (cf. Remark 1.3.4). There
is a natural connection

(2.2.1.2) V:£) ->D®i^:b®^

compatible with d : X -> ̂  and such that

(2.2.1.3) V(7[w]) =J[n-13®d;• V jeJ .yzeN.

(See Remark 2.2.4 d ) for the construction ofV.)

2.2.2. Proposition. — The category of crystals of quasi-coherent O ̂ -modules is equivalent
to the category of (p-adically) complete t)-modules M endowed with an integrable, topologically
quasi-nilpotent connection

V : M ->M®T01
'A^A

compatible with the connection (2.2.1.2) on £).

2.2.3. Corollary. — The category of crystals of quasi-coherent ^^^ec^^i^-modules is equi-
valent to the category of (p-adically) complete A-modules M endowed with an integrable^ topolo-
gically quasi-nilpotent connection

V : M ->M®^n^

2.2.4. Remarks. — a) By our conventions a complete module is separated.
b) In the above equivalences crystals of finite locally free fl^-modules correspond

to finite locally free D-modules and vice versa. Similarly, crystals of ^g/^-modules of
finite presentation correspond to £)-modules locally of finite presentation.

c ) The condition of topological quasi-nilpotence means the following: given any
ŝ 1 t^

derivation 6 e Hom^(^2^, A) the induced endomorphism VQ : M —> M is topologically
quasi-nilpotent, i.e., for any m e M, there exists n eN such that V^(w) epM.

d) We would like to add that, if S is such a crystal of quasi-coherent ^g/^-modules,
the corresponding module M is defined as:

M:=^mr((S,Spec(D/^£)),[ ]), <?).
n

As usual the connection comes from the identification

^M^sf^)-^^)®^3^
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which we get from the crystal property of S. Here ft (2) is the ^-adic completion of

Dl^l,,(Ker(A®^A^A/J))
p r

and we remark that if K :== Ker(f)(2) ->t)) then K is a sub PD-ideal and
K/K^3 ^ JD ®A ̂ . If we apply this to <? == ^g/s we get M ^ 6 and in this manner
we derive the connection (2.2.1.2). We leave it to the reader to prove (2.2.1.3).

e ) It follows from the preceding remark that if M (resp. M') corresponds to S
(resp. <ET) then M ®g M' corresponds to € 0^, § ' .

f) Let J' C A be a second ideal and D' the corresponding divided power
algebra (2.2.1.1). Assume thatJCj 'cX, so that we get a closed immersion

i:S':=Spec(A/J') -^S.

Let ^ be the sheaf of ^g/s^g^ras constructed in Proposition 2.1.5 for the closed
immersion i. There is a diagram (commutative up to isomorphism of functors)

crystals of q.c. 2.1.5 crystals of q.c. (D crystals of q.c.
(Py /^-modules c^-modules fl^-modules

(2.2.4.1) L L

complete fy-modules induced complete £)-modules
with i.t.q.n. connection by t) -> £)' with i.t.q.n. connection

The functor (1) is the forgetful functor induced by the homomorphism 0^ -> ̂  giving
the structure of 6^-algebra on ^ (Proposition 2.1.5).

g ) If mf) we take J' = J + j^A, then D ̂  D' and the map 0^ -> ̂  is an iso-
morphism. (With the notation of the proof of 2.1.5, in this case D^ D(J).) Thus, in this
situation, all horizontal arrows in (2.2.4.1) are equivalences. Hence to prove 2.2.2
we may assume pA C J.

h) The construction € i-> M is functiorial with respect to the pair (A, J). If (A', J')
is another pair as in 2.2.1 and 9 : X -^A7 is a homomorphism with y(J) Cj', then q>
induces a homomorphism ft ->£)' andy:S' -> S. The module M(§>sD' corresponds
to^yg(<?) if M corresponds to §.

Proof of^2.2.2 and 2.2.3. — Let us assume 2.2.3 and deduce 2.2.2 from it. By
Remark 2.2.4 part g ) we may assume there is a closed immersion i: S <->• Spec (A). The
crystal of quasi-coherent ^sp^^/s-'^dules ^ of Proposition 2.1.5 is determined by
the A-module £) with its connection V (2.2. I . I) : the value of ^ on the triple

(Spec(A),Spec(A/^A),Y)

is D/^" £) by 2.1.5 b). Its algebra structure is determined by the horizontal homomorphism

£)@^£) -^f).
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By Proposition 2.1.5, to prove 2.2.2 for S, we have to characterize crystals of
quasi-coherent j^-modules as f)-modules with a connection. However, such a crystal S
can be seen as a crystal of quasi-coherent ^gp^^^^-modules S together with a morphism
^ ^SpecCAVS-111^11!^

satisfying the usual conditions. Using 2.2.3 this translates into a complete A-module M,
with a topologically quasi-nilpotent and integrable connection V and a horizontal
homomorphism

£ ) ® ^ M - > M

(ofA-modules) satisfying certain conditions; these conditions are exactly that M becomes
a f)-module and the "horizontal" implies that V on M is compatible with V on f). In
this way we get 2.2.2 from 2.2.3.

To prove 2.2.3 we use Lemma 1.3.3. It produces B, B andA<- B, A ->B such
that B has a finite j^-basis. The result for S = Spec(B) is [BM, Proposition 1.3.3].
Using the functoriality 2.2.4 h) for Spec (A) <-Spec (B), Spec (A) -> Spec (B) we
deduce 2.2.3 in general. D

2.3. Dieudonne crystals and Dieudonnf modules

2.3.1. Let S -> Spec(Fp) be a scheme of characteristic p. If S is a crystal of
^g/^-modules we denote by <?° its inverse image under the absolute Frobenius morphism
ofS.

2.3.2. Definition. — A Dieuiomi crystal over S is a triple (<?,,/, v) where:

(1) € is a crystal of finite locally free fl^-modules;
(2) f\ S° -> S and »:<?-> €° are homomorphisms of^g/s"1110^^!^ such that^o v == p.id^y

and vof=p.id^a.

It is clear what homomorphisms of such Dieudonne crystals should be. We point
out that this definition is different from [BM, 2.4] where S is only supposed to be of
finite presentation. Since we are mainly interested in ^-divisible groups, we prefer
Definition 2.3.2. (But see also Remark 2.4.10.)

2.3.3. In [BBM, 3.3.6 and 3.3.10] there is constructed a crystalline Dieudonne
module functor:

-. ^ Category of ^-divisible Category of Dieudonne
' groups over S crystal over S

functorial with respect to the base scheme S.
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2.3.4. Definition. — In the situation 2.2.1, suppose given a lift of Frobenius
C T : A - > A such that (r(J) CJ; in particular it induces cr on the algebra f) (2.2.1.1).
A Dieudonne module over D is a quadruple

(M, V, F, V)

where:
— M is finite locally free D-module;
— V : M -> M®^ Q^ is an integrable, topologically quasi-nilpotent connection;
— F : M ®^ f) -> M and V : M — M ®^ f) are D-linear, horizontal and such

that F o V =p.id^ and V o F ==p.id^g 5-

Clearly, the category of Dieudonne crystals over S = Spec(A/J) is equivalent to
the category of Dieudonne modules over £) (use 2.2.2 and 2.2.4 h)). By Definition 2.3.2
this statement makes sense only for S with pQ^ == 0, but we can extend Definition 2.3.2
to general S by relating crystals on S to crystals on S X Spec(Fy) (compare 2.2.4 g } ) .

2.4. Formal schemes, p-divisible groups and Dieudonne crystals

2.4.1. Our formal schemes will always be adic, locally Noetherian formal
schemes. Hence such a formal scheme X has a biggest ideal of definition ^ C 0^. We
can write

X = lirnX^

where 3£^ is the scheme Spec^^/e^*). The reduction 3Ered of 3£ is the reduced scheme
3^ = Spec(^/^).

In order to have a Dieudonne module functor over formal schemes, we simply
adapt our definitions.

2.4.2. Definition. — Let X be a formal scheme.
a) A. p-divisible group G over 3£ is a system (GJy^i of ̂ -divisible groups G^ over X^

endowed with isomorphisms G^ _^ ^ j ^ ^ G^.
b) Suppose 3£ —^ Spec(Fy) lies in characteristic p. A Dieudonne crystal € over 3£

is a system (<?J^i of Dieudonne crystals S^ over 3^ endowed with isomorphisms
^n + 11 CRIS(3Cn/2) ^ ^n •

2.4.3. It is clear that 2.3.3 extends to a functor

Category of ^-divisible Category of Dieudonnd
* groups over 3£ crystals over X

(3£ —^Spec(Fp) in characteristic j&). For a morphism of formal schemes 3£-^9) there
are pullback functors 9* and there is an isomorphism D o ̂  ^ 9* o D.
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2.4.4. Lemma. — If X = Spf(A) is an qffine formal scheme then the functor

Category of p-divisible Category of p-divisible
groups over Spec (A) groups over X = Spf(A)

is an equivalence.

Proof. — Suppose G is a ̂ -divisible group ofX; we construct a ̂ -divisible group over
Spec(A). The group G is given by ^-divisible groups G^ over X^ = Spec(A/P). The
schemes G^[j^] :== KerQ^ : G^ —> GJ are given as Spec(B^ ^), where B^ ^ is a finite
locally free A/P-algebra of rank ^-height(G)^ rp^ ^^ B^^ -> B^ being surjecdve
(see Definidon 2.4.2), we see that

B,:=UmB^
n

is a finite locally free A-algebra of rank ^fe-hei8ht(G\ The j^-divisible group we are looking
for is UfcSpec(B^). D

The corresponding assertion for crystals of quasi-coherent 0^-modules (defined as
in 2.4.2) is not true. A counterexample can be given with X = Spf(Fp[[^]]). The ring
A = Fy[[^]] has { t} as a ^-basis. The free rank 1 A-module M = A with operator V
given by a\->tp+l <^/^®d^ does not define a crystal on Spec (A) since ^+1 ̂ t is not
quasi-nilpotent on A, see 2.2.4 c ) . However, for each n, the pair (M, V) defines a crystal
on Spec(Fp[T]/(TW)). We prove the corresponding assertion for Dieudonn^ crystals
only in the special case where A satisfies the condition of smoothness that was studied
in 1.3. Let us give the corresponding definition for formal schemes.

2.4.5. Definition. — We say that a formal scheme 3£ -> Spec(Fp) of characteristic p
has property (f) if it satisfies one of the following two equivalent conditions:

(2.4.5.1) There is a covering 3£ == U Spf(AJ by affines of X and each Fy-algebra A,
sadsfies (1.3.1.1).

(2.4.5.2) The morphism X -^ Spec(Fp) is formally smooth and the scheme X,ed ^s
locally of the form Spec (A), where S is an algebra of finite type over a
field with a finite j&-basis.

2.4.6. Remark. — We leave it to the reader to find the definition of a formally
smooth morphism of formal schemes (used in (2.4.5.2)) generalizing both [EGA,
IV 17.1.1] and [EGA, O^y 19.3.1].

2.4.7. Examples. — Let k be a field with char(^) = p and \k: k^] < oo.

(2.4.7.1) Any formal scheme which is the completion of a scheme smooth over Spec (k)
in a closed subscheme satisfies (f).

(2.4.7.2) Any scheme X which is locally of finite type over Spec(^) and regular
sadsfies (f). (See (1.3.2.2); X is considered as a formal scheme with
X = Xy^.) In particular, we can take X = Spec(^).
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2.4.8. Proposition. — If X = Spf(A) with (A, I) as in (1.3.1.1), to the functor
Category of Dieudonne Category of Dieudonne
crystals over Spec (A) crystals over Spf(A)

(2.4.8.1)

is an equivalence of categories.

Proof. — Suppose (X, a) is a lift of A (1.3.3 and 1.2.2). Let TC A denote the
inverse image of I in A. Let £)„ be the divided power algebra constructed in (2.2.1.1)
for the ideal J = P C A; it is isomorphic to the divided power algebra £)„ constructed
for the ideal J' == P + pA. Therefore, f\ is the ring figuring in 2.2.2 in the description
of crystals on S^ == Spec(X/J') == Spec(A/P). The homomorphism a induces a : £)„ -> £)„.
Finally, we denote by ?„ : S^ -> S^ +1 the closed immersion induced by A/P+1 -> A/P;
there is also a corresponding homomorphism f\+i ->£)„.

A Dieudonne crystal on X is given by Dieudonne crystals (^,/n, v^) on S^, plus
isomorphisms ^,cEis(^n+i) ^ ^n °f Dieudonnd crystals. By 2.2.2 this translates into
Dieudonne modules (M^ V^, F^, V^) over £)„, plus isomorphisms of Dieudonne modules
(2.4.8.2) M^®£),^M,.

Let us consider the surjecdon

(2.4.8.3) fi^^A/P.

Tensoring with it we get from the f\-module M^ a finite locally free X/P-module

N^:=M^®A/P.

On N^ there is an integrable connection V^ : N^ -> N^ ® ̂ A/r1 coming from V^ on M^
since by (2.2.1.3) we have

V(Ker(2.4.8.3)) C Ker(£)^®Q^ ^O^n).

The maps F^ and V^ induce horizontal homomorphisms

F^ : N, ®, A/P -> N^ and V^ : N^ -> N^ ®, X/P

satisfying F ^ V ^ = = ^ and V^ F^ ==^. Finally, the isomorphisms (2.4.8.2) give homo-
morphisms N^ +1 -> N,, compatible with V, F and V, inducing isomorphisms
N^®A/P^N,.

Thus the module
N:= l imN^

is a finite locally free S-module (A is complete for the I-adic topology, Remark 1.3.4^).
It is endowed with an integrable connection V = lim V^ (lim t2^/pi = ^i, Remark 1.3.4
c)). There are horizontal homomorphisms

F = Hm F^ : N° = N ®<, A -> N

and V == limV : N ^N° === N®,A
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which satisfy FV == p and VF = p. To conclude that (N, V, F, V) is a Dieudonn^
module over A we sdll have to prove that V is topologically quasi-nilpotent. The maps F
an V give a complex

(2.4.8.4) . . . -^ N°^N° ̂  N/j&N ̂  N°^N° -^ N/^N -> ...

which is automatically exact: for example, if x e N/^2 N is such that V{x) == py for some
j/eN^N0 , then x == F(j^) modj&N. For any eeHom^A^A) the operator V^ is
nilpotent of order at most p on N°/j&N°, as this module has generators of the form x ® 1
and VQ^X® 1) = 0. By exactness of the complex above VQ is nilpotent of order at most
2p on N/^NT.

Conclusion: we have constructed a functor which goes from right to left in (2.4.8.1).
We claim that it is quasi-inverse to (2.4.8.1). We only show how to get a functorial
isomorphism of Dieudonnd modules

(2.4.8.5) N®^->M^ V A e N

and leave it to the reader to deduce the claim from it. To construct (2.4.8.5) it is enough
to give a homomorphism N -^ M^; compatible with V, F and V fitting in a commutative
diagram:

Let^i? • • -3/r e^ be generators of the ideal P. Take x eN:

x == lim x^ e lim N^ == N.

(2.4.8.6) For any /, if n ̂  (r{p — 1) + pi) k then the element

j^ = image of 3^ in MjJ^' M .̂

does not depend on the lift %„ e M^ of the element -^ e N^. (The image is
taken via the maps

M»^M»_^.. .-^M,;

in particular j^ also does not depend on n > 0.)

Clearly, N -> M^;, A: = (^) »-» (^) e lim MJ^1 M ;̂ = M^ is the desired map.
/^>/ /^^

Proof of (2.4.8.6). — Since I is generated by the r elements^, • • • 5 ^ 9 I" ls

generated by elements of the form

j=i•f^•••••frar•^l'••••f^p
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with ^P-^-"4-2^ 0^^<p, O ^ p , and Sa, + pW = r(^ - 1) + pi. This
implies S(3,> /. The image of such an element j in f\ is divisible by p1:

J = ^!)s0t•^/lal•... •/.ar- (/^T1-.. • • (/W e D,.

Therefore, the image in f\ of J^ = Ker (£)„-> A/P) is contained in p1!)^. (The
elements^, withj as above generate J^.) This implies (2.4.8.6) since

Ker(M^NJ==t.M^. n

2.4.9. Corollary. — Over a formal scheme 3£ of characteristic p which satisfies (f) (Defi-
nition 2.4.5^ the crystalline Dieudonne module functor 2.4.3 is fully faithful.

Proof. — The question is local on 3£ so we may assume that X = Spf(A) with A as
in (1.3.1.1). By 2.4.4 and 2.4.8 we may replace 3£ by X = Spec(A) and the
functor 2.4.3 by 2.3.3. Next, we choose an Fp-algebra B as in Lemma 1.3.3. A formal
argument shows that it suffices to demonstrate fully faithfulness of D over Spec(B). In
this case we can apply [BM, Theorem 4.1.1]. D

2.4.10. Remark. — With the appropriate definitions, the functor D 2.4.3 is also
fully faithful on finite flat group schemes over X as in 2.4.5. That is, in the defi-
nition 2.3.2 of Dieudonne crystals we have to work with crystals of ^g/^-modules of finite
presentation and in the definition 2.3.4 of Dieudonne modules we have to work with
£)-modules of finite presentation. The proof of 2.4.4 works for finite flat group schemes
as well and the proof of 2.4.8 still works to show that the functor (2.4.8.1) on Dieudonne
crystals of finite presentation is fully faithful. Hence, the proof of 2.4.9 shows that D
is fully faithful on finite flat group schemes over X.

In the situation of Dieudonne crystals of finite presentation the proof of 2.4.8
no longer shows that (2.4.8.1) is an equivalence. Indeed, the argument to prove that V
on N is topologically nilpotent fails: it is no longer clear that (2.4.8.4) is exact i fN is
just some A-module of finite presentation. To remedy this, we introduce truncated
Dieudonne crystals of level n: these are triples (<?,y, v), where S is a crystal of finite
locally free ^a/s/J^ ^g/a-modules and f and v are as usual. In the case n == 1 we have
to add the condition that the sequence

(2.4.10.1) . . . ^^°-^^-^^°-^^->. . .

be exact. The reduction modulo p : ̂ §\p€,f, v) of a truncated Dieudonne crystal of
level n is a truncated Dieudonnd crystal of level 1. By Nakayama's lemma exactness
of (2.4.10.1) need only be checked in the case that S is the spectrum of a field and here
we can use the same argument as was used to prove exactness of (2.4.8.4). Hence for
these truncated Dieudonne crystals Proposition 2.4.8 will be true.
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2.5. Filtration and the Kodaira-Spencer map

2.5.1. In this section X will be a formal scheme over Spec(F^p) satisfying (f)
and € will be a Dieudonn^ crystal over X. In this situation we put

Sy. : = lim <?Y : == lim <?,, 3.
-x -^—— -^n <—— n* -^n

if{ (<?„, f^, &J }̂  ̂  i is the system defining <?. The sheaf S^ is a finite locally free ^-module.
There is an integrable (quasi-nilpotent) connection

(2.5.1.1) V : ̂  -^x0^^-

Here we have put

^y == lim Q^ ,p .
•x •<—— -W^

It is a finite locally free ^-module (compare 1.3.3). The connection (2.5.1.1) may be
constructed locally on X by 2.2.2 or by using the connections V^ on <?„ ̂  coming from
the fact that €^ is a crystal. Finally, there is an exact sequence (compare (2.4.8.4)):

(2.5.1.2) ... - ^ g ^ - ^ S ^ S ^ ^ S -> ...

with S^ == Frob^(^) and where/ (resp. v) is deduced from (/J^o ^P- ( yn)n^o)•
In particular the homomorphisms/and v are horizontal, for example/^^)) = V(/(^))
for a local section .? of §^\

2.5.2. Proposition, — There exists a locally free, locally direct summand co C S^ such
that (^{P) C ̂ ) u ^y^^Z ^o Im(y) == Ker(jf). A ^ uniquely determined by these conditions.

Proof. — For any closed point x e X the sequence (2.5.1.2) restricted to x is also
exact. Indeed, this sequence is just the sequence associated to the Dieudonn^ crystal
<^|cEis(a;/s) over x- Thus Im(^) is a locally direct summand of ^). As v is horizontal,
Im{v) is invariant under V^ and hence is equipped with a connection whose ̂ -curvature
[K] is zero (the ̂ -curvature ofV^ is zero). Thus we are done if we prove that the functor
Frob^ induces an equivalence of categories

finite locally finite locally free ^-modules with
free ^-modules a connection whose ̂ -curvature is zero.

This is [K, Theorem 5.1] in the case of schemes smooth over Fp; exactly the same proof
works for schemes having locally a finite ̂ -basis. But we can reduce our case to this case
by Lemma 1.3.3. D
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2.5.3. We always denote by <o the subsheaf of §^ found in 2.5.2 and write a
for the quotient: a : = <^/co. It is a finite locally free ^-module. The connection induces
an ^-linear homomorphism

(2.5.3.1) co ->a®^QJe-

We write ©^ := ^om^ (D^, 0^) for the sheaf of vector fields on X.

2.5.4. Definition. — The Kodaira-Spencer map of the Dieudonne crystal <? is the
homomorphism of ^-modules

K^ : ©^ -y-^omQ (co, a)

deduced from (2.5.3.1). We say that ^ is wW if K^> is a surjecdon.

2.5.5. If § •== D(G), the Dieudonne crystal associated to the ̂ -divisible group G,
then the filtration

0->(o->^->a->0

is nothing but the Hodge-filtration of D(G)^ (see [BBM, 3.3.5 and 4.3.10]). We
will say that G is versal ifD(G) is versal. It follows from [BM, Corollary 3.2.11] and
[M, V Theorem 1.6] that if G is versal then the restrictions of G to complete local rings
of X are versal deformations.

3. Deformations of Dieudonne crystals and ^-divisible groups

In this chapter we construct versal deformations ofDieudonnd crystals and ̂ -divisible
groups, at least over formal schemes X satisfying (t).

3.1. Deformations of Dieudonne modules

3.1.1. Notations. — In this section (Ao, Io) is a pair as in (1.3.1.1) and (Ao, a) is
a lift ofAo. We are going to look at A := Ao[[A;i, ..., x^}] and X := Xo[[A:i, ..., x^]].
We extend cr to A by putting (T(^) = ^f. Further we fix a natural number m e N. Put

B := A/(^, ..., 0 = W, ̂  • . . . 0
and B^ := A/(^4-1, ..., ̂ +1) = A/(^ x^1, ..., ̂ +1).

The divided power algebra (2.2.1.1) associated to the ideal J = {p, x^, .. .5 x^) of A
(resp. J+ == (^ ^w+l, . .., ̂ +1) ofX) is denoted by £) (resp. £)+).

For a multi-index I = (z\, ..., ij we define
n

JJ/w] . . T7 yia—"»l»a/wj / yW\ [[ia/wj]

a=l
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(The symbol [ J denotes the integer part function R ->. Z.) It is easily seen that f) has
the following description:

D = { S a^x^'^ | flj e Xo and ITO a; = 0 in the j&-adic topology }

A similar description can be given for t)^.. From this it follows that both t) and f)^ are
^-torsion free.

We introduce a (large) number of ring homomorphisms.

1. The maps t) ->B and £)^ -^B_^. (Reduction modulo the divided power ideals.)
2. The maps B^ -> B and t)+ -> 6. (Induced byj+ C J.)
3. A map n: t) -> B+. It is the unique ^o-linear map, such that Tr(^) = class of x

and Ti^)"1) =0 for / ^ 2. The universal property of divided power envelopes
implies that n is defined by the trivial divided power structure on the square zero
ideal J/J^.

4. The maps induced by a on f) and £)+, also denoted o, i.e., a : t) -> t) and o: 6^. ->£)+.
5. A homomorphism T : £) -> £)^.. It is defined as the a-linear X^-module morphism

such that T(;V,) == Af and such that it is a divided power homomorphism. Thus
T^)1") = A:{(P-1)TO-1^.(^+1)[".

6. The maps (cf. [BBM (4.3^4.1)]) 0 : B -> D := t)lpt) andd^ : B+ ̂  D^. :== &^/^D+.
These are the d-linear Ao-module morphisms such that O(^) == class of x? and
0_^(^) = class of Af.

With these definitions and notation we have the following commutative diagrams:
(the bar ~ stands for reduction modulo p).

(3.1.1.1) I" I \ [-

and

D+ —> D D —> B D+

B+ ——> B D D+
(3.1.1.2) ^ [.o+ o

D^ -^ D

In diagram (3.1.1.1) the composition D^_ -> f) -^ B^. is the reduction map 1. Finally,
we remark that the connection V on t) satisfies

V^")1"1 = (^ro)[»-" d^» = w^-1^)'"-" d ,̂
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and that a similar assertion holds for V^_. From this it is easily seen that

(3.1.1.3) V(Ker(7r)) C Ker(D ->B)®Q^.

It does not seem possible to describe deformations of a Dieudonne module from f)
to £)+, or even to deform them at all in some cases. Therefore we introduce the notion of
a special Dieudonne module.

3.1.2. Definition. — A special Dieudonne module over £) is a six-tuple (N, V, F, V, a, %)
where

— (N, V, F, V) is a Dieudonnd module over 6,
— a is a finite locally free B-module,
— / : N ®p B -> a is a surjection,

these data being subject to the condition that the sequence
v ^ X®id- _

(3.1.2.1) 0 - > N - > N ® ^ £ ) — — ? a ® ^ D -> 0

is exact.
Note that in (3.1.2.1) the map V is automatically injective (since t) is j&-torsion

free) and that / ® idg is automatically surjective. Of course, the same definition gives
the notion of a special Dieudonne module over D+.

We will say that a homomorphism of B^-modules

^ :N®,B^->a^

lifts the homomorphism % of Definition 3.1.2 if the following conditions are satisfied:

(3.1.2.2) a^_ is a finite locally free B^-module,
(3.1.2.3) / is surj ective,
(3.1.2.4) there is a surjection a^. -> a inducing an isomorphism a _ j _ ® B s a and

making the following diagram commutative:

N®,B_ ^ ^

(3-1-2-5) t [
N O B —^-> a.

We remark that (3.1.2.3) follows from (3.1.2.2) and (3.1.2.4). It is important to
note that given ^ we can always find such a lift /'. This is so since N 0^ B+ is a locally
free B^-module lifting N®B, hence the filtration defined by % can be lifted.

3.1.3. Proposition. — a) Given any special Dieudonne module (N, V, F, V, a, /) over £)
and a lift -^ : N ®^ B+ -> a .̂ of ̂  as above, there exists a special Dieudonne module (N+, V^_,
F .̂, V^, a+, %+) over t)^. and an isomorphism of Dieudonne modules over f):

N,. ® t) -> N
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such that %_(. is equal to the composition

(3.1.3.1) N ^ ® B ^ N ^ ® f ) ® ^ B + ^ N ® ^ B + - ^ a + .

The special Dieudonne module (N+, V+, F^., V+, a^., /^.) is determined up to unique isomorphism
by this.

b) Any lift of (N, V, F, V, a, %) to a special Dieudonne module (N^_, V+, F^, V+, a+, ̂ )
is determined by a lift -^ of ^ as in part a).

Proof. — Given (N, V, F, V, a, ^) ^d x' as m a)^ we define N^ as the kernel of
the homomorphism

N®,£)^ —> a^®^D^

(3.1.3.2) (3.1.1.1)\ /^®id

(N®,B^)®^D,

It is a finite locally free £)^.-module by the following three facts: 1) a^ is a finite locally
free B^-module, 2) the map (3.1.3.2) is surjective, 3) D^ is ^-torsion free. The homo-
morphism T is compatible with the connections V and V_^ on f) and D^_, hence the
connection V on N induces a connection V^ on N ®^ D^. compatible with V_^.. If we
define a connection on a+ ®^ D^. by requiring that elements a ® 1 are horizontal, then
it follows that (3.1.3.2) is compatible with these connections. In particular, we get a
connection V+ : N^. -> N^ 0 Q^. Tensoring the defining exact sequence

(3.1.3.3) 0-^N+ -N®,£)+^a+®^D^ ->0

with 6 we get a commutative diagram:

0 —> N+®£) —> N®^f )+®£) —> a+®^D^.®D —> 0
(3.1.3.4) ^ ^ ^

0 ————^ N ——v——^ N®<,ft ——————> a®^>D ————^ 0.

The upper line is exact since f) is ^-torsion free. The isomorphisms of the right square
and its commutativity are consequences of (3.1.1.1), (3.1.1.2) and (3.1.2.5). (The
lower line is of course (3.1.2.1).) Thus we derive the existence of the left vertical arrow:
N ^ N+ ® £). Using this we can write (use (3.1.1.1))

N ®^ £)+ ^ N+ <§> £) ®^ £)+ ^ N+ ®^ £)+.
Fitting this into (3.1.3.3) we get

0 —^ N+ ~^ N®,6+ —> a^®^D^ -^ 0

N+®,6+
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The south-east arrow in this diagram is our definition of V+. It is left to the reader to
check that the north-east arrow is %+®id^ if we define /+ by (3.1.3.1). Hence we
immediately get (3.1.2.1),. for (N+,V+, ?, V+, a+, ̂ ). A consequence of this is that
we can define F+ as the map x ̂  V^(px). It is easy to see that the various morphisms
written above are compatible with the corresponding connections. Hence, F+ and V
are horizontal and (N+, V+, F+, V+) is a Dieudonnd module. Finally, we have to check
that N -> N^ ® D is an isomorphism of Dieudonnd modules. Since this involves writing
down a large number of commutative diagrams, we feel this must be left to the reader.

The statement of unicity is easily proved, noting that for any solution (N+, V. ,
F+, V+, a+, %^) of the problem, N+ must be (canonically) isomorphic to the kernel
of (3.1.3.2). This proves a).

Part b) is proved in the same manner as the proof of unicity in part a). D

3.1.4. Remark. — In the situation of 3.1.3 a) let

o)+:=Ker(^:N®^B+ -^oc+).

By (3.1.1.3) we get a Kodaira-Spencer map induced by V on N:

K : w+ -> N ®^ B+ 4- N ® B ® Q^ -> oc+ 0 B ® Q^.

On the other hand, we get from V+ a Kodaira-Spencer map

K+ :o+ -.a+®Q^.

It follows from the proof of 3.1.3 that K and K+ agree as maps to a+ ® B ® Cl\.

3.2. Deformations of Dieudonne crystals and p-divisible groups

In this section we use 3.1.3 to deform a ^-divisible group given a deformation of
its crystal. Further we deform any Dieudonne crystal to a versal one, at least locally on
formal schemes satisfying (f) . If 3^ 9) is a closed immersion of formal schemes and <?
is a (Dieudonne) crystal on 3), we denote by <s? ^ the restriction of S to X, i.e the pull-
back of S via X <-> 9).

3.2.1. Proposition. — Suppose 3£ <-»• 9) is a closed immersion of formal schemes satisfying (• [ ) ,
which induces an isomorphism 3£^ S 3)^. Given any p-divisible group G' on X, a Dieudonne
crystal € on 9) and an isomorphism D(G') S ^j^, there exists a p-divisible group G on ̂  with
D(G) s S.

Proof. — Since D is fully faithful on 9) by 2.4.9, the problem is local. Hence we
may assume that X = Spf(Ao), 9) == Spf(A), 3£ ̂  9) is given by a surjection A -> A,,
and that A(, satisfies (1.3.1.1). Exactly the same argument as used in the proof of
Lemma 1.3.3 shows that there exists an isomorphism A s Ao[[M]] (compatible with
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A -> Ao) where M is a finite projective Ao-module. Localizing a bit more we may assume
that A ^ Ao[[^, ..., A:J]. Thus we are in the situation of 3.1.1. Let us use the notation
introduced there.

By Lemma 2.4.4, G' comes from a ̂ -divisible group (denoted Go) over Spec(Ao)
and by 2.4.8, € comes from a Dieudonn^ crystal (also denoted S) over Spec (A).
By 2.5.2 the Dieudonn^ module (M, V, F, V) over X associated to S over 9) has a/^
unique structure of a special Dieudonn^ module (3.1.2) M == (M, V, F, V, a, %) over A.

Next, we remark that any ̂ -divisible group G over Spec(B) (B as in 3.1.1, with m
arbitrary) gives rise to a special Dieudonn^ module over D; we write

M(G) - (M(G), V(G), F(G), V(G), a(G), x(G))

for it. The Dieudonn^ module (M(G), V(G), F(G), V(G)) is just the Dieudonn^ module
associated to the Dieudonn^ crystal of G. The B-module a(G) is the module which gives
rise to the sheaf o^^(G*) on S .̂ == Spec(B)^ and %(G) is the map induced by
D(G)g -> JS^G*), the Hodge filtration, see [BBM, 3.3.5]. That M(G) satisfies (3.1.2.1)
is a consequence of [BBM, 4.3.10].

Suppose we have such a G and an isomorphism of special Dieudonn^ modules:

(3.2.1.1) M(G) ^ M®6.

(It is clear how M gives rise to a special Dieudonnd module M ® f) over £) :

M®£) = ( M ® £ ) , V ® l , F ® l , V ® l , a 0 B , ) c ® i d B ) . )

Claim. — There exists a lift G^ over Spec(B^) of the ̂ -divisible group G over Spec(B),
with an isomorphism

M(G+) ^ M®£)+

lifdng (3.2.1.1).
This is a consequence of [M, V Theorem 1.6], [1112] and [BM, Corollary 3.2.11].

Indeed, since the ideal ofS<->S^.=== Spec(B+) has a nilpotent divided power structure 8
(with §„ == 0 for n ̂  2), we know that lifts of G are determined by lifts

^^(^(S.S^)

of co^C D(G)g (use references above). We remark that the lift G^. determined by co^
will be such that co^. == co^ in D(G)(g^^8) == D(G+)g^.

By Proposition 3.1.3 b) our lift M ® £)^ determines a lift

^':== x01^^ (M®t))®^B+ -^a+ == a®B+

of ^id^. Next, we use the isomorphism (3.2.1.1) to translate this into a filtration
G)+ C M(G) ®^ B+, which is the module associated to the sheaf D(G)(g g^ sp It deter-
mines G+ whose special Dieudonn^ module M(G^) must be isomorphic to M®D^. by
the remark above and Proposition 3.1.3. This concludes the proof of the claim above.
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Thus, if we show that for m == 1 we have

(3.2.1.2) M(Go) ^M®f t ,

then by the claim above we can find, by induction, for all m, a ̂ -divisible group G^ over
Spec(BJ = Spec(Ao[^, ..., 0/(^ .. .,^)) withG^OB,, ̂  G^ and such that D(GJ
corresponds to M 0 £)^. Taking the limit G = lim G^ over Spec (A) (see Lemma 2.4.4)
gives the desired ^-divisible group.

To prove (3.2.1.2) we note that the isomorphism M(Go) ->M®£), which is
supposed to exist in the proposition, must automatically be an isomorphism of special
Dieudonne module. Indeed, in the case m = 1, the kernel of ^ : N ®p AQ -> a (see Defi-
nition 3.1.2) is the set of elements x e N ® Ao such that x ® 1 e N ® Ao ®^ Ao ^ N ®y Ao
lies in the image of V : N®Ao->N(S^ Ao. Comparing this with Proposition 2.5.2
gives the result. D

3.2.2. Proposition. — Let € be a Dieudonne crystal over an affine formal scheme
X == Spf(Ao). I/AQ satisfies ( 1 . 3 . 1 . 1 ) , then there exists a closed immersion Xc-^ 5) = Spf(A)
and a Dieudonne crystal €' over 9) such that

— 3£ (-> 9) induces an isomorphism Xred ̂  ^)red?
— € ^ ^'[^.
— A satisfies ( 1 . 3 . 1 . 1 ) ,
— the Dieudonne crystal §' is versal (Definition 2.5.4^.

Proof. — By abuse of notation we write a (resp. co) for the finite locally free Ao-module
corresponding to the sheaf a (resp. <o) of 2.5.3. Take generators k^, ..., ky of the finite
locally free A^-module

K:= Hom^(o),a)
and let

A=Ao[[^i, ...,^]].

We are in the situation of 3.1.1, the special Dieudonne module (N, V, F, V, a, %)
coming from § over X. It is a special Dieudonne module over f) (with m = I): indeed,
it is of the form

N^No®So£>

where (No, Vo, F^, Vg) is the Dieudonne module over Ao associated to S over X. By
Proposition 2.5.2 we have the exact sequence

(3.2.2.1) O-^co-. No ®Ao-^a ->0

and % is defined as the composition

N ® Ao ^ No ̂  £) ® Ao ^ No ® Ao ̂  a.

It satisfies ( 3 . 1 . 2 . 1 ) by definition of <o (see 2.5.2).
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In this way we also see that

(3.2.2.2) N®,B^ No®i,fi®,B^ ^ No®Ao[<l/(^2),

as B+ = Ao[A:J/(A;?). Let us take a splitting of (3.2.2.1):

No ® Ao ^ co ® a.

As a lift co+ C No ® B+ of co C No ® Ao we take
r The submodule of No ® B+ ^ co ® B^ © a <x) B+ generated by
^ elements of the form

^+ = = < ^ ® l +S ,^ (S )®^eo)®B+®a®B^ .

where ^ runs through co.

For a^ we take (No ® B+)/co+. Next, we apply 3.1.3 to ̂  : No ® B+ -> a+, the lift of ^.
This gives a special Dieudonn^ module (N+, V+, F+, V^., a+, ̂ ) and an isomorphism
N^ ® D ^ N. By applying 3.1.3 again to a certain lift /^ of %^. (it exists, see remark
before Proposition 3.1.3) we get N3 over t)^ a special Dieudonn^ module over Dg
(D^. of 3.1.1 with w = 2). Repeating this ad infinitum we get a special Dieudonn^ module
(N^o, V^,, F^, V^, a^, ^) over Xo[[^]] (use 2.4.8), plus an isomorphism

(3.2.2.3) N + ^ N ^ ® £ ) +

of special Dieudonn6 modules.
We claim that the Kodaira-Spencer map

Koo ; UO111 ]̂]̂ ™' ^oEIXl]) -^ HomAo[[2]]((ooo> ^00)

is surjective. By (3.2.2.3) and Remark 3.1.4 we see that this map is congruent to the
map derived from:

cx)^ ->N®^B^.-^N®B®^ ->a^.®B®^-

The isomorphism (3.2.2.2) is horizontal, hence

V(S®l®p,(S)®^) ^Vo(S)®! +S^)d^.

It follows that K^(3/a^) = ^ mod (A:i, ..., ̂ ). Here we used that

^^M^oo? a^) mod(^i, ..., x^) ^ K

and that 9j9x,: Ao[[x]] -> Ao[[^]] is the derivadon such that 9f6x,{d) = 0 for all
a €AQ and 818x,{Xj) = 8^ V z, j e{ 1, ..., N}. As Ao[[^]] is complete with respect to
the ideal [x^ . . . , X y ) it follows that K^ is surjective. D
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3.2.3. Remark. — We proved something that is slightly stronger than 3.2.2.
Namely, that one can take A = Ao[[^, ..., Xy]] such that the elements 3/&^ e ©^ are
mapped to a generating set ofJ^wz^fco', a'). It is also clear that we can do this simul-
taneously for two crystals <?i, S^ i.e., such that the elements ^/^ generate the module
^om^[, a;) @^om^{^ a^).

3.2.4. Corollary. — The conclusion of 3.2.2 also holds for a p-divisible group G over 3£:
we can deform G to a versal p-divisible group G' over S).

Proof. — Combine 3.2.1 with 3.2.2. D

4. Proof of Main Theorem 1

This chapter is entirely devoted to the proof of the first Main Theorem. In short
it asserts that the crystalline Dieudonne module functor is an equivalence over certain
smooth formal schemes.

4.1. Statement of Main Theorem 1

4.1.1. Theorem. — If the formal scheme X over Fy satisfies ( - \ ) then the functor 2.4.3
Category of p-divisible Category of Dieudonne

' groups over X crystals over X

is an anti-equivalence. D

We already know that D is fully faithful (Corollary 2.4.9). It therefore suffices
to construct G given a Dieudonnd crystal S over X. The problem is local on X and thus
we may assume 3£ == Spf(A), with A as in (1.3.1.1).

The construction of G is done in a number of steps. We begin with the most
difficult case, the case that A == k, a field with a finite j^-basis.

4.2. Existence of G over fields

This means that we are in the situation X = 3£red = Spec (A), where k is a field
with a finite j^-basis, i.e., [k: k^} < oo. The result will be proven in three steps. First we
reduce to the case that k is separably closed. Next, we construct G in the case that €
corresponds to a formal group G or the dual of a formal group. Finally, we do the general
case over a separably closed field, using a result on extensions from 4.3.

Let (A, a) be a lift of k. The Dieudonne crystal € determines and is determined
by a Dieudonne module (M, V, F, V) over A. By 2.5.2 we also have a ^-subvector
space o) C M == MIpM such that co^ C M^ is the image of V : M — M^.

4.2.1. Reduction to the case: k is separably closed. Let {^ , . . . , x^}C k be a ^-basis
ofk. We choose a separable closure ̂ sep of k. Choose a set I indexing all field extensions ofk
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contained in ^sep. For each i e I let A, C ^sep denote the corresponding subfield and say
that i = sep gives Aggp = k^. Choose a lift A, of k^ and let ^ ^ 3 ... 3 ̂  „ e A^ be elements
lifting A:i, ..., x^ ekC k^. The elements ^15 . .., x^ form a j&-basis for A^ V i e I. As a lift
ofFrobenius on each A, we take the unique lift a such that CT(X^) = (S^ ^p, / = 1, . . . , n
(see [BM, 1.2.7]). If k ^ C k y , i,j el then the homomorphism

(4.2.1.1) a,,:A,->A,
/^/ y^/ » i^ j »—> x^ ^ , 6 == l, ..., u

lifting y^<->^. (see [BM, 1.2.6]) commutes with (T. We note that

(4.2.1.2) k^=k^== lim k,
[fc,:fc]<00

and, for any n e N,

(4.2.1.3) AJp-A^^ lim AJ^A,.
[fc,: h] < oo

This is a consequence of [BM, 1.1.5] and (4.2.1.2).
Let € be our given Dieudonne crystal over Spec (A) and let (M, V, F, V) be the

Dieudonn^ module over A associated to it. Suppose we have a ^-divisible group G'
over Spec^^) with

T\fr^i\ ^ e> \
U[^r ) = 6 IcElStSpec^PyS) •

By (4.2.1.2) the finite group scheme G'^] is of the form H ® k^ where H is a finite
group scheme over Spec(^) for some i e I such that [̂  : k] < oo. The isomorphism

t^K) IcEISOpec^PvS) ^ D(G'[^n]) ^ ^ I P " s IcKIStSpec^P)/^)

is defined by an isomorphism of truncated Dieudonne modules of level n (compare
Remark 2.4.10)

M(H) ®^ -> (M/^ M) ®^A^.

From (4.2.1.3) we see that this map is already defined over some A^., with j e I such
that k^ C kj and \ky : k\ < oo. The resulting isomorphism over Ay will be automatically
an isomorphism of truncated Dieudonne modules over Ay since the maps o^ ^ and a^ ggp
(4.2.1.1) are compatible with CT'S and f^\./ynA • ""^^Xoo/^Aoo ls "y^ti^ [BM, 1.3.1].

We conclude that for all n e N there exists a finite separable extension k C k\ a
finite group scheme H over Spec(^') and an isomorphism

(4.2.1.4) D(H) ^ W- €} |o^(spe^)/s).

Since D is fully faithful over Spec(^'®^') and Spec^'®^' ^ ^ k ' ) on finite group
schemes [BM, Theorem 4.1.1] we see that H descends to a group scheme G^ over
Spec(A) with D(GJ ^ <?/^ € (the isomorphism (4.2.1.4) descends too). By fully
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faithfulness over Spec(^) we conclude that the system (GJ^ gives a ^-divisible group
over Spec(^). ^

4.2.2. The case that F (or V) is topologically nilpotent. This means that the composition

F71 = F o F° o ... o F°"-1: M°" -> M

lands in pM for some n big enough (M° := M ®^ A). By duality it suffices to treat the
case that F is topologically nilpotent (see [BBM, 5.3]). We remark that in this subsection
we do not need to assume that k is separably closed.

Let us define M^ C M by

Mi :== { m e M [ m modp e co C M }.

By our choice of co C M the map M^ -> M° gives an isomorphism of M^ with VM.
Inverting V gives us an isomorphism M^ -> M. The association

(M, V, F, V) i-> (Mi, the isomorphism M? ^ M)

is functorial both in the Dieudonn^ module (M, V, F, V) and for homomorphisms
A -^A' commuting with a and or' (in particular a itself). Thus we get F^ : M? -> Mi
and Vi: Mi -> M^ from F and V and an isomorphism

(M?,F?,V?)^(M,F,V).

We put S = Spec (A); it has a lift ofFrobenius/g == Spec(o). IfG is a ̂ -divisible
group over k, then we put

M,(G) ==^mM,(G[^]),
n

where Mg is the contravariant functor on truncated Barsotti-Tate groups defined in
[dj. Section 8]. By [dj, Corollary of Theorem 9.3] we can find a ^-divisible group G
over Spec {k) with an isomorphism

Ms(G)^(Mi,Fi,Vi).

By [dj, 7.1 and 3.5.2] we get

^^G)^^^^^ ^ M^G^) ^ Mg(G)0 ^ M?^ M.
n

All the isomorphisms occurring in this line are compatible with the actions of Frobenius
and Verschiebung of G. Hence we see that

(4.2.2.1) (Mc,F^VJ^(M,F,V)

where (M^, V^, F^, VJ is the Dieudonn^ module over A associated to the Dieudonn^
crystal D(G) ofG. By transport of structure, (4.2.2.1) gives a second connection V on M
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(coming from VJ such that F and V are horizontal. If we show that V = V, then
S ^ D(G) and we are done.

We remark that

^(V — V) == F" V^V — V) = F^V — V')0" V^.

Since (V - V')°" is divisible by p^ (<r : ̂  -> Ci\ is divisible by p) we get

fV — V')0"
V — V = F71 v / V'1

^ro

As F is topologically nilpotent, the right hand side tends to zero as n goes to infinity.

4.2.3. Neither F nor V is topologically nilpotent. We assume given a separably closed
field k of characteristic p, with a finite ^-basis and a Dieudonnd crystal g over Spec (A).
As before (A, a) is a lift ofk and (M, V, F, V) is the Dieudonn^ module over A associated
to €. The proof of the existence of G will be completely analogous to the proof of
Theorem 10.3 in [dj].

First we claim there is a commutative diagram of Dieudonnd modules over A:

0 0t t
M" == M"

t \
Diagram I 0 —> M^ —> M —> M^ —> 0t t

0 —> M" —> M^ —> M^ —> 0

t t
0 0

with exact rows and columns and such that
— F is topologically nilpotent on M^, M^, M^,
— V is topologically nilpotent on M^, Mg, M61',
— F is an isomorphism on M6^
— V is an isomorphism on M.^.

Here Mi is the first member of (M^ Vi, Fi, Vi), etc. The construction of the
diagram is left to the reader, we only point out that

M^ = n F^M0") C M,
n^l

the quotient M -> M^ is defined dually, Mi = M/M^, Mg = Ker(M -^ M") and
M^ == Ker(Mi -> M^). See also [dj, proof of Theorem 10.3].
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By 4.2.2 we already have ^-divisible groups G^, Gi, Gg, G^ and G^ corres-
ponding to (Mi2, Via 5 . . .), ... The ^-divisible group G^ is ^tale since F61' is an iso-
morphism. As k is separably closed we can choose an isomorphism G^ ^ (Q^y/Zp)8 for
some ^eN. Similarly, G^ ^ (G^00]^ for some / eN .

Fully faithfulness of D gives us an incomplete diagram corresponding to diagram I:

0 0\ \
G^ == G^i i

Diagram II 0 <— G"* -s— ? <— G^ <— 0

I I I I
0 <— G* <— G^ <— G^ <— 0.

I i
0 0

(The lower line and right column are exact sequences of ^-divisible groups.) For all
n e N we derive a diagram from diagram II by taking the kernel of multiplication by /»":

0 0

G "̂] === G "̂]

Diagram n 0 <— G^"] ^——— ? <——— G^[p"] <— 0

0 <— GW ^- GW <— G^] ^- 0.

i I
0 0

The obstruction to find a sheaf of Z/j^ Z-modules G^ on Spec(A)^ppf fitting into diagram n
(i.e., sitting in place of? and making the middle line and middle column exact) lies in
the group

Ext^^G6^], GW)

(extensions of sheaves of Z/^ Z-modules on Spec(^ppf). It is easy to prove that

Ext|^z(Z/^ Z, ̂ ) ^ H^(Spec(A), GJ [?-] == 0.
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Therefore this obstruction is zero. The set of all choices of such sheaves G^ is homogeneous
under the group

Ext^G'm GW) ̂  Ext^(Z/^Z, ̂  ^ (WW^.

Since the homomorphism ^7^*pw+l "> ̂ 7^" is surjecdve, given any €„ fitting into
diagram n we can find a G^i fitting into diagram ^ + 1 such that G^ ̂  Gn+it^"] (an
isomorphism of sheaves fitting into diagram n, this isomorphism is unique: \^yn(k) ={!}).

Clearly, this proves that we can find at least a sheaf G' == U G^ fitting into the
diagram II. Since the sheaves G^ are representable, as they are extensions of repre-
sentable sheaves, it follows that G' is a ̂ -divisible group. The set of isomorphism classes
of such Gf fitted into diagram II is homogeneous under the group

E^.d.v.^G" ̂  a Ext^,^(Q^/Z,, G,^"])'-'

and the corresponding group for diagram I is

ExtLc(D(G^ D(G6t)) ^ ExtLc(D(Gjr]), D(%,/Z,))^.

To produce G it therefore suffices to prove Proposition 4.3.6 below.

4.3. Extensions of etale p-groups by multiplicative p-groups

In this section we prove the analogs of [dj] 8.7, 8.8 and 8.9 in the crystalline
setting.

Let S be a scheme of characteristic p. We introduce the following categories: for
any n e N we put

BT(^)g == the category of truncated Barsotti-Tate groups of level n
over S

and DG(^)g == the category of truncated Dieudonn^ crystals of level n
over S (see Remark 2.4.10).

In both categories it is clear what a short exact sequence is and there are corresponding
extension groups. The crystalline Dieudonn^ module functor

D:BT(^-^DG(^

(see [BBM, 3.3.6 and 3.3.10]) transforms short exact sequences into short exact
sequences; this follows from [BBM, 4.3.1].

4.3.1. Lemma. — There exists a natural injection

F(S, ^)/F(S, oy -> Ext^jz/^ z,, ̂ g)
which is an isomorphism zfH^(S, GJ [p] == (0).
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Proof. — This is well known (cf. [dj, Lemma 8.7]). Let us describe the
extension E^) associated to a section g e F(S, ^9). The sheaf £„(,?) is defined as follows:

Ente) (U) = {(/, m) e F(U, ̂  x ZJ|/^ == r}/<(^r)>

for U e Obe^A/S. The maps which define the structure of extension on E^(^) are

MU)3/^(/,0)eE^)(U)

and E,(^) 9 (/, m) ̂  m e Zip- Z(U). D

In [BM, 2.1 and 2.2] the Dieudonnd crystals ofpipng and Z/^" Zg are determined.
The result is as follows:

D(Z/^Zg)^(^^n^,l^)
and I^s) ^ (^s/s/r ^s/^A 1).

The identifications are given by (2.1.3.1) and (2.2.3.1) of [BM].
Suppose that S = Spec (A) and A is a ring with a^-basis. Let (X, a) be a lift of A,

put A^ = A/^A and Q^ == Q^. For any n eN we define an abelian group W^ as
follows:

W^ :== {(T], a) e ̂  x AJ d7] == 0, G(7)) = d<z + ̂  }/{(d6, a{b) -pb)\be A,}.

4.3.2. Lemma. — There is natural isomorphism

W^ -> Ext^)3(D(^g), D(Z/^ Zg)).

Proof. — For each pair (•/], fl) e ̂  x A^ with d-y] = 0 and o-(-y]) = do + pf\ we
define an extension of truncated Dieudonn^ modules of level n:

0 ̂  (A^, d^. l,^) ^ M(T], <z) ^ (A,, d^,z,A 1) -> 0.

It is defined by the following formulae:

f M ( ^ a ) = A , . i e A ^ . T
vi =0 vT== I ® Y )

(4.3.2.1)
Fl0 =1 FT0 ==aA +p.J
vi =^.i° vT= -fl.i° +T°.

The reader can easily convince himself that this defines indeed an extension of Dieu-
donn^ modules and that any such extension can be written in this form. Also, it is clear
that all possible isomorphisms of such extensions are the isomorphisms (with b e AJ

M(T] + db,a+ a{b) — Rb) -> M(T], a)
1 ̂ 1

J ̂ .i 4-T.
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Finally, it is also easy to show that

[M(T], a)] + [MW, fl')] = [M(T] +^,a+ a')].

(Addition of extension classes.)
^ Therefore our lemma follows from the description of crystals over S in terms of
A-modules with connections [BM, 1.3.3] and the description of D(^) and D(Z/^ Z)
given above. D

4.3.3. Remark. — A similar result holds in the situation of Definition 2.3.4.
We define a homomorphism

(4.3.4) A^A^^^W^

by the rule
class ofg eA* \-> class of (dlog(^), log{a{g) ^"p)).

Here geA^ is an element mapping to g e A*. Since a { g ) == g ^ modj&A^, the product
^^ ̂ -p can be written as 1 + pS and we can take its logarithm

log(l + pS) = pS - ̂  W + ̂  W - . . . e A^.

It is easy to prove that the element of W^ so defined does not depend on the lift g (use
that any other lift g" can be written as ^.(1 +pS)).

4.3.5. Lemma. — The following diagram is commutative:

A*/(A*)^ ——————4^4——————^ W^

^.3.1 ^.3.2

Ext^JZ/^Z,,^,) -D^ Ext^nJD(^,),D(Z/^Zs)).

Proof. — Suppose (U, T, 8) is an object of CRIS(S/S) and g e A* is lifted to
g e r ( T , 0^). To this we will associate an extension of sheaves on GRIS(U/T):

0^n/T->Wj -^En(g)u^0

We recall that for a sheaf ^ on the big fppf-site of S, we write ^ for the sheaf on
CRIS(S/2) defined by ^-(U, T, 8) := ^(U); see [BBM, page 15] for" this notation. The
extension ^{g) is defined as the push-out by log: (1 + J^)* -> 0^ of an extension

o -^ (i + ̂ r ̂ ^) ->E,(^^O.
Here the sheaf ^{g) is defined as follows: for (U', T', 8') e Ob GRIS(U/T) the sections
of-r(g) over (U',T',8') are:

{(/, m) e r(T', ̂  x ZT.) | the image/of/in ̂  satisfies/^1 = <?nl}/<(^^n)>

It is clear how ^(^) becomes an extension as indicated above.
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The extension ^(^) defines a section l(^) of the sheaf

^</T(En(g)u. ^J/T) ^ D(E.C?)n)|cEIS(IT/T).

Under the map

D(E^)n)T -> D(MT ^ W ^T

the element l(]f) maps to 1; this is a consequence of our definitions and the definition
of [BM, (2.2.3.1)].

In a similar way the sheaf 3t\d), defined for a e F(T, ̂ ) on GRIS(U/T) by

r((lT, T, 8'), ̂ )) := {(/, m) e r(T, ̂  x Z^)}/<(^,^)>

is an extension

0^^^^)^Z/^Z^O

and corresponds to the secdon a of

D(Z/^ Z)^ = Sxt^WT^, 0^) ̂  0^ 0^.

Suppose g[ and ̂  e F(T, ̂ ) are two sections lifdng the image of g in r(U, ̂ ).
<'w /̂ ->

We claim that the difference l(^) — l(^) is given by the class of the exten-
sion ^(log(^&-1)) in

D(Z/^Z)^CD(E^))^.

To prove this we consider the pullback

0 ——^ ^®^U/T —————————> P —————————————> EJg)y ——————-> 0

I i l^-"II y 4'

0 —^ ^/T®<?U/T —> ^(^)©^(?2) -̂  EJg)r®E,.(g)n -̂  0

and we construct a homomorphism

a:P->^(log(^r2-1))

which proves the equality (we leave it to the reader to check this). If

(U', T', 8') e Ob CRIS(U/T) and (^, 0 e F(T', ̂ ) x Z

is such that^" == g^ for z == 1, 2 and / e Z is such that^i.^ =^~1, Wi + Ip" = — Wg
then we associate to this the pair

(log(/i /2 &'), m, + I p " ) e r(T, ^,) x Z
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(and hence a section of^(log(^i ̂ -1)). We again leave it to the reader to check that this
induces a homomorphism a as desired using the definitions of ^(^^ etc.; the crucial
point is that to the pairs (/i, m^) and (./a-ftT^77^ -~ ^n) ls associated the pair

(log^y^-1^1), ̂ i + ̂  +r) = (log^-1)^)
+(log(/i/2^)^i+^).

Finally, we are able to prove the commutativity of the square of the lemma.
Choose a lift ^eA^ of g as in the definition of 4.3.4. We have to check that/•»>/
the element l(^) £D(E^))^gp^^ ̂  satisfies formulae (4.3.2.1) with T) == dlog(^)
and a == log((y(^) ^-p). This is checked using the above; for example the property
that vT(^) == dlog(^). 1 follows from the fact that

pri-W)) -pr.-W)) =log(pr^).pr^rl).l;

here pr^ and pr^ are the projection morphisms

Spec(A, ®z AJF) =? Spec(AJ

of the first infinitesimal neighbourhood of the diagonal embedding of Spec (A J. (See
also the proof of [dj. Proposition 8.9].) D

We note that the obvious homomorphisms W^ -> W^_^ are induced by taking the
kernel of pn~l on an extension of D((JLpn) by D(Z/^nZ). Let us write

W^ 3 W^ :== { x e W^ | 3y e W^^i whose image in W^ is A; },

Since any element ofA^A*)^ can be lifted to an element ofA^A*)^^ it follows that
the image of 4.3.4 lies in W^.

4.3.6. Proposition. — a) If A is afield of characteristic p the map 4.3.4

A*/(A*)*'"^W,

is an isomorphism for all n e N.
b) Over a field k of characteristic p the crystalline Dieudonn^ module functor D induces a

bijection of extension groups

Ext^J^/Z,, G,[T]) ^ ExtLc(D(G,[r]), D(<^/Z,)).

Proof. — Part b) is a consequence of part a) since the map of Ext-groups is just
the map (k == A)

lim A^A*)^ -> lim W, ̂  HmW,.

Injectivity ofA^A*)^ -> W^ is a consequence of fully faithfulness of D on Spec(A),
but is also easy to prove directly: if {g'~1 d^, dlog^^) ^-p)) = (d6, (?(&) — pb), then
bepA^ (look at second factor), hence d^ej^A^, hence g ' ^ h ^ ^ + p f ) , hence
A ej&2 A^, etc.
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Surjectivity is proved as follows. Since the kernel of the map W^ -> W^ can be
identified with W^_i, we only need to prove surjectivity for n = 1. Let us take
(•/], a) eDg X Ag with d^ == 0 and 0(73) = da +^. We can write a = d[ -}- pa^ since
da == a(^) —J^T] ej&Qg. Changing (•/], a) by (d^i, cr(^i) —J^i) we may assume that
a epA^: a == pa\ We can now divide the equation cr(7]) == da +A7] by p to get

-<r(7)) = dfl' + ^ e^r
P

This equation can be viewed as a condition on the 1-form T) e t^i = fi^ without referring
to the lift (Ag, a): the equation says that the relation

S^r'd^S./^ (moddA)

holds in i^/dA for any presentation 73 = S^ dg^ of T). We have to prove that any Y] e Q^
satisfying this is a logarithmic differential: Y) == g~1 dg for some ^ e A*.

A relation of the type above is realised by a relation

S.̂ -1 d& = ̂ fi dgi + S da, + 2 P.(d(y, + 8,) - dy, - d8,)

+S£jd^6,-^d9,-6^dU
m

in A[dA]. Clearly, there exists a subfield A C A finitely generated over Fy containing all
the elements^, g,, a^., p^, y^, 8^ e^, ̂ , 6^. We have reduced the problem to the case of
a field k finitely generated over Fp. The 1-form T] comes from a 1-form T] e F(X, Qx) 0^
some variety X smooth over Fp with Fy(X) ^ A. By assumption dv) = 0 and T] lies in
the kernel of the map (see [1113, § 2])

W*-G:Z^->^.

Hence by [1113, 2.1.17] it is a logarithmic differential on an open part of X. D

4.4. Construction of G in the reduced case

In this section we assume that 3£ = X^d- Hence, we may assume that
3£ == S == Spec (A) is affine and of finite type over a field k with a finite j^-basis. Since S
is formally smooth over Spec(F^), it is a regular scheme. Also we may and do assume
that S is irreducible (i.e., connected). We argue by induction on dim S; the case
dimS == 0 is 4.2.

Let there be given a Dieudonn^ crystal (<^,y, v) over S. By 4.2 we have a ̂ -divisible
group G^ over Spec(K), where K is the function field ofS (it is finitely generated over k,
hence it also has a finite j&-basis). This ^-divisible group is such that

(4.4.1) D(GJ ̂  ( €J, V) |cEIS(Spec(K)/2:) •
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Fix n e N. There exists a nonempty Zariski open U C S and a finite locally free
group scheme €„ over U with G^ XuSpec(K) ^ G^jj^]. Suppose (A^, <r) is a lift of A
modulo ̂ n. A lift of K modulo p1" is:

Hm A^
/£ An, /mod v> + 0 7

with the natural action of a on it. Using the description of crystals in terms of modules
with connection 2.2.3 and arguing as in 4.2.1 we see that we may assume that the
isomorphism (4.4.1) modulo p71 exists over U (after possibly shrinking U a bit):

(4.4.2) D(GJ^(^w^)|^s(^/i;)•

Using the fully faithfulness ofD ([BBM, 4.2.6] or Remark 2.4.10) we may even suppose
that U is the biggest Zariski open subscheme of S such that a finite locally free group
scheme G^ over U exists, endowed with an isomorphism (4.4.2).

Let T == S\U with the reduced closed subscheme structure. The regular locus
T^C T is open dense in T. We are going to extend G^ to U u T^ == S\Sing(T)
together with the isomorphism (4.4.2). This contradicts the maximality of U unless
T = 0, which is what we wanted to prove. Indeed, then we have G^ over S with (4.4.2)
for all n and hence by fully faithfulness ([BBM, 4.2.6] or Remark 2.4.10) a ̂ -divisible
group G = (GJ^i.

Again using the fully faithfulness of D on finite locally free group schemes, the
problem of extending G^ is a local one. Thus we may assume that T is a regular scheme
and that

T == Spec(A/I) -> S= Spec(A)

is defined by an ideal I generated by a regular sequence/i, ... ,fc e A. We put V) == Spf(A)
where

A:=HmA/P^A/I[[/, , . . . , /J].

(To find such an isomorphism compare with Lemma 1.3.3 and recall that A/I is regular.)
By our induction hypothesis (dim T < dim S), we can find a ̂ -divisible group H"

over T with D(H") ^ S |CEIS(T/S) • By Proposition 3.2.1 we can find a ̂ -divisible group H'
over 9) with D(H') ^ <fL. By Lemma 2.4.4 this comes from a ̂ -divisible group H over
Y:= Spec(A) with

(4.4.3) D(H)^ <?|cEIS(Spec(A)/S).

4.4.4. Lemma. — The functor D is fully faithful on finite locally free group schemes on
each of the schemes

Y, := Spec(A[l//J) and Y, := Spec (A [I//,/,]).

Proof. — Since we have the isomorphism A ^ A/I[[/i, ...,/J] we may use
Lemma 1.3.3 to replace A/I by a ring B with a finite j&-basis. The ring B[[/i, .. .,/J]
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has a finite j^-basis by Lemma 1.1.3. Hence so does B[[/i, .. .,/J] [l/^] and
B[L/i, .. .,/J] [I/A/.-]- It suffices to apply 4.1.1 of [BM]. D

The morphisms Y, -» S and Y .̂ -> S factor through U C S and by the lemma we
get isomorphisms

(4.4.5) a,:H[r]^G^.

from the isomorphisms

D(H[r]Y,) ^ <?/r ^ICEIS(Y^) ^ D(G,^.).
These isomorphisms agree on Y .̂ after pullback with Y^->Y, and Y^.—^Y^.. By
Proposition 4.6.2, we get a unique finite locally free group scheme G^ over S with iso-
morphisms G^u ^ G^ and G^Y^HOT and inducing (4.4.5).

Suppose T^ ̂  S^ is a lift of T c^ S modulo ̂  : S,, == Spec(AJ, A^ is a lift of A
modulo^ and T, == Spec(AJ(^, . . .,^)) where^eA, lifts^ eA. We also get Y^
and Y,^ in a similar manner. Crystals killed byj^ on T (resp. S, Y, or Y .̂) are described
by (P^-modules (resp. (P^, (P^^ or .̂. ̂ -modules) with connections, hence Propo-
sition 4.6.2 now gives us an isomorphism of crystals

D(G,) ^ g^ S

agreeing with (4.4.2) and (4.4.3). It is an isomorphism of Dieudonn^ crystals since
this was true of (4.4.2). This concludes the case 4.4.

4.5. Existence of G in the general case

We proceed as in 4.4 by induction on the dimension of Xrecr The case that
dim Xyed == 0 is a combination of 4.2 and Proposition 3.2.1.

As noted in 4.1 we may assume that X == Spf(A) is affine and that A is of
type (1.3.1.1). Using Lemma 1.3.3 we can replace A by a complete ring of type
(1.3.2.1), which has a finite ^-basis (this does not change the dimension of X^\).
Suppose I C A is the biggest ideal of definition of A. The scheme Spec (A/I) is a reduced
scheme of finite type over a field, hence its regular locus is a dense open subset. Thus we
can choose an element / e A, / ^ I such that Spec (A/I [I//]) is regular and such that
dim Spec(A/I +/A) < dim Spec(A/I). We put

A{l//}=mnA/P[l//]

and A^HmA/^A, I == I.A.

Suppose we are given a Dieudonnd crystal § ' on 3£ = Spf(A). By 4.4 we get a
^-divisible group G[' over Spec (A/I [I//]) and by Proposition 3.2.1 it can be deformed
to a ^-divisible group G[ over Spf(A{ I//}) with

(4.5.1) D(GO^|^^.
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By our induction hypothesis we get a ^-divisible group Gg over Spf(A) with

(4.5.2) D(G;)^|^).

However, using Lemma 2.4.4 and Proposition 2.4.8 we may assume <?' comes from
a Dieudonn^ crystal § over Spec (A), G[ (resp. Gg) comes from a ^-divisible group G^
(resp. G^) overSpec(A{ I//}) (resp. Spec(A)) and the isomorphism (4.5.1) (resp. (4.5.2))
is defined over Spec (A { I//}) (resp. Spec (A)).

By Lemma 1.1.3 the ring A has a finite j^-basis. Hence A[l//] has a finite j&-basis,
hence the ring

B:=Hm(A/P)[l//]

has a finite j^-basis (Lemma 1.1.3 again). Clearly, we have homomorphisms A -> B
and A{1//)-^B. By fully faithfulness over Spec(B) ([BBM, 4.1.1]) and (4.5.1)
and (4.5.2) we get an isomorphism

(4.5.3) GI gp^^ ^ Gg sp^^.

Reducing everything modulo a fixed power n of I we get G^ „ over Spec (A/I" [I//]),
GZ „ over Spec(A/P) and

(^S.^) G,^ x Spec(A/P[l//]) ^ G,̂  x Spec(A/P[l//]).

By Proposition 4.6.2 we get a ̂ -divisible group H^ over Spec (A/I") agreeing with G^ ^
over Spec(A/In[l//']), agreeing with G^ over Spec(A/Tro) and inducing the isomorphism
(4.5.4). Taking the limit for n -> oo (Lemma 2.4.4) gives a ^-divisible group H over
Spec(A), isomorphic to G^ over Spec (A { I//}), isomorphic to Gg over Spec(A) and
inducing (4.5.3).

To prove that D(H) ^ § we use the description of crystals in terms of modules
with connections ([BM, 1.3.3] and 2.2.2) over suitable lifts of A, A, ... modulo^".
The argument is similar to the last part of the proof of 4.4 and is left to the reader.

4.6. A remark on descent

Only included for quick reference.

Suppose A is a Noetherian ring and 1C A is an ideal. Put X == Spec (A),
Z = Spec(A/I), U = X\Z, Y = Spec(A) where

A = lim A/I",

and U' = Y\Z == U X^ Y. We have the morphisms

pi: U' ̂  U and ^ : U' -> Y.
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We consider the following category:

(4.6.1) Objects are triples (^, g^, a) where
— S^ (resp. <?y) is a coherent sheaf of ^(resp. ^•"^dules,
— a is an isomorphism

^ATO^(^y).

Morphisms {fv^fy) '' (^u? ^y? a) -^ (<^u5 <?y, a') are module homomor-
phisms /u : ̂ u -> ^u ^d A : <^y -^ ^Y compatible with a and a'.

4.6.2. Proposition. — The natural functor

F : coherent Q ̂ -modules -> (4.6.1)

u an equivalence of categories.

Proof. — For any (^, ^y, a) e Ob (4.6.1) put

r((<?u, <?Y, a)) :={(^,^) ^ r(u, ^) x F(Y, ̂ ) I a(A^u)) -^C^)}-
It is easy to show that for a coherent (P^-module S we have F(X, ^) = r(F(<^)). Thus F
is fully faithful. Returning to our object (^, ^y, a) of (4.6.1), it is easy to find a finitely
generated submodule M C r((^? ̂  a)) such that ;M^j -> ̂  is an isomorphism (M is
the sheaf on X associated to the A-module M). Then ^y/^Y ̂ 1 be a coherent sheaf of
(Py-modules with zero restriction on U'C Y, hence killed by some power of I = I. A.
Thus (0, ^Y/^Y? 0) is in the essential image of F. To show that (<?^, ^y, a) is in the
essential image of F also we note that F identifies Ext-groups. If N is a finitely generated
A-module annihilated by some power of I, then the natural map

Ext^(N, M) -> Ext^(N, M ® A)

is an isomorphism. D

5. Proof of Main Theorem 2

In this chapter we prove the second main theorem. It implies that the crystalline
Dieudonn^ module functor is fully faithful up to isogeny over schemes of finite type
over a field with a finite j&-basis.

The proof of the theorem relies on ideas of Berthelot on convergent isocrystals. Let
me try to indicate briefly two of the main ideas of the article [B2]. See also [B3],

Take a reduced scheme S of finite type over a field k of characteristic p > 0.
Choose a Gohen ring R for the field k. Consider a formal scheme 3£, formally smooth
over Spf(R), whose underlying reduced scheme 3^ ls equal to S. Note that we do not
assume that 3£ is of finite type over Spf(R). For example we can construct X by taking
a closed immersion of S into a scheme X which is smooth over Spec(R) and taking 3£
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to be the completion of X along S. To the formal scheme X we associate a smooth rigid
analytic space X^ (see Chapter 7 or [B2, 0.2.6]). If 3£ is the completion of X as above,
this is just the admissible open subvariety of the rigid analytic variety X"8 consisting of
points x e X"8 specializing to points of S. Such a rigid analytic variety U == y18 is
called a tube of S. Any two tubes Ui, Ug of S are dominated by a third tube U and we
may assume that the morphisms U -> U^ are fibrations whose fibres are open unit balls.
Therefore we get a cohomology theory of varieties S in characteristic p by associating
to S the cohomology of one of its tubes.

Berthelot constructs a functor from the category of Dieudonn^ crystals over S
to the category of convergent F-isocrystals over U: these are finite, locally free sheaves
of ^-modules endowed with an integrable connection and an action of F (suitably
defined). This last category is independent of the tube U chosen. Berthelot shows that
this functor is fully faithful up to isogeny.

5.1. Statement of Main Theorem 2

5 . 1 . 1 . Theorem. — Let k be afield with a finite p-basis. Suppose that S is a reduced
scheme of finite type over Spec(^). For any two p-divisible groups G^, Gg over S we have

(5.1.1.1) Homoc/sWGa), D(Gi)) == torsion subgroup ©D(Homg(Gi, G^)).

That is, for any 9 : D(Ga) -> D(G-i) there is a unique ^ : G^ -> Gg over S such that 9 — D(^)
is torsion. D

The proof of this theorem is long and complicated and will occupy most of the
rest of this chapter. But first let us deduce a corollary of it.

5.1.2. Corollary. — Let S be a scheme of characteristic p which has a finite open covering
S = U, U, such that each U^ is of finite type over a field \ which has a finite p-basis. The crys-
talline Dieudonne module functor D (2.3.3) is fully faithful up to isogeny over S.

Proof. — Suppose Gi, Gg are ^-divisible groups over S. We have to show that D
induces a bijection

(5.1.2.1) Hom^Gi, G^) 00 Q^ Hom^/sWG^, D(G^)) ® %.

Here DG/S stands for the category of Dieudonne crystals over S (2.3.2). Of course we
may replace S by any of the L^; thus the reduction S' of S satisfies the assumptions of5.1.1.
On the other hand, it is well known that the maps

Hom,(Gi, G,) ® % -> Hom^(G^, G,^) ® %

and Hom^/s(D(G2), D(Gi)) ® Q -^ Homes' ("(G^'), D(GI,S')) ® %

are isomorphisms. In both cases this can be seen using that some power of the Frobenius
morphism of S factors through S'. Consequently 5.1.2 follows from 5.1.1. D
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5.2. Formal setup

Take S, G^ and Gg as in the theorem. If we prove equality in (5.1.1.1) over the
members of a finite open cover of S then equality in (5.1.1.1) follows for S. Thus we
may and do assume that S is connected, affine and of finite type over a field k with a
finite j&-basis. The proof of 5.1.1 is by induction on dim(S). The case dim(S) == 0
follows from Theorem 4.1.1. Our induction hypothesis is now that we have proven 5.1.1
for all schemes T as in 5.1.1 with dim T < dim S.

Suppose we are given a homomorphism of Dieudonnd crystals over S:
(5.2.1) 9:D(G,)->D(Gi).

We are looking for an element

^eHom^Gi.G^)

such that 9 — D(^) is torsion. If we solve this problem for

9': D(Gi Xg Gg) ——> D(Gi Xg G^)\- i«
D(Gi)©D(G2) —> D(Gi)CD(G2)

given by the matrix
/D(id^) 9 \

\ 0 D(icy;5

then we have also solved the problem for 9 (just put ^ equal to

GI ̂  GI Xs Gg X GI Xg Gg -^ Gss).

Thus we may assume that 9 is an isomorphism.
Let us choose a closed immersion S ̂  A^ for some n e N. We consider the formal

scheme Xo which is the completion of A^ along S. Thus XQ == Spf(A) is an affine formal
scheme, A is of type (1.3.2.1) and S ̂  (Xo)red • BY P11^ Theorem 4.4] we can deform Gi
(resp. Gg) to a ̂ -divisible group H[ o (resp. H^ o) over 3£o (see 2.4.2). By Corollary 3.2.4
(see also Remark 3.2.3) we can find a natural number N, such that we can deform H^o
and Hg o over the closed immersion

Xo = Spf(A) -> 9)o === Spf(A[[^, . . . , ̂ ]])

to/^-divisible groups H^ o and Hg Q over 9)o which are simultaneously versal: the Kodaira-
Spencer maps (see 2.5.4) of D(H^ o) and D(Hg o) induce a surjection

N ^

(5.2.2) ©^ ̂  ̂  ̂  ̂ p î.o. 04,0) ®^m^(c^o, oc^o).

Here we have written o, o and a, o for the sheaves <o and a constructed in Section 2.5.3
for the Dieudonn^ crystal D(H, g) over 3)o.
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Let us take a lift (<P, cr) of k and put K equal to the quotient field of 0. Next, we
take a lift (A, cr) of A over (<P, cr), i.e., such that there is a homomorphism 0 -> A compatible
with cr. (This is easy to find by lifting A^ to A^ and taking the completion of A^ along
S C A^ C A^.) As a " lift " of 9)o we ^e the formal scheme

?):==Spf(A[[^,...,^]]).

We have a lift of Frobenius cr :?)->?) given by cr on A and CT(^) = ^f. Finally, we
again use [1112, Theorem 4.4] to lift H^ y (resp. Hg o) to a ̂ -divisible group H^ (resp. Hg)
over 5). (This can be done as follows: H^ o may be considered as a ̂ -divisible group over
Spec(A[[^]]) by Lemma 2.4.4, then lift H^o successively to Spec(X[[^]]/^X[[^]])
using the theorem of Illusie.)

The value D(HJ^) of the Dieudonn^ crystal D(HJ over 9) (defined by a suitable
inverse limit as in section 2.5) is endowed with a canonical integrable, topologically
quasi-nilpotent connection (compare 2.2.3)

(5.2.3) V:D(H.)^D(H,)^q,.

By [BBM, 3.3.5] there is a Hodge filtration

0 -> (^ -^ D(HJ^ -> ̂  -> 0

reducing to the filtration co^oC D(H,o)^ modulo p0^. Hence, we see that (5.2.3)
still induces a surjection:

N Q

(5.2.4) © 0^— ^^om^ ̂ ((Oi,ai)©^om.(^,a2).
ias 1 CXs v v

We also have canonical horizontal isomorphisms

^ D(H,)^ ^ D(cr- HJ^ ^ D(Frob^(H^))^^,^,

hence Frobenius and Verschiebung induce horizontal homomorphisms

F : a- D(H^ -> D(HJ^ and V : D(H,)^ ̂  a- D(H^

satisfying the usual relations.

5.3. Rigid analytic setup

To the formal scheme 9) there is associated a rigid analytic space Y == S)^ over K.
See [B2, 0.2.6], see also chapter 7. It is a smooth rigid analytic variety over K, since
it is an open subspace ofA^^^ (see above). To the finite locally free sheaves c^, a,
and D(H,)^ over 9) there are associated finite locally free sheaves of ^-modules co ,̂
a^ and D^,)^ on Y. See 7.1.11. The lift cr on 3) induces a general morphism
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a: Y -> Y over the continuous homomorphism a: K — K. See 7.2.6. Frobenius and
Verschiebung on D(HJ^ induce

F : a* D^)"8 -> D^,)^ and V : D^)"8 -> ̂  D^,)^.

In addition, the connection V (5.2.3) induces an integrable connection (see 7.1.12)

V"8 : D^)"8 -> DW^ ®^ QY-

Again we have that surjectivity of (5.2.4) implies surjectivity of the " Kodaira-Spencer ')

maps of 0 -—co^ -^(H,)'18 -> a^ -^ 0 induced by V18, i.e., the following homomor-
phism is surjective:

(5.3.1) © ̂  a ^m^«, a?8) © ̂ om,^ a^).
^ — i ox.

We claim that D^,)"8 is canonically isomorphic to the convergent isocrystal
0(0,)^ over Y associated to the Dieudonnd crystal D(G,) on CRIS(S/2). See [B2, 2.4.1].
This is easy to prove and left to the reader. In fact we only need this to get the homo-
morphism of sheaves of ^Py-modules

cp^ : D^)"8 = D(G2)an -> D{G^ == D(Hl)^ig,

constructed in [B2, 2.4]; it is deduced from 9 by functoriality of the construction of an
associated convergent isocrystal. Let us recall its construction.

The Dieudonnd crystal D(H^ o) is given by a Dieudonn^ module (M^, V,, F^, V^)
over A [[A:]] (see 2.2.3). The closed immersion S <-^ 9)o ̂  9) is given by an ideal
ICA[[^]]. We remark that I is the biggest ideal of definition of X[[^]] and that
M[[^]] + ^i^El^]] + .. . + ^N ̂ [M] c I- Consider the divided power algebra (£), I, [ ])
constructed for the pair I C A[[^]] in (2.2.1.1). The Dieudonn^ module defined by G^
is the Dieudonnd module (M^£), V,® 1 + 1 ®V, F,® 1, V,® 1) over D. Thus our 9
comes from an isomorphism

(5.3.2) 9 : Mg®!) —Mi®£)

of Dieudonn^ modules.
Let us consider the ring B^ of 7.1.1 constructed starting out with I C A[[^]]. It

is the^-adic completion ofX[[^]] [P//^]. As in 7.1.3 the space Y = ?)rig is the increasing
union Y = U V^ of the affinoid subvarieties V^ = Sp(C^) = Sp(B^®^ K). Berthelot
[B2, (2.4.1.2)] constructs a homomorphism ofA[[^]]-albegras
(5.3.3) p : D - > B i

mapping i^ to ^/yi! for all i el. To prove that it exists take generators/i, ...,/,. of
I C A[[^]] and recall that any element x of t) can be written as

^= S ^M/^/^.../^
M == (TOI, .. ., Wy)
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with a^ e A[[^]j and a^ -> 0 ^-adically if | M | -> oo. Thus the sum

f(')••=^.„^-^^-^
converges in B^ since/"7m! e B^ for/e I. We also remark that since cr(I) C P + ̂ A[[^]]
it induces homomorphisms

(5.3.4) (T:B^->B^ ^ = 1 , 2 , 3 , . . .

We conclude that <r(Sp(C^+i)) C Sp(GJ, i.e., ^(V^i) C V^.
The construction of 9^ is as follows. Using (5.3.2) and p we get an isomorphism

(5.3.5) M^i^fii^^^fi^pBi^M^fi^pB^M^i^Bi.

Hence, we get an isomorphism Mg ̂ ^ C^ -> M^ ^^]] ^i ^ equivalently, an
isomorphism

<p,:D(H^|,^D(H^|^.

This isomorphism is horizontal for V"8 and compatible with F^8 and V^18 since 9 is so.
Next we define

y,:D(H^|^^D(HO^|^

by induction on n as follows:

(5.3.6) <Pn+i:=^ (F^onD^^l^^oo*^) o (V? onD(H^)|̂ .

Thus it is !//> dmes the composition

D^^L -^(T-D^^lv "-^t^D^^lv -^D^J^Iy .v £" l^+l v -/ I'n+l v 1 / I 'n+l v 1 / I'n+l

We have used ^(V^^i) C V^ to get (^((pj over V^^.^. Remark that since 9^ is compatible
with F and V we get 9^+i|v^ = ?n- It follows easily that (?n+i ls horizontal for V^ and
compatible with Ff8 and V^ since 9^ is so. The compatible system of maps (9j^i
defines our isomorphism

(5.3.7) 9-1 := Hm9^ : D^)"8 -^(H^18.

It is horizontal and compatible with F and V. We remark that 9^ is the unique (hori-
zontal) map D^^)"8 -^D^)^ extending 91. (If ^ where a second such map then
<pan — ^ would be a morphism of finite locally free sheaves over the connected smooth
rigid analytic space Y (see 7.4) zero on a nonempty open subset V\ ofY, hence zero.)
In particular, 9^ does not depend on the choice of a on 9).



56 A. J. DE JONG

5.4. Relation between rigid points and 9

5.4.1. Situation. — Here G:C 0' is a finite extension of complete discrete valuation
rings, K/ = (9' ® K is the quotient field of Q ' . Further, X: Spf(^) -> 9) is a morphism
of formal schemes over Spf(ff). To this there is associated a morphism of rigid analytic
spaces over K (see § 7):

(5.4.1.1) A^Sp^') ->Y.

Its image consists of one point, denoted x[iK e Y by abuse of notation. Any point of Y
occurs as x^ for some x as above (see 7.1.10). Let XQ = Spec(&') = Spf(^')^ be the
unique point of Spf(^'). The morphism x induces

(5.4.1.2) x^ : x, = Spec(^) -^ == S.

This induces a morphism of crystalline topoi (A;o/S)cRia -> (S/S)c:Ris. Hence we get,
putting G^ := A:^(G,), an isomorphism of Dieudonnd crystals over CRIS(A?o/S):

^d,cBi8(9)--D(G2,J ^D(G^).

By Theorem 4.1.1 (ft' is a finite extension of ft, hence has a finite j&-basis also) we get a
corresponding isomorphism of ^-divisible groups

^o^l^o^^^o-

Let us take a uniformizer T r e f f ' . I f ^ e N i s large enough then T/ ff' has a divided
power structure 8. Put U == Spec(fl?7^ <P') and T = Spf(^). The triple (U, T, 8) can
be considered as an ind-object ofGRIS(U/S). By obstruction theory and since XQ^U
is a thickening of XQ, the map p{ ^ lifts (uniquely) to a homomorphism

7^:H^^H,^.

It induces a homomorphism of ^'-modules

(5.4.1.3) x := D(7^)(u.T,8); D(H^J(U,T,S) ^D(Hi,u)(v,T.S).

Note that we have the identification of ^'-modules

(5.4.1.4) D(H^)^, s M,®^,, G'.

On the other hand we have a canonical isomorphism of K'-vector spaces

(5.4.1.5) WD(H^SM,®^K'.

If x^ e V^ then it is given by A^ : X[[^]] -^ B, -5- 0' and thus

W D(H.)ri' s M< ̂ ^^ C, ®c« K' S M. ®SM K'-
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We claim that we have the following equality

(5.4.1.6) 7.®^=?^^^

as homomorphisms MgOK' ->Mi®K/, where we used the identifications (5.4.1.4)
and (5.4.1.5).

We only need to prove (5.4.1.6) for the / e N such that vf <5' = p 0 ' . Indeed, if
t ' > t then -^ ==/'-^. We remark that, as ^(1) C v:<5' and <r(I) C P +^X[[x]], we
get sf </(!) C p ( 0 ' and hence a commutative diagram

A[[x\] -̂ > A[[x\]

1 [xt
y y

t) ——————> ^

where T : (£), T, [ ]) -> { Q ' . p O ' , y) is a PD-homomorphism. We also have x^{11) C p(P\
hence x^ factorises as A[[^]] -> B^ -> Q ' . We remark finally that the maps T and B^ -> tf^'
fit into a commutative diagram:

6 -^ Bi
(5.4.1.7) 1. ^

a)' <— B^
The ^-iterate Frob^ of the Frobenius morphism of U factors through XQ as

U -> XQ ̂  U. Thus we see that p1 ̂  is the composition:

TT (Ffll/ ^^k^*TT ^L rRr^V TT (VH>/ TJHI u ——> (rrobu) Hi u ——> (yroby) Hg ^ ——^ ̂ v

Since D(^) = ?|cKis(a;o/2) we see t^Lat X ls equal to the composition

M2®I^' ̂  Mj'®^^ Mf®^^' -^ Mi®^^

Mi®6®^' -v0^ M^fi®^'.

Working through the inductive procedure used to define 9^5 we see that p1 <p^ on
Mg ® B^ is defined as the composition

M^ ®i,,^ B, v2 ) M^ ®^^^ B, Mf OO^, B, Fl > M^ ®^, B,

M 2 ® D ® p B i ® ^ B ^ -V01d®^ Mi®£)®pBi®^B^.

The equality (5.4.1.6) is now a consequence of the description of 9^ == 9an|v/ and %
given above and the commutativity of (5.4.1.7).
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5.4.2. Lemma. — In Situation 5.4.1.
a) The following two statements are equivalent:

(i) There exists a morphism ^ : H^ ^ = x*(H.^) ->X*CH.^) == Hg ̂  of p-divisible groups
over Q' lifting ^ .

(ii) There exists a morphism a : H^ ^ -> Hg ̂ , of p-divisible groups over Q' such that

W^-D^^idK..

If these conditions are fulfilled then we have ^ = a.
b) The following two statements are equivalent'.

(i) For some n e N there exists a homomorphism a : H^ ^ -> H^g,, of p-divisible groups over 6'
lifting p"^.

(ii) T^ homomorphism {x^Y (9^) m^ (A;118)* (col18) into {^Y (co?8).

Proo/*. — We choose an t e N so big that nf 01 has a nilpotent divided power
structure.

Let us prove b ) . "(ii) => (i)55: By (5.4.1.6) we know that the homomorphism

^ = D(^ ^)(u,T,8) m^ ^s^ into ^Hi,^- Sy P1^1? 3.2. II], and [M, V Theorem 1.6]

this implies that p{ ̂  lifts to a homomorphism over ( ! ) ' . "(i) => (ii)": If a lifts ^n ̂

then ̂ "n a lifts ̂  ̂ , hence also lifts p{ ̂  (we may take i large enough so that i — n
is positive). By (5.4.1.6) and the references above, we now see that {x^)* (9^)
maps {^Y {(4s) into (^rig)* (co^).

Let us prove a ) , "(i) => (ii)55: If ^ lifts ^ then p1 ^ lifts /^ and j&^.
Hence, by (5.4.1.6), we get p^x^Y (9-) = D(/ ̂  ® id^ = /D(^)^ 00 id^.
Dividing by ̂  on both sides and putting a == 4'a; gives (ii). "(ii) => (i)35: If we have a as
in (ii) then the conditions of b) (ii) are satisfied. Hence, there is an a' : H^ Q. —> Hg Q,
lifting ^TO ̂  with D(a%, ® id^ = j^^"8)* (9^) (see proof of part b)). Thus we see that
D(a' — p" a)^/ == 0, hence a' =J&n a. Since a' lifts ^w ̂  it follows that a lifts ^. D

5.4.3. Claim. — There exists a closed formal subscheme 3^9)? which is formally
smooth over Spf(^) (2.4.6), with 3^ = 9)y^ == S and there exists an isomorphism of
^-divisible groups over 3

^:Hj3-^H,3

such that the homomorphism of ^rig-modules

D(^ : D(H,)™|3n, = D(H,|3)"' -^D(Hj3)^ = D(H^|yi.

is equal to ^^j^rig. The closed formal subscheme 3 ̂  ?) ls characterized by the following
property:
(5.4.3.1) Suppose x : Spf(^') ->?) is as in 5.4.1. It factorizes through 3 if ^d only

if the equivalent conditions of 5.4.2 a) hold.
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In 5.5 we show that this implies the theorem. We will prove the claim in two steps-
First, in 5.6, we prove it in the case that we already know 5.1.1 is true. This produces a
closed formal subscheme 3i m the formal open subscheme of 5) whose underlying reduced
scheme is the regular locus of S and a closed formal subscheme 3 3 in the formal scheme
which is the completion of 9) along the singular locus of S, by Theorem 4.1.1 resp.
induction. Using Proposition 7.5.2 and some analytic geometry we get 3 C 9) by gluing 3i
and 3g.

5.5. The claim implies the theorem

Let us prove that our theorem follows from 5.4.3. The isomorphism ^ induces an
isomorphism over 3red == ^:

^|s:G^G,

The difference 8:== <p — D(^[g) e Hom^g(D(G2), D(Gi)) has

S^ng == ̂ ng - D(^[3j|3rig = (p-lyi. - D^)^ == 0.

It is now a consequence of [B2, Theorem 2.4.2] that 8 is torsion. This is seen as follows.
Since S"1 is the unique horizontal extension of S^jyig we also have 8^ == 0. We let
T : BI -> £) /^-torsion be the homomorphism which is cr-linear with respect to A[[^]]
such that ^{ifp) = (p — 1)! i1^, for all i e I. This is well-defined as B^ has no ^-torsion.
The homomorphism or: 6 -»D (6 as in 5.3) can be factored modulo p-torsion as

£)/^-torsion -> B^ —^ D /^-torsion.

The element

8 e Hom^^Ma, M^) ®^n £)

satisfies p8 = F^ o o,(8) o V^ (it is a homomorphism of Dieudonnd modules). Hence

p8 == FI o T, p,(8) o Vg == 0 e Hom^(M2, M^) ®^^3 £)/^-torsion

since 8an|v =0 implies p^(8) == 0. Thus 8 is torsion.

5.6. Proof of 5.4.3 in case 5 . 1 . 1 is known

The assumption that 5.1.1 holds is true for example if S is a regular scheme
(Theorem 4.1.1) or if S is replaced by a scheme T with smaller dimension (this is our
induction hypothesis). In this case we have a homomorphism of ^-divisible groups over S

^g : GI -^ Gg

such that D(^g) — 9 is torsion. It follows that D^g)^ = 9 .̂
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We define a closed formal subscheme 3 c 3) as follows. Let ?)„ denote the n^
infinitesimal neighbourhood of S in 9). By obstruction theory, the homomorphism p" ^g
lifts to a homomorphism

?Ts:H^->H^.

We put
3n == closed subscheme of %)„ defined by

the vanishing of the morphism H^]^ -p"-̂  Hg ^ .

It is easy to see that any morphism of schemes/: T -> 9)^ factors through 3^ if and only
if/*(+&) over T X^ s lifts to a homomorphism over T. Thus we have 3n==V)n^ 3n+i
(scheme theoretic intersection) and therefore we get

3:==liin3,Clnn^=3).

By the very definition of 3 the homomorphism ^g lifts to

+:H,|3-H,|3.

In addition, (5.4.3.1) is clear from the definition of 3. Also if x : Spf(^') -> 3 is such a
morphism then x*(^) is a lift of ^. Hence, we get {^y D^)"8 = (A^)* (9^) for all
points ^e of 3^ (see 5.4.2). Thus, we see that we will have D^)"8 = ^\yig if we
can prove that 3 is formally smooth over Spf(^), for in that case 3^ig will be a smooth
rigid analytic space (see 7.1.12) and hence homomorphisms of locally free ^orig-modules
are determined by their values at points of 3rig•

Let J3 C 0^ denote the ideal sheaf of 3 in 9). The obstruction to lift ^ to the first
infinitesimal neighbourhood of 3 m 9) lies in

^^^(^2.ai)®^J3/J|

by [1112, Theorem 4.4]; here we can also use [M, V Theorem 1.6]. By a standard
argument, it follows that 3 ̂  9) is locally given by (at most) dd* equations, i.e., J^ is
locally generated by (at most) dd* sections. Here d == dim(Gi) == dim(G2) = rk^g) and
^ == dim(GO = dim(G^) == rk(ai).

Let us show that in any closed point s e S these equations define a linear subspace J
of mj(m^ + pQ^ s) of dimension at least dd\ Here ̂  , is the local ring of ?) at the point
seS==^ and m, C 6^ is its maximal ideal. Put R == (P^J(m2, +pQ^s +J);
thus Spec(R) -> V) is a closed immersion factoring through 3 c ^)- O111* ^ over 3 gives
a homomorphism H^ ̂  -> Hg ^ and hence a horizontal homomorphism of Dieudonn^
modules over R compatible with nitrations. Thus we get a commutative diagram

0 —> <02®R —> M:2®R —> a a®R —> 0
(5.6.1) co(^)®E D(^)®E a((p)®E

y y 4'

0 —> coi 0 R —> Mi ® R —> ai ® R —> 0
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and D(^) ® R is horizontal for V,: M, ® R -> M, ® fl^. By our choice of 9) == Spf(A[[^]])
there is a homomorphism

^->"E/I

and it is clear that k{s) ®^R/^ is generated by the elements 1 ®dx,. All the relations
between these elements are determined as follows: write any element fej as
/==S^^4-,§ ^ , a,ek(s) with g 6 m, n X, then the element S^®d^ is zero in
k(s) ^^E/^. Recall that we have the Kodaira-Spencer map:

K,(a/aA;,) : a), ® ̂ ) -> a, ® A^)

forj= 1, . . . , N and z = 1, 2. The composition

(O,®R-^M,®R^M,®^ -^a,®% -^ai®^M®^E/I

is a map co,®^) ->• a,®^) ®QR/I. Using the definition of K, it is easy to see that
under this map we have:

T] h-> class of Z; K,(^/^,) (T)) ® d^..

At this point the commutativity of 5.6.1 implies that the homomorphism
0)3 ®k{s) -> ai ® ̂ (^) ® a^^ given by

Y) ̂  S (a(^) (K^a/^,) (T))) -- Ki(a/a^) (<o(^) (T]))) ® d ,̂

must be zero. Taking a basis for Og and a basis for ai we see that this gives dd* elements
in © k(s) dXy which should be zero in Q^^^k^s). Our assumption that (5.2.4) is sur-
jecdve implies that these dd* elements are k{s) -linearly independent. Hence, dim^^ J ^ dd\

However, we have proved something which is even slightly stronger, namely:
there exist dd' elements /i, . . .,/^. G 6^ ^ AA[[A:l, .. ., x^]] generating the ideal ]^
of 3 in ^A [[>:i, . . ., x^]] such that modulo (m^)2 the linear terms in the x, of the /,
are linearly independent. The superscript A refers to m^-adic completion. We leave
it to the reader to show that this implies that

A^,, ..., x^W ^ A^, .. .,^_^]].

Thus this algebra is formally smooth over (9 (since A^ is so). We conclude that the algebra
^(35 ^3) = ^D^J/J is formally smooth over (9 since all its complete local rings at
maximal ideals are so.

5.7. Construction of the analytic closed subvariety Z

To start with, we define Z C Y as a set as follows:

x^ e Y such that the morphism x : Spf(^') -> 9)
(5.7.1) Z == < corresponding to it (see 7.1.10 and 5.4.1) satisfies

the equivalent conditions of Lemma 5.4.2 part a).



62 A. J. DE JONG

On the other hand we have an analytic closed subvariety W C Y whose points x^ are those
such that x satisfies the equivalent conditions of Lemma 5.4.2 part b). It is defined
as follows:

The analytic closed subvariety of Y defined
(5.7.2) W = by the vanishing of the homomorphism

' (o^ -> D(Hl)^W? ̂  a?8 induced by ^. {

Thus it is clear from Lemma 5.4.2 that ZC W as a set.

5.7.3. Lemma. — The rigid analytic closed subvariety W C Y is smooth and all components
of it have codimension dd* in Y.

Proof. — It is immediately clear from (5.7.2) that W is locally defined by (at
most) dd* equations in Y. The argument to prove that it is locally smooth of codimension
dd* is exactly the same as the proof of the corresponding fact for 3 in 5.6. (Use that 9®"
is horizontal and that (5.3.1) is surjective.) D

Let us take a point ZQ e Z C W. Recall that Y was defined as the countable union
Y = U^ V^ of affinoid varieties V^ over K. Let us decompose the affinoid variety W n V^
into its connected (hence irreducible) components:

(5.7.4) W n V, - W^ u W^ u ... u W^.

Each W^ ^ is a connected smooth affinoid variety and the cover (5.7.4) is admissible.
We define

(5.7.5) Z'= U W^
(n,i) with »oGW^,

(we only take those W^ which contain Zo). It is a connected rigid analytic variety
since it is the increasing union of connected affinoids. Its complement W in W can be
written as

(5.7.6) W == U W^,
(n,i)

where the union runs over those pairs (n, i) such that W^ , cj: Z'. (We remark that this
is not equivalent to ZQ ^ W^ ^ in general.) Since the covering

(5.7.7) W = = U W n V ^ = = U W , ^
«i <m i\ v

' n
n (n,i)

is an admissible affinoid cover of W, it follows that both Z' and W' are admissible open
subvarieties of W and that (5.7.5) and (5.7.6) define admissible affinoid coverings
of Z' and W'. It also follows that W = Z' u W' is an admissible open cover ofW (it can
be refined to (5.7.7)). Thus, we finally conclude that Z' is an analytic closed subvariety
of W. Since W is analytically closed in Y, we also get that Z' C Y is analytically closed.

By our definition of Z', any point z 6 Z' can be connected by curves in Z' to ZQ
(see Chapter 6).
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5.7.8. Proposition. — a) For any morphism f: G -> Z' of a reduced normal connected
1-dimensional affinoid variety C to Z' we have:

3 c e G, f{c) e Z o Im(/: C -> W) C Z.

b) Any two points z^ z^ of Z can be connected by curves in Z, i.e., there exist morphisms
f^: G^ -> Y of connected affinoid curves G^ to Y such that Im(ĵ  : C^ -^ Y) C Z (̂  theore-
tically) and connecting z-^ to z^ as in chapter 6.

5.7.9. Corollary. — As subsets ofYwe have Z == Z'. Thus Z has the natural structure
of a smooth closed sub variety of co dimension dd* of Y.

Proof of the corollary. — By the remark above the proposition we see that 5.7.8
part a) implies Z' C Z. Part b ) implies that any point z e Z may be connected by curves
in Z to ZQ e Z' C Z. Of course these curves then map into W and hence they must lie
in the connected component of W containing ZQ. This is Z', hence z e Z'. D

Proof of 5.7.8 a). — The morphism of rigid analytic spaces G -> Z' ->Y is given
by a morphism

(5.7.10) f : G;->9)

of FS^p where (£ is a model for G (see 7.1.6 and 7.1.7). Thus C is an affine formal
scheme, flat and of finite type over Spf(^), say (£ = Spf(R). Since C is normal, we may
normalize (£ and hence assume that R is normal. Since dim(G) == 1, we see that
T = Spec(R) is an excellent normal two-dimensional scheme. Its singular points lie in
To = Spec(R/^R) C T. By resolution of singularities of two-dimensional schemes [L],
we see there exists a blow up T' of T such that T' is a regular scheme. This blow up is
done in a subscheme ofcodimension two ofT contained in To C T (Remark G on page 155
of [L]). We can blow up T' some more in closed points to reach the situation where all
(reduced) irreducible components T^ of T^ == V(j^) C T' are regular (1-dimensional)
schemes and the intersections of To, with Tg ̂  are transversal for all i =f= j\ i.e., such
that To , n TQ^ , (scheme theoretic intersection) is a reduced zero-dimensional scheme.

Let us consider the completion (£' of the scheme T' along its special fibre To.
It is a formal scheme of finite type over Spf(^) and it is well-known that the morphism
(£'->(£ induces an isomorphism S/^ -> C"8 of rigid analytic varieties over K.
(See [R] or [BL, Theorem 4.1].) Hence, we may replace (£ by £' and assume that:
(̂  == (J^ (Eyed i where each Cred,i ls a ĝ11!3'1' 1-dimensional scheme of finite type
over Spec {k) and the intersections of these are transversal. (Of course C is no longer an
affine formal scheme.)

These assumptions imply that the restriction

9 CEIS^red,^) : ̂ (^2) IcEIS^red,!/^ -> ̂ (^l) IcBIS^i.ed,^)

((5.7.10) induces Kred i "̂  Ued == S) comes from a homomorphism of ^-divisible
groups (by Theorem 4.1.1) G^ ^ . —^ G^ . Since the intersections are reduced,
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D is fully faithful over (£^ , n (£red,j (Theorem 4.1) and hence these homomorphisms
glue to give

Ked^lked^^ked-

As the closed immersion (£^ -> Spec(6^2 (P^) =: (£2 is nilpotent, there exists an t e N
such that pt 4'e d ^ts to a homomorphism

^ed^ik^Kik-

Let us consider the triple A := (£2, C, y) as an ind-object of CRIS^/S). Thus^ ̂  ̂
induces a homomorphism

(5.7.11) D(/^J^ : D(H^ ̂  D(H^)a -^D(H^ ^ D(H,)^

For any x : Spf(^) -> (£ -> 9) the pullback ^(/ ̂ ^) is the unique lift of / ̂  over
Spec(^2^'). Hence, by (5.4.1.6), we see that

(^)*((5.7.ll)rig)==((fo^)riT(r).
Recall that the morphism/: (S?8-^Y factors through Z'C W. Hence by the

equation just proved we see that (5.7.11) preserves the Hodge filtrations defined by H, o:.
Thus by [BM, Corollary 2.3.11] and [M, V Theorem 1.6] we get a morphism of
/^-divisible groups (the divided power structure on p2 0^ is nilpotent)

a : Hi Q, "̂  Hg ^

which lifts pt 4'red •
The scheme H»[j/]^ is a finite fiat group scheme over C. Thus the associated

rigid analytic variety N^ == H^[^/]^ is a group variety over G == C1'18, which is finite
flat over C. Since G lives in characteristic 0, the structure morphism N^ -> C must
be dtale. Of course a induces a^ : N\ -> N3. Now note that for all c e G we have

/(.)EZoKer(a^),=N^.

Also Ke^a118) is a closed analytic subvariety of N\, hence is finite Aale over G. To prove
the assertion a) of Proposition 5.7.8 it suffices to note that for a finite ftale morphism of
rigid analytic spaces the cardinality of the fibres is locally constant on the base. D

Proof of 5.7.8 part b ) , — We first prove that any two points z^, z^ of Z with
sp[z^) = sp{z^ may be connected by curves in Z. Here sp is the specialization morphism
Y -> 9)^ = S (see 7.1.10). To see this, we use that by 7.2.5 we have

sp-^s) ^ (S)^)"8, s eS closed point.
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Since s == Spec(^(.?)) is a regular scheme of finite type over k we get by 5.6 a solution
3,09)^ of the problem posed in 5.4.3; by (5.4.3.1) we have

sp-^nZ^y.

(We remark that all the properties of the data S, Gi, G^, H^, Hg, 9, 9), Kp etc., used
in 5.6 still hold over the completion ̂  of%). For example ^A == Sp^A^i, .. ., x^]])
and AA is a formally smooth ^-algebra, (5.2.4)^ is surjective over 5)^ as it is the comple-
tion of (5.2.4), and so on.)

Thus 3« ^ Spf(R) where R is a formally smooth, local complete ^-algebra. By
Proposition 7.3.6 3? is connected. Since it is a countable increasing union of affinoids, it
is also the countable increasing union of connected affinoids. Applying Proposition 6.1.1
gives that any two points in sp'1^) n Z can be connected by curves in Z.

To finish the proof of 5.7.8 b) let us take two closed points s^, s^ of S. We have to
show that we may connect sp"1^) n Z to sp'1^) n Z by curves in Z. Since S is
connected (see assumption in 5.2), we can connect s^ to s^ by curves in S: we can find a
sequence of connected regular affine 1-dimensional schemes G^ of finite type over Spec(^)
and morphisms

^:G,^S, Z = I , . . . , T Z

which connect s-^ to s^:
1) Ji e Im(Gi -> S), jg e Im(G^ -> S),
2) Im(C,-^S) nIm(C^ -> S) + 0, i = 1, . . . , n - 1 .

(We leave it to the reader to construct G( and^; the hypothesis of regularity is
trivial to establish: just take normalizations.) Therefore it suffices to connect the
sets •^"^(y^)) n Z by curves in Z if we are given a single such curve f: C -> S as above.

To do this write G == Spec(R). The morphismyis given by a A-algebra homo-
morphism A -^ R. Choose a lift K ofR (see 1.2.2, 1.3.3 and (1.3.2.2)) and lift X -> £
of A -> R (this is possible since A is formally smooth over Zp). We remark that A -> S.
defines an ^-algebra structure on R, compatible with the ^-algebra structure on R. We
extend this map to a homomorphism

(5.7.12) A[[^, ...,^]] ->R[[^, ...,^]]

in the obvious manner. This gives a morphism

s: r = spf(K[[^,..., ̂ ]]) -> spf(A[[^..., ̂ ]]) == 9).
At this point we have to check that all the assumptions on the data e* H^,
e* Hg, Sred^i, £red ^2? ^(p)? ^ which are needed in 5.6 for the proof of 5.4.3
hold: By construction 9)' -> Spf(<P) is formally smooth and 9)^ is regular. Sur-
jecdvity of (5.2.4) over 9)' follows from our choice of (5.7.12). We also remark
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that we have (e^)' (9^) = Sred.cEisW^ this is J^l the functoriality of the cons-
truction (.)an. Applying 5.6 to the situation over 2)' we get a closed formal subscheme
3'C?)', with 3^ = 9)^ == G, which is formally smooth over Spf(^). Thus
3' = Spf(R[[^i, • • •?^N]] / J ) ^d R[[^i? •••^iJJ/J ls a regular, hence normal, ring
without nontrivial idempotents (since R has none). By 7.4.1 we see that I^O')^, (P°)
has no nontrivial idempotents, hence O')^ is connected. Thus any two points in O')^
may be connected by curves in (3')^- (Arguments as before using Proposition 6.1.1.)

It follows from the characterisation of ^ C 9)' in 5.4.3 that the composition
(3')^ C (S)')^ -> S)118 = Y maps into Z (set theoretically). Since we have the diagram

o')^ —> (^r8 —> ̂
^3' [8^' [^
C ———> G —f—^ S

and since sp^^c) =t= 0 for all c e G, we get the desired result. D

5.8. End ofthe proofof5.4.3

Let us take an element fe F(S, ^g) such that:

1) dimV(/)< dimS,
2) SN^V^) is a regular scheme.

This is possible as S is an affine reduced scheme of finite type over a field. We put
T == V(y)^ equal to the reduced closed subscheme of S underlying V(y). Further
we take U == S\T the complement of T in S and regular by our choice off. Take fe A
lifting fe F(S, ^g). As in 7.5.1 we put

2: == ̂  = completion of 9) along T,

U == open formal subscheme of 9) with U^ = U.

It is clear from our choice ofyeA that

2: = Sp^A^, . . . . ̂ ]]), ^ == HmA/^A

and U-Sp^AU//}^,...,^]]).

As was argued above (in the proof of 5.7.8 b)), the essential properties of G,, H,,
9, 9) used in 5.6 hold for G^rp, H,[^, ... and G^, H^[y, .. . By our induction hypo-
thesis 5.1.1 holds for T and 5.1.1 holds of U since it is regular (Theorem 4.1.1). Thus
we get pairs:

(3r C 2, ̂  : HJ3, -. H,)^) and (3u C U, ̂  : H^, ̂  H,^)
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as in 5.4.3. Hence by our definition of Z C Y above, we see that

3? == Z n 3^ (resp. 3u = Z n U )̂

as rigid analytic closed subvarieties of 27^ (resp. IP18). Hence we may now apply 7.5.2
to get a closed formal subscheme 3 c 9) wlt113 n Z = 3r ^d 3 n II == 3u- ̂  follows
that 3 is formally smooth over Spf(^) since this was true of both 3r ^d 3u-

Therefore, if we write 3 = Spf(R) and argue as in the proof of Lemma 1.3.3,
we see that we can choose an isomorphism

A[[^]]^R[[ji,...,^]].

By Lemma 1.3.3 we can choose a lift of Frobenius a^ on R and use it to get a new lift
of Frobenius a on A[x]] compatible with X[[^]] -> R. Since the new choice of the lift
of Frobenius a' on 9) does not change 9^5 we may suppose that a fixes 3 c 19- Thus
M^®]^R has the natural structure of a Dieudonn^ module over R (since
M,°®R= (M,®R)011).

We claim that the homomorphism of Syig = (P^-mod\iles

re1"1! • D^H }Tie\ —> 1VH V18!Y |Z • iy\^12) \Z -> Ly\^l^) |z

has matrix coefficients lying in F(Z, fi^); these matrix coefficients have to be computed
with respect to bases of M^ and M^. (Recall that D^,)^ == M,® (Py.) To see that our
claim is true we use that 9an|3rig = D^)^ and y^ng = D(^)rie, so that the absolute
values of these matrix coefficients is < 1 in points lying in 3? u 3? == 3^- Therefore,
we can use that

F(Z, ̂ ) = ro^, ^ng) = r(3, ^3)
by Theorem 7.4.1 to see that 9an|z comes from a homomorphism

9':D(H,)3-^D(H,)3.

Since 9^ is horizontal, we get that (p^ng is horizontal, which implies that 9' must be
horizontal (see 7.1.12). Since 9aa commutes with F and V, we get that 9aD|3rig commutes
with F and V (here we use that <r(3) C 3) which gives that 9' must commute with F
and V. In this way we see that 9' comes from a homomorphism of Dieudonn^ modules
9': M^®R -^MI®R. By Theorem 4.1.1 therefore, we get a homomorphism of
/^divisible groups ̂ : Hi^^/pE) -^IspecwpE)- Note that 9' is also compatible with
the Hodge filtrations defined by H,^ (by definition ofZ), hence ^o lifts to a homomorphism

^:H,|3->H,J3

of ^-divisible groups over 3 such that D(^ = 9' and hence D^)^ == ^yig. (If
p == 2 one has to argue as in the proof of 5.7.8 a).} This concludes the proof of 5.4.3.
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6. Connected rigid analytic varieties

Let 0 be a complete discrete valuation ring, K its quotient field, TT e 0 a unifor-
mizer and A the residue field: k == 0^0. In this section we will prove that connected
rigid analytic varieties are also path-connected in a certain sense. For the general defi-
nitions and notation concerning rigid analytic varieties we refer to [BGR].

6.1. Formulation of the result

For any rigid analytic variety X over K we will call a curve in X a nonconstant
morphism G -> X of a connected 1-dimensional affinoid variety C over K into X. We
will say that two points XQ^ x^ e X can be connected by curves in X, if there exists a sequence
of curves in X

C, -> X, i == 1, ..., n

such that:
1) XQ e Im(Gi -> X), A:i e Im(G^ -> X),
2) Im(G,->X) nIm(C,+i^X)=)=0, i = 1, . . . , n - 1 .

6 .1 .1 . Proposition. — Let X be a quasi-compact rigid analytic variety. If^. is connected
then any two points in X can be connected by curves in X. D

The proof of this will occupy the rest of this chapter.
There is an obvious reduction to the case that X is a reduced, irreducible, normal

affinoid variety. Say X = Sp(A) has dimension d. We argue by induction on d. The case
d == 1 is clear, thus we may assume that d ^ 2.

Let us take a finite surjective morphism

^X^B^SpCT,)

of X onto the unit ball of dimension d (see [BGR, Corollary 6.1.2/2]).

6.2. Reduction to the case that f is generically etale

We claim that we may assume that/is generically ^tale, i.e., that there exists a
Zariski open UC B^ such that/:/"1^) -> U is flat and unramified. (Unramified is
equivalent to ̂ -i^v = (°)-) Since/is generically flat by [Mat, Theorem 53], we see
that this is equivalent to the assertion that the extension of quotient fields Q,(T^) C Q,(A)
is separable. Hence, if char(K) == 0 then / is automatically generically etale. If
char(K) == p then there exists a field L,

Q(TJCLCQ(A),
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such that Q,(T^) C L is separable and L C Q(A) is purely inseparable. Let A' be the
normal closure ofT^ in L; it is equal to A n L and it is an affinoid algebra over K, see
[BGR, 6.1.2/4 and 6.1.1/6]. The morphism / factorizes as

X ̂  X' === Sp(A7) ̂  B .̂

The map i has the property that (H)-^, C ^ (9^ is purely inseparable in the sense that for
any s e ̂  (9^ there exists an n e N such that s^ e (9^,. This implies that i induces a
bijecdon on points and that for any fibre product

0=0' x ^ X —> Xi \
G' ———> X'

the same holds for C -> G'. Thus, ifG' -> X' is a curve in X', then G -> X is a curve in X.
Hence we may replace X by X' andybyV and in this way get the situation that f is
generically ^tale.

6.3. Reduction to the case f generically etale

Let us write (P{ x } or (P{ x-^y ..., x^} for the Tr-adic completion of ^[^i, . . ., A:J.
The homomorphism T^ -> A induces a finite homomorphism

(P{^,...,^}==T^A°

(see [BGR, Corollary 6.4.1/6]). To this situation we associate some numerical invariants:

^(ATO = ̂ (A/TJ

== the multiplicity of (7c) C (9 { x_} in the discriminant of A°
over TS

and deg(A°/T^) == deg(A/T,) - the degree ofT, -> A = [Q^A) : Q(T,)].

The discriminant of A° over T^ is defined: T^ -> A° is finite and generically ftale,
T^ is a regular ring and A° is normal as X is normal. Further, let T) denote
the generic point of Spec{k[x-^, ...,^]) and let 7]i, . . . , T ] ^ denote the generic
points of Spec (A). (Recall that A := A°/A00 == A°/VnA0.) The inverse image of the point
Y] G Spec(^[A:i, . . ., ^j) C Spec(T^) in Spec(A°) is { ^15 . . ., ^r}. The residue fields
&(7]i), . . ., k(r^y) are finite extensions of the field k(r^) = k{x-^, . . ., A:J. We want to reduce
to the case that all the field extensions k{r^) C k^) are separable. Of course if char(A) = 0
there is nothing to prove, so let us assume for the moment that char (ft) == p.

Note that if K/ is a finite extension of K and Y is a rigid analytic variety over K/
then Y can be viewed as a rigid analytic variety over K also. If Y is connected then Y
seen as a rigid analytic variety over K is connected also. Thus if we can find a surjective
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morphism of K- varieties Y -> X and the assertion of the proposition is true for Y over K',
then the assertion is true for X (over K) also.

Suppose that the field extensions k(^) C ^(-^), i < s are separable for some
s e { 1, . . ., r }. There exists a purely inseparable finite field extension k' of k and a number
t e N such that the field extension

k^f\) == k{x^ . . ., x^) C k\y^ .. .,ĵ )

x, ^ yf

makes k(r^) C k(^^) separable; this is meant to signify that the residue field of the local
ring

^i. ...^J^)^)

is a finite separable extension of A'(ji, . . .,j^).

6.3.1. Lemma. — There exists an extension of complete discrete valuation rings (PC 0'
with ramification index 1, such that the extensions of quotient fields K C K' is separable and such
that O'^Q' ^ k'.

Proof.— It suffices to do the case that k ' ^ ^[^/(a^ — a). Take 0' = ̂ [a]^ — S)
if char(K) = 0 and Q' = (PWK^ - TO - ̂ ) if char(K) == p. D

We consider the ring extension {6' as in 6.3.1)

0{x^ ...,^}->^'{j^ ...^}

(6.3.2) x, h^ yf ifchar(K)=0,

^ ^ yf + Vi if char(K) = p.

It defines a finite flat morphism Spec(^'{^}) -> Spec{0{x}) which is generically dtale.
Let us put

B':=K'0^...,^>®^,^A.

It is an affinoid algebra over K', reduced as K ( x > C K' <j > is generically ^tale.
Any component ofSpec(B') dominates Spec (A) as A-> B7 is flat. The map K' <j^ > -> B'
is generically ̂ tale since it is a base change ofK < ^ > -> A. Let B be the normalization ofB'.

IfSp(B) is not connected, say Sp(B) = X^ u Xg with X^ connected then we have a
diagram of rigid analytic spaces over K:

X, —> Xi u X, —> B^i [
X ———> B^.

Since Xi -> X is finite and dominant, it is surjective. Hence we may replace X by X^,
seen as a rigid analytic variety over K' (see remark above). In this case the degree of
Xi -> B ,̂ is smaller than the degree of X -> B^.
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Suppose that Sp(B) is connected. We note that we have an inclusion

(6.3.3) ^Oi,...^}®,<.,...,^A°CB0.

This gives

(6.3.4) n^jO^y}) ̂  n{AQ|(!}{x}).

(Use the fact that formation of discriminant commutes with base extension.) If equality
holds in (6.3.4) then (6.3.3) must be an isomorphism generically along V(^). More
precisely, let T]' be the generic point of Spec(^'[j/i, .. .,j^]) and let G^ be the local
ring of 73' in the ring 0' {y}\ if equality holds in (6.3.4), then (6.3.3) ® G^ is an iso-
morphism. In particular, in that case, the generic points of Spec(B) can be numbered
T}[ , ..., T]^ and have residue fields:

k ' (•/),') ^ residue field of the local ring
W) ̂ W == k\y^ .. .,ĵ ) ®^,,,^A(^).

Thus we see by our choice of k' and £ that the fields k'{^[), .. ̂ k ' ^ ) are separable
over ^'("y]'). In other words, we have increased s by 1.

Continuing in this manner, we see that either deg(A/T^) decreases to 1, or n(A/T^)
decreases to zero, or s becomes equal to r. In all cases we will have s = r, i.e., all the
field extensions A(T)) C k^) are separable.

6.4. Rest of the proof

Before we proceed, let us prove the proposition for X == B ,̂ We have a projection
onto the d^ factor pr^: ̂  -> B, which has a section s : B -> B .̂ For any point x eW
the fibre F :== pr^l(pr^{x)) CW is a connected (d — 1)-dimensional variety. Hence,
by our induction hypothesis, x may be connected by curves in F to s{pr^{x)). Since
s : B ->• B^ is a curve in B ,̂ we get the desired result. The proof for general X follows the
same pattern.

First we construct the morphism X -> B replacing pr^. To this end we consider
the morphism of schemes

/: X = Spec(A) -^ Spec(^, ..., x,]) = A^

induced byf. We remark that X is equidimensional of dimension rf. Let us decompose X
into its irreducible components:

X == Zi uZg u ... uZy.

Let U C A^ be the Zariski open subset over which/ is etale. By our result that the exten-
sions k(r^ C k{^) are separable we know that U is not empty. The schemes /^(U) n Z,
are connected ^tale coverings of U, hence determined by 7Ti(U)-sets with transitive
71:1 (U)-actions.
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For any partitioning { 1, ..., r} == I uj, I =(= 0, 1+0 and I n j = 0 we put

Z^=(U ZJn( U Z,).
»e i j e j

Note that the admissible open subvariety V of X defined by

X D V : = = { ^ e X such that sp{x) (f= Z^j }

is disconnected {sp is the specialization mapping, see [BGR, 7.1.5] or our 7.1.10).
This is so since V is the rigid analytic variety associated to a disconnected formal scheme
over Spf(^), namely the open formal subscheme ^ of Spf(A°) whose reduction is equal
to X\Zi j, which is disconnected by construction of Zj j. This implies that

(6.4.1) coding Zj j == 1.

Indeed, if this codimension were bigger, then any function g e F(V, (Py) would extend
uniquely to an analytic function on the whole ofX, by [Bart, Satz 3.5] or [Lu2, Satz 2].
In particular a nontrivial idempotent on V would extend to a nontrivial idempotent
on X, in contradiction with the assumption that X is connected.

Let S C Spec(A°) be the Zariski closed subset of primes p C A° such that the local
ring A^ is not Gohen-Macaulay. To see that S is closed, we remark that by [Mat,
Theorem 46] A^ is Cohen-Macaulay if and only if A° is flat over ^ { ^ }q, ^ == p n S { x ) .
Hence, the complement of S is the set of primes p for which A°y is flat over 0 { x \, which
is an open set by [Mat, Theorem 53]. Since A° is normal, we conclude that the
codimension of S in Spec(A°) is a least 3 (by Serre's criterium: normal o (Sg)
and (Ri) [Mat, Theorem 39]). This implies that the codimension of S:== S n X is
at least 2.

In the same manner the singular locus T of Spec(A°) is closed of codimension at
least 2. Thus T := T n X has codimension at least 1 in X.

Let us consider a general hyperplane

A^H={(^ , . . . , ^ )eA^ |S^=^}

for a^ a ek. We claim that if we choose a^y a ek sufficiently general then

(6.4.2) /"^(H) n Z, is irreducible, generically reduced and not contained in T,

(6.4.3) for any partitioning { 1, . . . , r} == I uj, I 4= 0, I =t= 0 and I n j == 0 the
intersectiony'^H) n Zj j has a component of dimension d — 2 not containedrw '
in S.

Of course this might not be possible if k is finite; in that case it will be possible after a
finite extension k C ^', which is harmless for our purposes (replace 0 by (9\ K by K', etc.).
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Condition (6.4.3) is easy to satisfy since the codimension of S in X is 2 and the codi-
mension of Zj j in X is 1. The schemes/"^H) nZ, are generically reduced as soon
as H n U is nonempty. The irreducibility ofy'^H) nZ^ in condition (6.4.2) follows
from [J], Avoiding T is no problem since its codimension is 1 and hence so is the
codimension of its image in A^.

Next, we take any lifts S ' ^ a ' e 0 of the elements a ^ a e k . Write

h== Sa ,̂ - a ' e ( P { x ^ , ...,^}CA°.

I claim that the affinoid space

Sp(A/AA) = { x e X | h(x) =0}

is connected. If not then the scheme Spec(A°/AA0) is reducible, say

Spec(A°/AA°) = TI u T^, dim(Ti) = dim^) == d

(recall that dim (Spec (A°)) == d + 1!) and (T^ n Tg)^ C V(7r) (otherwise Sp(A/AA)
would still be connected). By the construction of A we know that we must have

CI\nV(7^= U/'^^nZ,
iei» 6 I

for a certain subset I C { 1, . . . , r } and similarly for some J C { 1, ..., r }

(T^V(7r)L,= Uy-^nZ,.
jeJ

Clearly, I u j = { 1, ..., r}. Let ^ be the generic point of/^H) n Z,. The local
ring A .̂ of Spec(A°) at ^ is regular (6.4.2) and has dimension 2. Let t e A^.
be the irreducible element of A|! defining Z, nSpec(At.); it is also the generator of
the kernel of Aĵ . ->X^.. Since ./^(H) n Z, is generically reduced for all i (6.4.2),
we get that

A^/(U)^(y.

Thus { t , h } is a regular system of parameters for A .̂ ([Mat, 12.J]) and hence
(A°/AA°)^ = A^./AA^. is a regular ring. This implies that only one component of
Spec(A°/AA°) passes through S», hence I n j = 0.

Let q C A° be the prime ideal corresponding to a generic point of a component of
/"^(H) n Z^j. Remark that q eT^ and q eTg. By our assumption (6.4.3) above, we
can choose this q such that A^ is Cohen-Macaulay of dimension 3. Since h e qA^
is not a zero divisor, the local ring R:=A^/AA^ is Cohen-Macaulay too. Thus

10
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dim(R) == depth (R) ===2 . By [Hart, Proposition 2.1], we see that Spec(R)\{m} is
connected (m is the maximal ideal ofR). Thus the decomposition of Spec (R) as

Spec(R) == (TI n Spec(R)) u (Tg n Spec(R)) == T; u T;

cannot have T[ n T^ = { m }. However, T[ n Tg C Spec(R) n V(TC) = Spec(R/7cR)
consists of m and a number of prime ideals corresponding to the generic points of
/^(H) n Z,. Since I n j = 0 we get T[ n T^ = { m } a contradiction.

Conclusion: the morphism

A : X - > B

has a connected fibre A'^O) of dimension smaller than d. By our induction hypothesis,
we can connect any two points in A'^O) by curves in A'^O). Therefore, it suffices to
connect any point x e X to a point ofA'^O) via curves in X. To do this, remark that
the morphism h factorizes as

X-^B^B

by the very definition of A. It is also clear from the definition of our h that we
may assume that V == pr^ by changing coordinates on B^ Given our point x e X with
f{x) == (^i, . . . ,^) we put

G^-Kji, ...,^) eB^^^i, ...,j^-i ==^-i}-

It is an irreducible curve in B ,̂ the map pr^ : G -> B is surjective. The inverse image
f~\C) C X is a finite union of irreducible curves in X:f~\C) == UG,. For each of
these curves the morphism/: G, -> G is finite hence surjective, hence h: C, ->B is
surjective. Since one of these curves contains the point x we are done.

7. Formal schemes and rigid analytic geometry; Berthelot's construction

Let (9 be a complete discrete valuation ring, K its quotient field, TT e (9 a unifor-
mizer and k the residue field: k = fffnG. In [B2], Berthelot has constructed a functor
which associates to a formal scheme over Spf(^) a rigid analytic space over K. This
construction is more general than that of Raynaud [R] since the formal schemes are
not necessarily of finite type over Spf(^). Indeed, the source category for this functor
is defined as follows.

7.0.1. Definition. — We write FS<p for the category of locally Noetherian adic
formal schemes 3£ over Spf(^) whose reduction Xred ls a scheme locally of finite type
over Spec(yfe). Morphisms are morphisms of formal schemes over Spf(^).
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The target category for the functor is simply the category of rigid analytic varie-
ties over K (see [BGR, 9.3]); this category will be denoted Rig,,, the subcategory
ofaffinoids over K is written An,,. Berthelot's functor [B2, 0.2.6] will be denoted
(•^FS^Rig^a^X1'6.

7.1. Berthelot's construction/or affine formal schemes

Let X = Spf(A) be an affine formal scheme over Spf(^). Let I C A be the biggest
ideal of definition of A. (Recall that by our conventions on formal schemes the topological
ring A is Noetherian and adic.) Thus X is an object ofFS^ if and only if A/I is a finitely
generated A-.algebra. We remark that this is also equivalent to the fact that A is the
quotient of the ring A,,, := 0{ x,, ..., ̂  } [[j,,, .. .,^J] for some n, m e N. Let us
assume that A satisfies these conditions.

It is clear that the rigid space associated to the formal scheme Spf(A, J should
be B» x D», where B is the closed unit disc and D is the open unit disc over'K. If we
take as coordinates ^, ..., ̂  on B» and as coordinates^, .. .,j^ on D'» then we can
view any element/of A,, „, as a (bounded) analytic function on B» x D"1, also denoted/
by abuse of notation. Suppose that gi, . . - , g r e A^^ generate the kernel of the sur-
jection A,^ ^A. Again it is clear that ̂ C B» x D" should be defined as the closed
analytic subvariety given by the vanishing of the analytic functions gi, ...,g,. Although
this gives a definition of 3^ which works, we proceed in a somewhat more functorial
manner below. It can be shown using 7.1.7 below that both descriptions give isomorphic
rigid analytic spaces.

7.1.1. Let A be as above. Take » eN. Let us write A[P/7t] for the subring of
A ®e, K generated by the image of A -> A ®y K and the elements !'/TC, i e P. We define
the ring B, == B,(A) as the I-adic completion of A[P/7r], i.e., the completion
of A[P/7t] with respect to the ideal IA[P/7<j. Further, we introduce the notation
G» = GJA) :== B,®^ K. There are continuous homomorphisms B ^ . ^ - ^ - B induced
by the inclusions A^^fn] ^A[P/<I. This gives A ®<, K-algebra homomorphisms
C» +1 —• €„. Furthermore the construction that associates to A the direct system [ B \

( ( /"i ^ \ * / ' v ^ f u^ iresp. { (-<„}„ ̂ J is a functor on the category of (P-algebras as above.

7.1.2. Lemma. — With notation as above.

a) The ring homomorphism A ®y K -> C is flat.
b) The K-algebra G, is an affinoid algebra over K.
c) The morphism Sp(GJ ->Sp(C.,^) identifies Sp(GJ with an affinoid subdomain

^^(Gn+i).

Proof. — Since A[P/7t] is a Noetherian ring, the homomorphism A[I»/TC] -^ B is
flat, hence (by base extension) A ®y K- = A[P/TC] ®^ K -^ G, is flat.
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It is clear that I" A[P/7c] C 7TA[P/7T;] C IA[P/7r], thus B^ is also the Tr-adic comple-
tion of A[P/7c]. Suppose f^y .. .,y^ e I" are generators of I"; then there is a surjecdon

A/I[^ ..., ̂ ] ^A[P/7r]/IA[:P/7r] ^ BJIB^.

^ h-> class offjn,

We conclude that B^/IB^ is a A-algebra of finite type as A/I was assumed to be so. It
follows that B^ is an ^-algebra topologically of finite type and that €„ ^ B^ ®^ K is an
affinoid algebra over K.

The obvious inclusion Ap"^1/?!;] C A[P/TT] induces a continuous homomorphism
B^i ~^B^. We get a surjection

B n + l { A : l > • • • ^ N } - ^ B n

^ h-> image offjn in B^

and this induces a surjection G^i < x^, ..., ̂  > -̂  €„. In its kernel are certainly the
elements nx^ —f^. It induces an isomorphism

Gn+l<^ -^^yl^i-fz) ^ cn•

This follows from the fact that the map

AEP^/TT]^, ...,^]/(^-/,) -^A^/Tr]

is an isomorphism modulo TT-torsion. D

7.1.3. Definition. — The rigid analytic space X^ associated to the affine formal
scheme X == Spf(A) is defined as the (increasing) admissible union of the affinoid
spaces Sp(CJ. In a formula: X^ :== U^Sp(CJ.

Thus X^ is a separated K-analytic space (see [BGR, 9.6.1/7]). If

9:%)=Spf(A') -^X

is a morphism of affine objects of FS ,̂ then we get a morphism of rigid analytic spaces
(prig;^rig _^yie. This is clear from 7.1.1. The next lemma shows that our functor
agrees with Raynaud's functor (see [R] or [BL, Theorem 4.1]) in the case that 3£ is
of finite type over Spf(^).

7.1.4. Lemma. — Let X = Spf(A) as above.
a) The rigid analytic variety X"8 depends only on A' = AIn-torsion9, more precisely, the

morphism 9 : 9) := Spf(A') -^ X induces an isomorphism ^ne : S)"8 -> X"8.
b) If the ideal TrA is an ideal of definition of A or equivalently, ifH-> Spf(^) is of finite

type [EGA,I 10.13.3], then ̂  == Sp(A®^K).

Proof. — Trivial. D
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We would like to show that the rigid analytic space X118 represents a functor, at
least on the category ofaffinoid spaces. Before we do so let us show that any rigid analytic
space is determined by the functor it represents on Aff^.

7.1.5. Lemma. — The functor

RigK -> Funct(Aff^, Sets)

which maps X to ^x(-) := Mor^g^-, X) is fully faithful.

Proof. — Suppose that X, Y are rigid analytic varieties and a : h^ -> hy is a mor-
phism of functors. By substituting Sp(K') in A^*), where K/ runs through all finite
extensions of K we find a map of sets (B : X -> Y. Let i: U ->• X define an affinoid sub-
domain of X and consider the morphism oc(i) : U -> Y. As a is a transformation of
functors the map a(i) agrees with (B on U C X. A similar compatibility holds in case we
have a composition V -> U -^ X of open immersions of affinoids. Therefore (B comes from
a unique morphism X -^ Y, which agrees with oc(i) on U, for any i: U -> X as above. D

7.1.6. Suppose that Y is an affinoid rigid analytic over K. A model for Y is an
affine formal scheme 9), flat and of finite type over Spf(^) endowed with an isomorphism
9)^ ^ Y. Such a model always exists. A morphism of models 5)i and S)^ is a morphism
9 : ?)i "̂  ^2 °^ formal schemes over Spf(^) compatible with the given isomorphisms
?), ^ Y. For any two models 9)i, 7)^ ofY there is a third 9) lying over both of them, i.e.,
such that there are maps of models 9) -> 9)i and 9) -> S)^* ^n addition, if ^ : Y' -> Y is
a morphism of affinoids and S) is a model of Y then there exists a model 9)' of Y' and
a morphism 9:9)' -> ?) such that y118 = ^.

7.1.7. Proposition. — By the functoriality of (•)r ig ^ <z ̂  a w^

(7.1.7.1) Inn Mor^(9), ^) -> Mor^(Y, 3^).
models ^) of Y

2?^A sides are in a natural way contravariant functors on Affj^; the above is an isomorphism of functors.
This property determines X"8 up to unique isomorphism in view of Lemma 7 .1 .5.

Proof. — The remarks made in 7.1.6 show that the left hand side of (7.1.7.1)
defines a functor and that (7.1.7.1) is a transformation of functors. We will construct the
inverse to (7.1.7.1). Suppose that Y == Sp(B) and that Y -> ̂  is given by Y -> Sp(GJ
for some n eN. Take a surjection 0{ x-^, .. ., x^} —> B^ and extend the composition
G{ A:i, . .., x^ } -> B^ -> B to a surjection K < x^, . . ., ̂ , A^i, . . ., x^ > -> B. The image
of ^ { A:i, .. ., x^} in B is a subring RC B which is flat and of topologically finite type
over (9 and is such that R ® K == B. Hence 9) :== Spf(R) is a model of 9). The composition

3) - Spf(R) -> Spf(BJ ^ Spf(A) = X

gives an element of the left hand side of (7.1.7.1). We leave it to the reader to prove
that this defines an inverse to (7.1.7.1). D
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7.1.8. It is clear from our construction of-X"8 (X as above) that there is a canonical
homomorphism

(7.1.8.1) A0^ K = r(3£, ̂ ) ̂  K -^ 1̂ , fl^)-

The image of A under this homomorphism lies in fact in the sheaf fi^rig of functions
whose absolute value is bounded by 1:

r(u, ^ng) == {/ E r(u, ^n.) | \f{x) | ̂  i v x e u}.
This is clear from the fact that the homomorphism A -> €„ factors as

A -> B^ -> B^ ® K ^ €„

and that B^C G^ == power bounded elements of €„. (See [BGR, 6.2.3/1].) Thus we
get a homomorphism

(7.1.8.2) r(X,^) -^IW^ng).

7.1.9. Lemma. — Let 3£ = Spf(A) <zj afioy^. r^r^ ^ a Injection functorial in A between
the following two sets:

1. Maximals ideals mC A®(p K.
2. pozWj x of r18.
.y^ ^ow^ .v(m) e X"6 corresponds to m C A®^ K ^TZ ^r^ ^A;̂ J a canonical homomorphism
of local rings

(A0^K)^->^rig^

compatible with ( 7 . 1 . 8 . 1 ) . This homomorphism induces an isomorphism on completions.

Proof. — To establish the bijection one might use the bijection (7.1.7.1) and argue
as in [BL, 3.4]. (See also 7.1.10 below.) However, we also give another argument.

We may assume that A is C?-flat. Take a point x e X"8. It corresponds to a maximal
ideal p C €„ for some n big enough. Consider the homomorphism

9:A(^K^CJp.

The field on the right is a finite extension of K; hence it is finite algebraic over Im(9).
We also have that the image of 9 is dense, since A ® K is dense in G^. Thus we get that 9
is surjective, in other words that m := Ker(cp) C A ® K is a maximal ideal with the same
residue field as p in G^.

On the other hand, suppose m C A ® K is a maximal ideal. The prime ideal
q = A n m of A is maximal among the prime ideals of A not containing TT. This implies
that Vq + TcA is a maximal ideal of A. We see from this that A/q is a local ring of
dimension 1 and that its residue field is a finite extension of k (by our assumption on A).
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Thus Q -> A/q is a finite flat ring homomorphism. The normalization ff of the ring A/q
is a complete discrete valuation ring finite over 6. Let us denote the valuation
by [ | : (9' -> R^. The image of I C A in 0' lands in the maximal ideal of (9'\ hence there
exists an n e N such that | i' | < | TC j17" V i e I (use that I is finitely generated). This
implies that \ i\^ \ TC | V i e P. This divisibility property allows us to define a ring
homomorphism

(7.1.9.1) A[P/<| ->(B'

iln h-> (image of i in ^')/TT.

Again by the inequality above, this extends to a homomorphism B^ -> 0' and finally
to a homomorphism

C, = B^ K -> ̂  K == A/q®,, K = (A 00^ K)/m.

This homomorphism is surjective since it extends the homomorphism A ® K -> A/q ® K.
Hence, its kernel is a maximal ideal p C €„.

We leave it to the reader to show that these constructions define mutually inverse
bijections as indicated in the lemma.

Suppose m C A ® K , q C A and p C C ^ correspond to each other in the
sense explained above. Take generators g^, .. . , g y eA of q. We claim that
p == g^ €„ + • • • + gs ^n • ^ we ptw^ t:nls then we have shown: the homomorphism

A,=(A®^KL->(CJ,

is local, identifies residue fields (see above), is flat (Lemma 7.1.2) and unramified.
Thus it induces an isomorphism on completions. By [BGR, 7.3.2/3] this gives the last
assertion of the lemma.

Let us take generators/i, .. .,^ e A of the ideal I". Since (!)' is the normalization
of A/q, any element offl?' satisfies a monic equation with coefficients in A/q. In particular
we can find such an equation for the image offjn in Q'\ This implies that we can find
equations

(7.1.9.2) (^)d=a„7t(^)a-l+^^2(^)<i-2+ . . . +^+2:^,

with ^ f e A, Xf e A.
The ring CJg^ €„ + . . . + g, C^ is an affinoid algebra over A/q ® K == (A® K)/m.

The elements fjn give an affinoid generating system of CJ{g^, . . ., g,) over A/q 00 K (they
generate A[P/7r] over A). The equations (7.1.9.2) give that these elements are integral
over A/q®K, hence by [BGR, 6.3.2/2] GJ(^, ...,^) is finite over A/q0K. As
A ® K is dense in €„, we must have that A/q ® K is dense in CJ(g^, ..., g y ) . Thus we
must have equality. D
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7.1.10. Let us look at morphisms of FS^ of the form Spf(^') -> X, where (9 C ff' is
a finite extension of discrete valuation rings. A second such morphism Spf(^") ->3£
is said to be equivalent to Spf(ff') -^ X if there exists a commutative diagram

Spf(^'") —> Spf(^')i i
Spf(^) ———^ X

where (9 C fl?'" is also a finite extension of discrete valuation rings. It follows
from the above that points of X"8 correspond bijecdvely with equivalence classes of
such Spf(^) ->X.

There is a specialization mapping

sp:^ -^X

It maps the point A; e X^ corresponding to m C A ® K and q == m n A C A to the
unique maximal ideal of A containing 71; an q. If the point x corresponds to the equi-
valence class of <p : Spf(^') -> X as above then sp{x) === 9 (unique point of Spf(^')). The
map sp can be viewed as a morphism of ringed sites, see [B2, 0.2.6]. We remark that
i fZCXred is locally closed then ^"^Z) is an admissible open subvariety of X^. For
example, if Z is closed, defined by the ideal (^i, g^, ..., g,) of A then

sp-\z)=={xEye\\g,{x)\< i v i = = i , . . . , ^ } .
(Use (7.1.8.1) to view ^ as a function on y18.) This is an admissible open subset by
[BGR, 9.1.4/5].

7.1.11. Suppose X = Spf(A) as above. There is a functor from coherent (P^-modules
to coherent ^rig-modules; let us denote this functor by g i~> y18. If g is defined by
the finite A-module M [EGA, I 10.10.5] then the sheaf g"8 is defined by the sequence
of modules M®^ €„ ^ M®^ €!„. It is clear that if g if finite locally free then g^ is
finite locally free. There is an obvious map F(X, g) -> F^8, g"8) extending (7.1.8.1).

7.1.12. In this subsection we assume that \k: k9] < oo. On any X as above we
have the sheaf of continuous differentials defined as follows

^:== limfl^ .

It is a coherent sheaf of fl^-modules. This can be seen by writing ^ as a quotient of
Q{ x^, ..., x^ } [[j^i, ... ,J^J] for some n, m and using the assumption that [k: k9] < oo.

Let us define the sheaf of differentials on an affinoid space Y = Sp(B) overK. Take
any model 3) == Spf(R) ofY. We put Qy -*= (^1))^- we ^v^^ h to th^ reader to prove
that this is the sheaf associated to the module of continuous differentials Qg^ °f B (see
[EGA, Ojv 20.4]). Thus the result is independent of the choice of the model and for-
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mation of it commutes with taking affinoid open subdomains of Y. By gluing we define
the sheaf of differentials t2y for any rigid analytic variety Y over K. We remark that the
sheaf of differentials on Sp(K) is nontrivial in general: it has rank [k : ̂ p] ifchar(K) == 0
and rank [k: k^] + 1 if char(K) == p.

At this point we can state in more generality that for any formal scheme X as
above there is a canonical isomorphism

(QJ^^Ogrig.

This follows from the fact that the module tip is equal to the completion of ti^p^] and
that this is equal to £1\ up to ^-torsion.

Finally, suppose the formal scheme 3£ is formally smooth over Spf(^) (see 2.4.3).
In this case H^ is finite locally free. Let the coherent sheaf of ^-modules 3? be endowed
with an integrable connection V : gr —^ 5 ® ^Je • It is now clear from the above that the
resulting rigid analytic sheaf ^rig comes equipped with an integrable connection

V^:^->^®^^^ng.

7.1.13. Let us give a more precise description of the rings A[P/TT] and B^. To give
it, we choose generators/i, ...,/,. eA of the ideal I. Consider the polynomial ring
R := A/7rA[A:i, ..., Xy] and the homogeneous ideal JC R generated by homogeneous
polynomials f(x-^, ..., Xy) e R with

P(/i,...,/,)=OinA/7rA.

It is generated by finitely many homogeneous polynomials P^, . . . , P ^ with degrees
d^ ..., ^s. For any i == 1, ..., s we choose a homogeneous lift P, eA[A?i, . . . , Xy] of
P, eR. By our definition of j we can write P^(/i, ...,./,.) == T%, for some q, eA. Put
c :== max{ ̂ i, . . . , d y } . For any n ̂  c we consider the subring

A[T^;|M| =n]CA[x^ ...,^],

generated by monomials of degree n: for any multi-index M == (m-^, . . . , m^) of total
degree | M [ = m^ + ... + m^ == n it has one variable T^ and these are subject to the
relations T^ T^ = T^ T^ if Mi + M^ = Mg + M^. We define a homomorphism

9 : A[TM$ | M [ == n] -> A[P/7c]

by putting 9(T^) ^/^TT == (I/TT) Tl^f^, It is surjective. If xJ is a monomial of degree
n — d^ then x3 P,^, ..., ^y) is homogeneous of degree n and hence corresponds to an
element

L^ :== x3 P,(^ . . . , x,) eA[T^; | M | = n].

We remark that it is linear in the variables T^. The elements Lj^ — TC^y^ of the ring
A[T^; | M | == n] are clearly in the kernel of 9.

n
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7.1 .13.1 . Lemma. — If A has no ^-torsion then the elements Lj , — ̂ if3 generate the
kernel of 9 as an ideal.

Proof. — If F(TJ e Ker(<p), write F(T^) = Fo + F^) + ... + F,(T^) with F,
homogeneous of degree i in T^, then it is seen that F^A^) is inj. Thus it follows that we
can reduce F to a polynomial of lower degree modulo the elements Lj , — ̂ f3. Details
are left to the reader. D

We conclude that in this case

A[P/7r] ^ A[T^; | M | = n]l{L^ - ̂ /J).

In particular we derive from this the existence of a surjective ring homomorphism

(7.1.13.2) ^:A[P/<| -^A/P-6.

It is defined as the A-algebra homomorphism with (B^(T^) = 0 V M. It exists:

^L.^-^/^^-^^eP-,

since \ J \ = = n — d^n — c. These homomorphisms induce homomorphisms

P,:B,^A/P-»

and are compatible for varying n\ we have commutative diagrams

B, ———> A/P-0

(7.1.13.3) [ [

B^_i —> A/P-6-1.

7.2. Berthelot^s functor for general formal schemes

In this section we construct X^ for general X in FS^,. This is done by gluing U^
for affine open formal subschemes U C 3£. It is possible by the proposition below.

7.2.1. Proposition. — Let 9 : 9) ->X be a morphism of affine formal schemes of FS^.
a) Suppose U C X is an affine open formal subscheme of X with underlying reduced scheme

U :== ^rec^ ^red* ^e worphism IT18 -> X"8 induces an isomorphism of IP18 o^o ̂  ^%
analytic subvariety [BGR, p. 354] sp-^V) C X"8.

Z>^ Suppose X = U U^ ̂  ̂  ̂ /z^ covering ofX. The covering X"8 = U U^ is admissible.
c) If ̂  is of finite type [EGA, I 10 .13.3 ] then ^s is quasi-compact.
d) If 9 is finite (resp. a closed immersion) then so is (p118.

Proof. — Suppose U is the affine open formal subscheme Spf(A {l / /})ofX== Spf(A).
In this case sp-1^) is clearly equal to { x eX"8; |/(A:)| ^ 1} and by Lemma 7.2.2
below we have It"8 ^ U^ Sp(G^ < !//». Hence a) follows in this case. Next, suppose
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the covering X = Ull, is given by affine open U, of the form U, = Spf(A{ l/^}).
Finitely manyj^ generate the unit ideal of A, say/i, • • .,/N suffice. Thus for any affinoid
subdomain VCX^, the intersections V n U?8 for z = = l , . . . , N are affinoid and
cover V. It follows that the covering X"8 = U U^ is admissible. The general case
of a) and b) follow from a formal argument using that a basis for the topology of X is
given by the subschemes Spf(A{ I//}).

Assertions c ) and d ) are a direct consequence of Lemma 7.2.2 below. D

7.2.2. Lemma. — If A. is as above and A -> A' is topologically of finite type (i.e., satisfies
the conditions of [EGA, Oj 7.5.5]} then

Sp^A')^ U^G^A7) = U,,Sp(K®,,BAA').

More precisely, the inverse image o/Sp(CJ m Sp^A')^ ̂  <?^W to the affinoid space Sp(C^ ®^ A').

Proo/*. — First note that €„ ®^ A' is an affinoid K-algebra, since it is of topologically
finite type over G^. Second, Sp(G^®AA') -> Sp(G^i(§>^ A') defines an affinoid sub-
domain:

C^A' ̂  G^, < ̂ , ..., ̂  >/(^ -^) ̂ A'

^ (G^i^A'X^, ...,^>/(^i-^).

(Notation as in the proof of Lemma 7.1.2.) Let us define Y' :== USp(G,,®AA'). It
is a separated rigid analytic space over K. There is a morphism of rigid analytic spaces
Y' -> Sp^A')^: for each n there is a morphism

Sp^BAA^Sp^A')

hence a morphism

Sp(C^ (^ A') = Spf(B^ (§^ A')- ̂  Sp^AT18.

Finally, we have to show that any morphism ^ : W -> Spf(A/)rig, W an affinoid
K-variety, factors as W ^Y' -> Sp^A')"8 (see 7.1.5). We use (7.1.7) that ^ comes
from a morphism of formal schemes: 9?l = Spf(R) ->Spf(A'), where 9M is a model
of W. This morphism is given by a continuous ring homomorphism A' -> R. On the
other hand, the composition W -> Sp^A')"8 -> Sp^A)"8 comes from a continuous
ring homomorphism €„ -> R ® K for some n. Of course these have to agree on A, hence
we get €„ ®^ A' -> R ® K as desired. D

7.2.3. Let us construct X^ for a separated [EGA, I 10.15.1] formal scheme
3£ e Ob FSg,. Choose a covering 3£ == U U, by affine formal schemes U,. The intersections
^ij == ̂  n Uj are affine also. Thus by Proposition 7.2.1 we see that U^? is an open
analytic subvariety of both U^ and U^. Therefore, by [BGR, 9.3.2], we can define
X^ as the pasting of the U^ along U^?.
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For a general 3£ we use the same procedure, using that we already have the defi-
nition of Uy for the rigid analytic space associated to the separated but not necessarily
affine formal schemes U^. We leave the verifications to the reader.

7.2.4. Proposition. — Suppose 9 : 3£ -> V) is a morphism of FS(p.

a) X"8 is a quasi-separated rigid analytic spacer if X is separated then X"6 is separated.
b) If 3£ is flat over Spf(^) and nonempty then X^ is nonempty.
c ) If 3£ is a formally reduced (resp. normal) formal scheme (see the proof for definitions)

then y^ is reduced (resp. normal).
d) If ̂  is an open immersion then cp^ is an open immersion [BGR, p. 354].
e) If <p is a closed immersion (resp. a finite morphism) then so is y"8.
f) If 9 is a morphism of finite type then ^Tis is a quasi-compact.
g) If3 —^9) is a second morphism in FS ,̂ with target S) then

(7.2.4.1) (3£ x^r' ̂  ̂  X^y.

(Here the fibre products are taken in the category of rigid analytic spaces [BGR, 9.3.5/2] and in
the category of formal schemes [EGA, I 10.7.3]. We remark that X X^3 is in FS^

h) If ̂  is a separated morphism of formal schemes [EGA, I 1 0 . 1 5 . 1 ] then cp"8 is separated.

Proof. — We say that 3£ is formally reduced (resp. normal) if it can be covered
by affines Spf(A) with A reduced (resp. normal). This is equivalent to the condition that
all complete local rings of3£ are reduced (resp. normal), since our rings A are excellent.
Thus c ) follows from Lemma 7.1.9.

Part b) is left to the reader. Part d ) follows from the definition. Parts e ) sindf}
follow from 7.2.1.

The diagonal morphism A : 3£ -> X X^3£ is of finite type. Indeed, it is clearly
adic and A^ : X^ —>• (X X^X)^ ^ ^red ^^red ls °^ ffmte type (use that A^ is an
immersion and that (X X^X)red ls locally Noetherian, next apply [EGA, I 6.3.5]).
Thus it follows from f) and g ) that X^ is quasi-separated.

We claim that a morphism 9 : 3£ -> 7) in FS^ is separated if and only if the diagonal
morphism A : X — ^ 3 £ x ^ 3 £ i s a closed immersion. To see that A is a closed immersion
if<p is separated we use Lemma 10.14.4 of [EGA, I]. First, X X^ X is locally Noetherian
and second A(3£) C X x^ X is a closed subset (by definition). For the Ua occurring in
the Lemma we take Spf(A®g A) C 3£ X^ X, where Spf(A) is an affine open formal sub-
scheme of3£ mapping into the open affine Spf(B) of?). The reverse implication is trivial.
We conclude that h) follows from g ) and e ) .

Finally, we have to prove g ) . By functoriality of Berthelot's construction, there are
morphisms:

(^ X ̂  a)"8 -^ y18 and (3£ X ̂  3)^ -> ̂

agreeing as maps to Î)1'18. Thus we get the morphism

^x^sr^^x^y8.
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To check that it is an isomorphism we may assume that our formal schemes are affine.
In this case the fact that (7.2.4.1) is an isomorphism follows easily from 7.1.5 and 7.1.7.
Indeed, by 7.1.7, a morphism of an affinoid variety W into X"8 X^rig3^1e is given by
morphisms

W-^X and m-^3

agreeing as morphisms to 9), of a suitable model 9K of W. Hence we get 9K -> 3£ X^ 3
which induces W == 93^ -> (3£ X^)"8. Thus we have

Mor^(W, (X X^)-) ^ Mor^(W, (3^ X^i^)).

The result now follows from 7.1.5. D

7.2.5. Lemma. — Let 3£ be an object offS^ and suppose Z C 3£red ls a closed subscheme.
The completion X^ofX along Z is an object of FS^p also and the morphism (X^)^ -> X^ induced
by X^ -> X is an open immersion inducing an isomorphism of (X^)"8 with the open subvariety
sp-\Z) ofy.

Proof, — See [B2, 0.2.7]. In the case that 3£ is affine this can also be seen using 7.1.7.
Suppose that W is an affinoid variety over K and that a morphism f: W ->sp~l(Z)
is given. This comes from a morphism 9 : 9?l -> 3£ of a model 9?t of W. We must have
?(^red) c ̂  since the specialization mapping sp : W -> SJl̂ ed ls surjective [BGR, 7.1.5/4].
Hence 9 factors as 9?t -. 3£$ -> X Thus/is a composition W -> (X^)"6 -> r18. Using that
sp~\Z) is admissible open (7.1.10) it follows from 7.1.5 that {X^ ^ sp-^Z). D

7.2.6. Suppose that a : 0 -> Q' is a homomorphism of complete discrete valuation
rings, coming from an extension of quotient fields K C K' such that the topology on K is
induced by that of K'. In this case there is a base field extension functor X \-> X ® K'
defined for quasi-separated analytic varieties X over K. See [BGR, 9.3.6]. Of course
there is also a base change functor FSg, -> FS^., given simply by X i~» X Xgpf^ Spf(^').
It results easily from the definitions that there is a canonical isomorphism

(Xx^spfw^sr'^K'.
Given an analytic variety Y over K' and a quasi-separated analytic variety X

over K we define a general morphism f\ Y -> X over or to be a morphism Y -> X ® K'
of analytic varieties over K. For motivation, see [JP]. We remark that such a general
morphism gives rise to pullback functors /* on sheaves and coherent sheaves. Further-
more, if the sheaves of differentials on X and Y are defined (see 7.1.12), then there is
a canonical homomorphism f* Q^ —^ i2y.

Finally, suppose we are given formal schemes 5) of FS^. and X of FS^, and a mor-
phism of formal schemes 9 : 9) -> X lying over the morphism Spf(cr) : Spf(^) -> Spf(ff').
It follows from the above that 9 induces a general morphism 9^g : S)"8 -> X"8,
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7.3. Complete local rings and Berthelot's construction

7.3.1. Situation. — Here A and B are complete local Noetherian flat ^-algebras
such that A/m^ and B/ntg are finite extensions of k = (P[n(P. We assume that A has no
zero divisors. In addition, we are given a finite injective homomorphism <p : A -> B.
We define the degree of (p as deg(<p) == diniQ(^Q^(A) ®^ B. Here Q,(A) is the quotient
field of the ring A.

The formal schemes Spf(A) and Spf(B) are objects ofFS^. Let us put X := Sp^A)^
and Y := Sp^a)^. The map Spf(cp) : Spf(B) -> Spf(A) induces a morphism of rigid
analytic spaces y"8 : Y -> X. It is a finite morphism by Proposition 7.2.1.

7.3.2. Lemma. — a) There is an analytically closed, nowhere dense subset Z C X such
that the morphism

(p^YVcp^-^Z) ^X\Z

is finite flat of degree equal to deg(cp).
b) If A and B are normal local rings then one can choose Z such that codim^ Z ̂  2.

Proof. — Consider a presentation of B as an A-module:

A^i -^ A"10 -> B -> 0.

The ideal J C A generated by the (m^ — deg(9))-minors ofT is nonzero by assumption.
We claim that Z := Sp^A/J)"8 C X works. By Proposition 7.2.1 it is a closed subvariety
of X and using Lemma 7.1.9 it is easy to see that Z is nowhere dense in X (since J 4= 0).
This proves a).

Let us prove the claim. Lemma 7.2.2 implies the equality Y == U^ Sp(G^®^ B).
It is clear that if g ej then B[l/^] ^ (A^])^^ as an A[l/^]-module. Hence,
(G^ B) [llg] ^ (CJl^])^. Since Z n Sp(GJ is given by Sp(CJJGJ (again 7.2.2)
the claim is proven.

If A and B are normal and p C A has height 1 then A? (and B^ for any
q C B lying over p) is regular. Hence by [Mat, Theorem 46] the homomorphism
Ap ->B®Ap == riBq is finite flat. Thus p ^V(J) C Spec(A). Conclusion: if A and B
are normal then codinigp^A) V(J) ^ 2 hence codim^ Z ^ 2. (Use Lemma 7.1.9.) This
proves b). D

7.3.3. Lemma. — Suppose A and B are normal. Any element f e F(Y, ^y) satisfies an
equation

-pwcp) 4. ̂  -p1^-1 + . . . + b^ = 0

with b, e F(X, ̂ )- V f^ t^ ̂ ) then we ̂  take ^ e ̂ ^ ̂ )-
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Proof. — Take Z C X as in part b) of 7.3.2. The sheaf g : == (p^y) |x\z is a fimte
locally free sheaf of fî z"1110^11^ °^ rank deg((p). Hence the endomorphism T of S given
by multiplication by f satisfies an equation

Tde^) + ̂  -p^-1 + . . . + b^, = 0

with b^ e F(X\Z, ^x\z)- The functions ^ extend to analytic functions b^ e r(X, 0^)
on X by [Lii, Theorem 1.6 part II] (X is normal by Proposition 7.2.4). This proves
the first statement.

Now let/er(Y,fl^). We have to prove b, e F(X, 0°^. To do this take any
affinoid subvariety WC X and put W == (9rig)-l(W) C Y. It is an affinoid subvariety
of Y. We consider the ring extension

R := r(w, ̂ ) c R' := r(w', ̂ ).
The extension R C R' is finite by [BGR, 6.4.1/6]. Since X and Y are normal, R and R'
are normal ^-algebra's topologically of finite type. By the result of the lemma above
we have

deg(cp) = dim^ Q(R) ®^ R'.

Thus an argument similar to the proof of the lemma gives us an ideal J C R
with codim V(J) ^ 2 and such that Spec(R') -> Spec(R) is finite flat of degree
deg(<p) outside V(J) C Spec(R). Thus the element/ (seen as an element of R' via
F(Y, ̂ ) -> r(W', ̂ ,) == R') satisfies an equation

-pe^) + {,[ T^^-1 + . . . + b^, - 0

with b[ e F(Spec(R)\V(J), 0^^) = F(Spec(R), ̂ ^) = R. Comparing these b\
with the b, above, we see that they must be equal as elements of F(W, 0^). This concludes
the proof of the lemma. D

7.3.4. Lemma. — If A. === C!)\\x^, . . . , ̂ J] then the homomorphism (7.1.8.2)

^i,...,A:j]^r(x,^)

is an isomorphism. In this case there is an isomorphism X ̂  D" of X with the n-dimensional open
unit ball D" with coordinates A:i, . .., ̂ .

Proof. — A power-series S^ x1 is bounded by 1 on the open unit ball if and only if
all | ^ | ̂  1, i.e., a^ e (P. Thus we need only to find an isomorphism X — D". Remark
that A = 0[\x^ .... A;J] is the completion of R : == (9 { x^, ..., x^ } in the maximal ideal
(^i, ..., A;J. Since clearly Sp^R)^^ B^ it follows from Lemma 7.2.5 that X ^ D"
(see also 7.1.10). D
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7.3.5. Lemma. — IfB is as in 7.3.1 and B is normal, then Y = Sp^B)118 is a connected
rigid analytic variety.

Proof. — Choose a finite injective homomorphism

9:A=^[[^ ...,^]] ->B

(to find it argue as in [Mat, p. 212]). Consider the maximal separable extension Q(A) C L
contained in Q(B). Let B' == B n L = normal closure of A in L. It is a local ring which
is a finite extension of A. The morphism Y -> X = Sp^A)^ factors as Y -> Y' -> X
with Y' = Sp^B')^. In case char(K) = 0, we have Y = Y'. In case char(K) = p,
the morphism i: Y -> Y' is finite and purely inseparable: for any local section s of^y)
there exists a number n such that s^ lies in (9^.. Thus the morphism Y -> Y' Is an
isomorphism on underlying Zariski-topological spaces. (It is even an isomorphism on
underlying G-topological spaces.) Hence it suffices to prove that Y' is connected. We
may therefore assume that Q(A) C Q(B) is finite separable.

Let us choose a finite Galois extension Q/A) C L containing Q,(B). The normal
closure B' of A in L is a local ring, finite over A (since A is Nagata [Mat, 31.G]) and
contains B. Clearly, we may replace B by B' (since Sp^B')118 -> Sp^B)118 is surjective).
Hence, we may assume Q(A) C Q/B) finite Galois, say with group G == Gal(Q(B)/Q(A)).

The groups G acts by automorphisms on B over A. Hence on Y over X. We remark
that there exists a Zariski open UC Spec (A) such that the inverse image VC Spec(B)
is a principal homogeneous G-space over U. In fact we can take U = Spec(A)\the dis-
criminant locus of Spec(B) —Spec(A). Hence, the same argument as in the proof of
Lemma 7.3.2 shows that there is a Zariski open U C X such that (^"^(U) is a prin-
cipal homogeneous G-space over U.

For any connected component Z C Y the morphism

cp^Z-^X

is finite (as the composition Z ->Y -> X). As it is also generically flat (by 7.3.2) its
image must be a connected component ofX. Since X is connected (7.3.4) we see that
Z -> X is surjective. Consequently, Y has only finitely many (connected) components,
say Y = Zi u ... u Z,.. Let Z = Zi and put

G ^ H : = { g e G \ g ( Z ) = = Z } .

Claim. — We have #H == deg^jz : Z -> X) and the natural homomorphism

F(X, ̂  -> F(Z, ̂ H

is an isomorphism.
If we have this, then we are through. Indeed, the homomorphism

B -> F(Y, ̂ ) -^ F(Z, ^)
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is H-invariant. By the claim we would get a homomorphism

y ̂  F(Z, ̂ H = F(X, ̂ ) = A
of A-algebras. This contradicts Galois theory unless H == G, i.e., Z = Y.

To prove the claim consider a point x e U C X in the Zariski open subset of X
constructed above. The group G acts transitively on the finite set (<prig)-l({ x}), hence
it acts transitively on the components Z^, . . . , Zy, hence #H === #G/r. We must also
have deg^^.) == deg^"8^) (transitivity again) and hence

#G - deg(9) == S deg^) = r.deg^lz).

Any H-invariant function on Z can be uniquely extended to a G-invariant function
on Y. Therefore, it suffices to show the map

F(X, ̂ ) -> F(Y, w
is a bijection. Take an/e r(Y, O^) which is G-invariant. The morphism ((p"8)""1 U -> U
is a quotient morphism, hence ,/L"g)-iu comes from a unique g e r(U, ̂ ). Since
it is bounded, it comes from a unique g e F(X, fi?^) by [Lu, Theorem 1.6 part I] (by
Lemma 7.3.4 X ̂  D^ is absolutely normal). This proves the claim. D

Finally, we come to the main result of this subsection.

7.3.6. Proposition. — IfS is as in 7 . 3 . 1 and B is normal, then the homomorphism (7.1.8.2)

B -> i^Sp^B)^, d)0) == F(Y, ̂ )
is bijective.

Proof. — Choose a finite injective homomorphism

9:A==^,. . . ,^]] ->B.

Choose f e F(Y, ̂ ). From Lemma 7.3.3 and Lemma 7.3.4 we see that/satisfies an
equation

T^+a^T91-1 + ... +^==0

with a^ e A = ^[[^j]. We will show that the assumption f ^ B leads to a contradiction
with Lemma 7.3.5.

The ring B[/] C F(Y, fl^) is reduced (Y is reduced). Since Y is irreducible (for
the Zariski topology) as it is connected and normal, we see that B[/] has no zero divisors.
By the equation above we see that B[/] is a finite B-algebra. The normal closure

BE/rcQ^BL/])

is a finite B-algebra, since B is Nagata. Any element g e Bl^/p011 can be seen as a mero-
morphic function on Y which is integral over B[/] C F(Y, C^), hence g e F(Y, ̂ ).

12
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Therefore we have BE/J^C F(Y, 0^). Arguing as before, we see that B[f]1101 has no
zero divisors, thus (being a finite B-algebra) it is a local B-algebra. We consider the
morphism

^'.Y'^SpWfY^^Y

induced by B C ̂ [f]^. We claim that ^ has a section s : Y -> Y'. This is seen as
follows. Take any affinoid subdomain U C Y. Put R := F(U, 6%). The homomorphism

B[/]- -> F(Y, ̂ ) -> F(U, 6%) = R
induces a morphism Spf(R) -> Spf(B[/]nor) and hence

U = Spf^R)^ -> Spf(B[/]no^)^ig = Y'.

This defines s\^. It is a section of ^ since the composition B ->B[/]1101' -> F(Y, 6^) is
the map (7.1.8.2). Since Y and Y' are reduced, normal and connected and since ^ is
finite surjective, we see that s(Y) must be a connected component ofY'. Lemma 7.3.5
thus implies that Y' == J(Y) . By Lemma 7.3.2 the degree of ^ is diniQ^) Q,(B) ®s B^]^.
Thus we get a contradiction unless this degree is 1, i.e.,/eB. D

7.4. Analytic functions and formal functions

In this section we prove that bounded rigid analytic functions on ̂  come from
functions on 3£.

7.4.1. Theorem. —Let 3£ be a formal scheme in FS^,. If Hi is O-flat and (formally) normal
then the homomorphism (7.1.8.2)

r(x, ̂ ) -^ iw o^)
is an isomorphism.

Proof. — We may assume X = Spf(A) is affine. Let us write X = X^8. It is
constructed (7.1.3) as the union:

X=U^Sp(GJ=LLSp(B^K) .

Take/ e F(X, ̂ ). Its restriction to Sp(G^) is an element/^ e €„ which is integral over B^,
i.e., it lies in the integral closure B^ of B^ in €„ = B^®^, K :/„ eB^.

Take a maximal ideal m C B^. Put m' = m n A; it is a maximal ideal of A (BJm is
a finite extension of k). Consider the commutative diagram of ^-algebras:

A ———. B, ————. B»

(7-4-1-1) i t i
A^ —— (BJ^. -^ (B,)^,,.
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Here ( • )^ denotes completion with respect to p. This diagram gives rise to a commutative
diagram of rigid analytic spaces by applying the functor (• )r!g. We remark that A^,
is normal, so that we can apply 7.3.6 to/restricted to Sp^A^^C X. This gives
fm' e A^7- The image off^ and/^, in the ring (B^)^ coincide (they give the same rigid
analytic functions). Thus we conclude that/„ lies in B^ n (BJ^. Writer as alb,
with a, b eB^, then we see that a e^(BJ^, hence a e &B^ (by faithful flatness of
B^C (BJ^). Thus/, eB^Vm eQ(BJ. This gives that/, eB^.

At this point we use the homomorphisms (3, : B^ -> A/I'1 ~ c (7.1.13.3). The element

/=^im(U/J e^imA/P-^A

lies in A and in this way we get an inverse to the homomorphism A -> F(X, ̂ ). Finally,
we have to show that if/= 0 then 0 ==/e F(X, ̂ ). This is so since

Ker(pJ.B^ CP-oB,,

if^, TZo > c. This follows easily from the explicit description of the rings B, in 7.1.13. D

7.4.2. Remark. — The most general hypothesis on 3£ under which 7.4.1 is true
are the following: X should be ^-flat and for any open affine formal subscheme Spf(A)
of 3£ the ring A should be integrally closed in the ring A ®g, K. This fact will not be used
in this paper.

7.5. Rigid descent of closed formal subschemas

7.5.1. Suppose X is an object ofFS^. Let TC X,ed be a closed subscheme and let
U = X^\T. We define

2: = 3^ = completion of X along T,

U == open formal subscheme of 3£ with U^ == U,

X = 3 .̂

We remark that Z^ s sp~l(T) is an open subvariety of X by Lemma 7.2.5. Similarly,
yrte ^ j^-^U) is an open subvariety of X by 7.2.1. In fact X is the disjoint union of
sp-^T) and sp-^V) but the covering X == sp-^T) u sp-^V) is not admissible in
general.

Let us consider triples (3r?3u? Z) of the following kind

(7.5.1.1) 3,r (resp. 3^) is an ^-flat closed formal subscheme of2(resp. U) and ZC X
is a closed analytic subvariety of X

satisfying the following condition

(7.5.1.2) We have the equality (3^ = Z n sp-^T) (resp. OJ^ == Z n ^-'(U))
as closed analytic subvarieties ofS^ s ̂ "^T) (resp. U^^ ^"^U)).
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For each ^-flat closed formal subscheme 3 C X we get a triple (3 n 2, 3 n U, 3^)
as in (7.5.1.1) satisfying (7.5.1.2). The proposition below shows that the converse
is true also. The idea is that in some sense the "covering" of 3£ given by

sp-^T) u sp-^V) = t X u U u 2 - ^ 3 £

is sufficiently good to allow descent for closed subvarieties.

7.5.2. Proposition. — Any triple (7.5.1.1) (3T.3u>Z) satisfying (7.5.1.2) comes
from an 0-flat closed formal subscheme 3 C 3£ as described above.

Proof. — We may assume that X = Spf(A) is affine. We may assume that A has no
Tc-torsion. Let I C A be the biggest ideal of definition of A and suppose that T C Spec (A/I)
is given by the ideal I + ̂  A + ... + g, A of A. (We assume that g^I for all i.)
We put

A A : = ^ m A / ( ^ A + ... +^A)^ HmA/(I + gi A + . . . +g,A)n

and for i = 1, . . . , r:

A { !/&}:= ^mA/P[l/&].

These are flat A-algebras. We note that we may assume T is reduced so that
1 + gi AA + ... + g, AA is the biggest ideal of definition ofA^ We have 2; == Sp^A^
and U = U Spf(A{ l/^}), so that ̂  and 3^ are given by ideals

J ^ C A ^ and J,CA{1/^}.

These ideals are such that A^ and A { 1/^}/J, are ^-torsion free (and of course
J,A{1/^,}=J,A{1/^,}).

In 7.1.3 we defined X as the increasing union X = U^ V^ of affinoid
varieties V^:

Vn := Sp(GJ = Sp(B,®, K) == Spf(BJ^.

The closed subvariety Z n V^ is defined by an ideal !„ C B^; we define !„ as the kernel
of the homomorphism

B,->r(ZnV^).

Thus it is clear that BJI^ is Tr-torsion free.
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Recall that in 7.1.13 we defined surjective ring homomorphisms ?„ : B^ -> A/I"""c.
We will prove that the ideals (VI J C A/I""0 satisfy the following two statements (at
least after replacing c by a sufficiently large constant):

1) (VIJ A^lAV-0 ̂  med^AY-6,
2) (UIJ A { 1/&}/(IA{ l/^})—— =J, mod(IA{ I/A})71--.

If we have this then we are done: 1) and 2) imply that (B^+i(I,»+i) mod P~c = ?„(!„), i.e.,
the maps ^-^(I^+i) -> ?„(!„) are surjective. Thus the limit

J := hm pJIJ C ^mA/P-6 == A

is an ideal of A such thatJA7^ = J ^ andJA { 1/& } = J». Hence we can take 3 = Spf(A/J).
To prove 1) and 2) we put

B;:=^mBJ(^B^+. . . +^BJ^B,^AA

/

and BJ !/&}:= HmBJ^[l/&] ^ B ^ ^ A { l/^}.
^~'

It is clear that ?„ induces homomorphisms

(B^B^A^lAY-6

and p,{ !/&}: B,{ !/&} - > A { 1/&}/(IA{ l/^})—.

Furthermore it is easily seen that

PJIJ.A^IA^-^^^B^)

and that

Pn(IJ .A{ 1/&}/(IA{ l/^})— = M !/&} (I,BJ !/&}).

By our choice of !„ we get the equality

Spf(BJIJ^ = V, n Z

thus we also have (use 7.2.4 part g ) and 7.2.5)

Spf(B^/I,, B^ = V, n sp-^T) n Z = V, n Sp^A^"6 n Z

and (use 7.2.1)

Spf(B» { I/A }/!„ B, { 1/̂ . })* = V, n {| ̂  | > 1 } n Z

=V,nSpf(A{l /&})^nZ.
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At this point we are able to prove the inclusions 3 of 1) and 2). For 1), take h ej^
The image of h in B^ lies in !„ B^: it is zero as a function on V^ n j/r'^T) n Z and
B^/I^B^ ^ (BJI^ is Tr-torsion free. Thus (3JA) E= A lies in (^(1^). For 2), take
^ ej,. The image of h in B ^ { !/&} lies in I ^ B ^ { l/^}: it is zero as a function on
V^Spf^AU/^nZ and BJ 1/&}/I«B,{ !/&} s (BJIJ { 1/& } is ^torsion free.
Thus (VA) = h lies in ?„{ 1/& } (I, B,{ 1/& }).

To prove the other inclusion, we need that the construction of 7.1.13, which
associates to an (P-algebra A the system (B^, (BJ^i, is a functor. That is, if A ->A'
is a homomorphism of such algebras then there exists a c e N and commutative diagrams:

B, == B^(A) ———> B^(A')

i3" i3"
A/P-6 —> A'/^')"-6.

This is easy to see using the explicit constructions in 7.1.1 and 7.1.13. Thus we have
a commutative diagram (for some c e N independent of n):

B n { l / & } ~ B^(A{1/&}) —————————. B,(A{1/^}/J,)

ku/^) k k
v 4' v

(A/I n - c ){ l /&} =^ A{1/&}/( IA{ !/&})—— —> A{l/&}/(J,+(IA{l^})n-c).

Also it is clear that !„ B^{ l/^ } lies in the kernel of the upper horizontal arrow of this
diagram; an element ofl^ gives the zero function of Spf(B^(A{ l/^i}/.],))1^ Z nV^.
Thus we see that the inclusion C holds in 2) for some constant c independent of n.

It is more tricky to prove the inclusion C in 1). To do it we note that we have the
following equalities of open subvarieties of V^:

SpfW^^eVJ \g,{.x}\<\}

= V» n Spf^A^

== U^V., n Spi^A^)
= U^(Spf(BJ^ n Spi^A"))^) C U^ Spf^)-

Thus we see that Sp^B^y18 may be written as the union of the rigid spaces associated
to the ^-algebras

B^B^).

The inclusions are given by the homomorphisms

B^B^A^E,,^,]^).
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These fit into the following commutative diagram (for some c independent of n, N):

B; ————————es————————> A^IA^-"

Is ^
B,,®^ ——————p»01dAA—————. (A/P-)®^

I i
BAB^) ——> A/I»-< !®^„AA / (IAA+^AA+ ... +^AA )N -C

i 1
BA^A^) —> A^ +I r o - c+ (L^ +^A A + ... ^-^A^-6.

In the same way as before we see that !„ B^ maps to zero under the left vertical arrows.
Hence we see that

B^I^B^CJ^^ +I r o - c + (lA7^ +^A A + .. . +^AA )N -C

for all N> c. This proves the inclusion C in 1). The proof of 7.5.2 is complete. D
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