@article{PMIHES_1995__82__133_0, author = {Schwartz, Richard Evan}, title = {The quasi-isometry classification of rank one lattices}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {133--168}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {82}, year = {1995}, mrnumber = {97c:22014}, zbl = {0852.22010}, language = {en}, url = {http://www.numdam.org/item/PMIHES_1995__82__133_0/} }
TY - JOUR AU - Schwartz, Richard Evan TI - The quasi-isometry classification of rank one lattices JO - Publications Mathématiques de l'IHÉS PY - 1995 SP - 133 EP - 168 VL - 82 PB - Institut des Hautes Études Scientifiques UR - http://www.numdam.org/item/PMIHES_1995__82__133_0/ LA - en ID - PMIHES_1995__82__133_0 ER -
Schwartz, Richard Evan. The quasi-isometry classification of rank one lattices. Publications Mathématiques de l'IHÉS, Tome 82 (1995), pp. 133-168. http://www.numdam.org/item/PMIHES_1995__82__133_0/
[C] Hausdorff Dimension of Limits Sets I, Invent. Math., 102 (1990), 521-541. | MR | Zbl
,[E1] Word Processing in Groups, Jones and Bartlett, 1992. | MR | Zbl
et al.,[E2] Analytical and Geometric Aspects of Hyperbolic Space, LMS Lecture Notes, series 111, Cambridge University Press, 1984. | MR | Zbl
,[Go] Complex Hyperbolic Space, notes available from the author.
,[Gr1] Asymptotic Invariants of Infinite Groups, LMS Lecture Notes Series, 1994.
,[Gr2] Carnot-Caratheodory Spaces Seen from Within, IHES, preprint, 1994. | Zbl
,[KR] Foundations for the Theory of Quasi-Conformal Mappings of the Heisenberg Group, Preprint, 1991. | Zbl
and ,[M1] Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, No. 78, Princeton University Press, 1973. | MR | Zbl
,[M2] Quasiconformal Mappings in n-Space and the Rigidity of Hyperbolic Space Forms, Publ. Math. IHES, 34 (1968), 53-104. | Numdam | MR | Zbl
,[P] Métriques de Carnot-Caratheodory et Quasi-Isométries des Espaces Symétriques de Rang Un., Annals of Math., 129 (1989), 1-60. | MR | Zbl
,[T] The Geometry and Topology of Three-Manifolds, Princeton University Lecture Notes, 1978.
,[Z] Ergodic Theory and Semi-Simple Lie Groups, Birkhauser, Boston, 1984. | MR | Zbl
,