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A RANK THEOREM FOR ANALYTIC MAPS
BETWEEN POWER SERIES SPACES
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Introduction

Purpose of this paper is to give a criterion for linearizing analytic mappings
f:C{x}p-^C{x}9 between spaces of convergent power series in n variables. Such
mappings often occur as defining equations of specific subsets of power series spaces
relevant to singularity theory and local analytic geometry. One wants to show that
these subsets actually are submanifolds. To this end the defining map has to be linearized
locally by analytic automorphisms of source and target.

For maps between finite-dimensional or Banach spaces the appropriate tool is
the Rank Theorem: maps of constant rank have smooth fibers. It is established as a
direct consequence of the Inverse Mapping Theorem. But this is known to fail for spaces
more general than Banach spaces.

The same happens in our situation: we can indicate simple examples of analytic
maps between power series spaces which are not local analytic isomorphisms at a given
point although the tangent map at this point is an isomorphism. Extra assumptions
will be necessary. There are, in fact, extensions of the Inverse Mapping Theorem beyond
the frame of Banach spaces, see [G, Ham, L, P3], They involve technical conditions
which it seems hard to verify in our situation.

Instead, we shall develop an Inverse Mapping Theorem which is adapted to the
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very concrete context we are working in. It allows, using a detailed version of the Division
Theorem for modules of power series, to reach our main objective, the Rank Theorem.
Let E = ̂ , F == ̂  and E, == { a e E, ord^ a ̂  c} for c e N, where ^ denotes the
ring of convergent power series in n variables with complex coefficients.

Rank Theorem. — Let g(x,y) e 6^+y be a vector of convergent power series in two sets of
variables x and y satisfying g{x, 0) = 0. There is a CQ eN such that for any c ^ Cofor which
the induced map

f:E,-^F:a^g(x,a{x))

has constant rank at 0 there are local analytic isomorphisms u ofE^ at 0 and v of¥ at 0 linearizing/,
i.e. such that

vfu-1 = To/.

The number CQ is related to the highest order occurring in a standard basis of the
image of the tangent map Tof. Constant rank is equivalent to saying that the kernels
of the tangent maps T^f form a flat family of modules. The linearizing automorphisms
will in general not be given by substitution.

The above Rank Theorem allows to apply methods of differential calculus in the
infinite-dimensional context. For instance, we shall prove that for the infinite-dimensional
Lie group G = Au^C^, 0) of local analytic automorphisms of (C71, 0) the stabilizer
group G^ of a given power series h under the natural action of G on (9^ is a submanifold
and thus a Lie subgroup (Theorem 4.1). Its Lie algebra consists of the vector fields
which annihilate A. Similar results hold for the contact group K and show that hyper-
surfaces X C (C71, 0) are determined up to isomorphism by their Lie group of embedded
automorphisms (Theorem 4.2).

Example. — For h{x,y) = x.y one has to investigate the equation y . a + x.b + a.b = 0
with unknown series a and b. The corresponding map

f : ^ y ) . C { x , y } 2 ^ C { x , y } : { a , b ) ^ y . a + x . b + a . b

is of constant rank at 0. The tangent maps of/ are given by
T(a^)f^ w) == y- ( j + ^) + w.{x + a).

Their kernels form a flat family. The Rank Theorem applies and f can be linearized
at 0 into (a, b) ^-y.a + x.b.

Let us briefly indicate how the Rank Theorem above is proven. As in all theorems
of this type one estimates the size of the terms of order ^ 2 in comparison to the tangent
map at 0. In the present situation, the spaces are filtered by Banach spaces. The map/
is shown to respect these nitrations and thus induces by restriction Banach analytic
maps. Each of those can be linearized locally by the Rank Theorem for Banach spaces.
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The point is to show that the linearizing automorphisms of each level glue together
to well-defined analytic automorphisms u and v of E^ and F at 0. It is here that the
restriction off to E^ C E is used. Moreover, in the construction of u and v, scissions of
^-linear maps E -->• F are needed and have to be estimated. This relies on the Division
Theorem for power series in the version of Grauert and Hironaka with norm estimates.

The first three sections present the notion of constant rank and the main results.
This is applied in section 4 to show the smoothness of stabilizer groups. Sections 5 to 7
are auxiliary and collect technical tools needed in the proofs.

The results of the present paper were announced in [HM1]. The first named
author thanks the members of the Max-Planck-Institut in Bonn for their hospitality
during part of the work on this article.

1. Constant rank and flatness

For our purposes a definition of constant rank weaker than the one given in
Bourbaki [B] is convenient. For an analytic f: U -> F with U C E open we do not
assume that there is some closed J such that

Im T,/®J = F

holds pointwise for all a near OQ. We only require that this equality holds analytically
in a, namely that any analytic curve in F decomposes uniquely as a sum of curves in
Im T^f and J. Let us give this sentence a precise meaning. For a topological vector
space F (Hausdorff, locally convex and sequentially complete), consider the tangent
bundle TV = F x F and subbundles Jp = F x J where J C F is a closed subspace,
together with the tangent bundle map

Tf: TE |n -^ TF : ̂  b) ̂  (/Qz), TJ{b)).

For the germ of an analytic curve y : (C, 0) ->E let r^(TE) denote the vector
space of germs of analytic sections of TE over y? 19e' germs of analytic maps
(C, 0) -> TE : t h-> (v(^), b {t)), with induced map

Tf: I\(TE) -> r\(TF) : (y, b) h-> (/y, (T,/) b).

Define ry^(Jp) in an obvious way as space of sections over fy with values in J.
Then f is said to have constant rank at OQ e U if the image of T f has a topological direct
complement J

Im7V©J=F

such that for all analytic germs y : (C, 0) -> E with f{0) = flg

r/(r,(rE))®r/,(^)=r/,(rF)
13
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(as an algebraic direct sum). This means that any analytic section a of TF over/y can
be written uniquely as a sum of a section T ofjp overly and a composition (Tf) p where p
is a section of TE over y

cr == {Tf) p + T.

We sometimes say that f has constant rank at OQ w.r.t. J. On the other hand, f is
called flat at OQ if for all analytic germs y : (C, 0) -> E with y(0) = OQ the evaluation map

Ker(r/: ^(TE) -> I\(rF)) -> Ker(r^/: E ̂  F)

is surjective. This means that for any b e E with T /(&) = 0 there is an analytic germ
t (-> bt in E with bo == 6 and T^f(b^) == 0 for all ^ (" lifdng ofreladons "). In the special
case where the tangent map T^foffsit OQ is injective, y is automatically flat at a^.

Proposition 1.1. — Let f:V -> F, U C E open, be analytic.
a) If f has constant rank at OQ e U it is flat at OQ,
b) Assume that f is flat at OQ e U and that the image of T f admits a topological direct

complement J in F. Then for every analytic germ y : (C, 0) -> E with y(0) = OQ one has

r/(r,(rE))nr^(jy=o.
Proof. — a) Let y : (C, 0) -> E with y(0) = flo be analytic, and fix b e Ker T^f.

The analydc germ ^ i-> T^f(b) can be written

r^/(&) = ̂ .^)
with an analytic germ b : (C, 0) -> F using power series expansion and T f(b) === 0.
Then t h-» (/(yW)? ̂ )) is contained in r^(rF). Suppose that/ has constant rank
at OQ w.r.t. J. The existence part of the constant rank condition allows to write

W = T^f{c,) + d,

with analytic germs t v-> c^ in E and t \-> d^ in J. Then the analytic germ t \-> b^ = b -— t.c^
in E satisfies b^ = b and T^f(b^) == t.d^ ej for all .̂ The uniqueness part of the constant
rank condition implies T^f(b^) = 0 for all t.

b) Let bt be an analytic curve in E with ^ == T^f{bt) ej for all t. In particular,
CQ == T^f(bo) = 0. By assumption there is an analytic curve b^ in E with b^ == b^ and
T^f(bt) == 0 for all t. This yields

^/(^ — ^ ) =^-

Since &o — &o = 0 one can factor out t on both sides and then prove by induction on
the order that c^ -= 0 for all t. This proves the Proposition.

In the cases we shall be concerned with the existence part of the constant rank
condition will be automatic (and thus, roughly speaking, constant rank will be equivalent
to flatness).
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Let / : E -> F be a continuous linear map. A scission of / is a continuous
linear map a : F —> E with lal == /. Then id — al: E -> E and la : F -> F are
continuous projectors onto Ker CT/ == Ker I and Im fo = Im / inducing decomposi-
tions E == Ker / C Im(id — al) and F == Im / ® Ker la.

If E and F are Banach scales (cf. sec. 6) / admits a scission if and only if Im I
and Ker/ admit topological direct complements in F, respectively E. If Im/®J == F
and Ker l@ L == E then / L : L -> Im I is bijective with continuous inverse (the Closed
Graph Theorem holds in Banach scales). If TT : F -> Im / is the projector with kernel J
then a = (/D~1 TC ls a scission of /.

Proposition 1.2. — Let E and F be Banach scales, U C E be open andf: U -> F be an
analytic map which is compatible at OQ e U. Assume that I == T^f admits a compatible scission
a : F -> E with corresponding decomposition

F = = I ® J , I = = I m / , J==Kerfo .

a) For every analytic curve y : (C, 0) -> E with y(0) = OQ one has

r^(TF) = r/(r,(TE)) + r^(jp).
b) If f is flat at OQ (e.g. if f has constant rank at OQ w.r.t. some other complement J' of I)

f has constant rank at OQ w.r.t. J.

Proof. — As b) is immediate from a) by Proposition 1.1 b) we have only to prove
part a). Let b(t) be an analytic curve in F. By [P2, Proposition 2] the germs y ' ' (C, 0) -> E
and b: (C, 0) -> F have values in E,, respectively Fg for sufficiently small s and are
analytic as Eg-, respectively F^-valued map germs. We are thus reduced to the case
where E and F are Banach spaces. Let L(E, F) be the Banach space of continuous linear
maps E -^F. By [U, 1.8] the map U ->L(E, F) :b\-^ T^f is analytic. Moreover,
the invertible elements of L(F, F) form an open subset, and the inversion mapping
9 h-^(p~1 is analytic, see [U, 2.7]. For a eU consider

?a == Tjala + idy ~ la e L(F, F).

As 9 == id we may assume after shrinking U that all 9^ are invertible. We see
that a ̂  9^1 is analytic. Then c{t) = ^9^^ b(t} and d(t) = (idp — la) 9^ b(t) define
analytic curves in E, respectively J satisfying

W = T^f{c{t)) + d{t).

This proves the Proposition. In section 5, remark b), we deduce:

Corollary. — Let f'. U -> Q\ he an analytic map given in a neighborhood U C ̂  of 0 by
substitution in a power series g{x,jy}. Then f has constant rank at 0 if and only if f is flat at 0.

Examples. — a) f: 0^ -> 0^: a \-> xa + ^2 has Gateaux-differentials

TJ: (P^^:b^(x+ 2a) b.
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Since TQ/ is injective, f is flat at 0, hence of constant rank. But Im T^f = C^ for
^(0) =t= 0 and Im T^f= {x). Thus for a close to 0 the images of the tangent maps T^f
do not have a simultaneous direct complement.

b) f'-^i -> ̂ i .• a ̂  a + (MX) (a2 — ^(0)) has Gateaux-differential :To/== id.
Again f has constant rank at 0 and for a close to 0 the kernels of the tangent maps T^f
do not have a simultaneous direct complement, see the example of section 6.

2. The Rank Theorem in Banach scales

For the notion of Banach scales and compatible maps see section 6.

Rank Theorem 2.1. — Let E == U, E., F = U, F, be Banach scales and f: U -> F
be an analytic map in a neighborhood U C E of 0 with f(0) == 0. Set I == To/, I == Im /,
f == I -\- h. Assume that I admits a scission a : F -> E, lal == /, w^A the following properties:

(i) y has constant rank at 0 w.r.t. to the topological direct complement J == Ker fo of I.
(ii) <rA : U —> E ^ compatible at 0 and its restrictions satisfy

\W,\^c.r

for some constants 0 < c < l/^ + 1 ) ^d 0 < r, flTzrf off small s > 0.

TA^TI there are local analytic isomorphisms uofJLatO and v off at 0 linearizing f, i.e. such that

vfu-1 ==l.

Iff and a are compatible with the filtrations, assumption (i) can be replaced by
the condition that f has constant rank at 0 (w.r.t. some other complement J'), see Pro-
position 1,2. If the image of / admits a topological direct complement J then constant
rank is necessary forjFto be linearizable near 0. In fact, / has constant rank at 0 w.r.t. J
since T^l == I for all a e E. Observe that (i) plus (ii) imply in particular Bourbaki's
rank condition.

Proof. — Set u == id^ + ah: U -> E. Then u is analytic and compatible
at 0 with u{0) == 0 and TQU=id^. By the norm estimate in (ii) the Inverse
Mapping Theorem 6.2 applies: u is a local analytic automorphism ofE at 0. Note that
laf== lal + lah == / + Ich == lu, hence lcfu~1 == / near 0. Replacing / by fu~1 we may
assume that lcf== I. The map v = idp — (idp — la)fal<s is a local analytic automor-
phism of F at 0 with inverse idp + (idp — la^fala. Assume for the moment that
f=fal near 0. Then

vf==f^{id^-la)falaf

=f^(^^la)fal

=/--(idp-fo)/

==laf==l
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near 0 as required. The equality f==fal follows from the constant rank condition:
a being a scission of /, al is a linear projection onto a topological direct complement
of K === Keri in E. It suffices to show that T^f\^ == 0 for all a eE close to 0. But
lqf== I from above implies /= I + (id? - la)f, hence T^f== I + (idp - la) T^f.
Fix a point a in an absolutely convex open neighborhood of 0 in U, and consider the
analytic curve y : (C, 0) -> E, y(<) = t.a. For b e K == Ker / we get

T^f{b) =( idp-fo) T^/(6),
so that

(/Y, T,f{b)) e T/(r,(TE)) n 1̂ ).

By assumption (i) T^f(b) must be 0 for ^ close to 0. Then T^f{b) == 0 by analydc
continuation. This proves r^/ |^==0 and the Theorem.

Corollary. — Assume that f is compatible at 0 and that I admits a compatible scission
(T: F -^E such that

|(oAU^.r

for some constants 0 < c < \\e{e + 1) and 0 < r, and all small s > 0.

a) If I is injective f admits locally at 0 an analytic left inverse g. In particular, f is locally
infective.

b) If I is surjectivef admits locally at 0 an analytic right inverse g. In particular, f is open at 0.

Proof. — a/Since / is injecdve/is flat at 0 and thus has constant rank at 0. There-
fore f can be linearized locally. From the equality lal = / we obtain an analytic map g
with^/=/. Moreover, injectivity of/ implies that/is locally injecdve. Thus gf== idg.

b) In case / is surjective one has la = idp. The beginning of the proof of the Rank
Theorem shows that lafu~1 = I, hence fu~1 a = la = idp.

3. The Rank Theorem in power series spaces

Fix a weight vector X == (Xo, X') eR14-" with Z-linearly independent components
\ > 1. It induces a Banach scale structure on 0^ = U Q^{s} where (0^{s) are the sub-
spaces on which

| ^==.2,1^1^ for b==^b^e(P,

is finite. Moreover, 6^ becomes a Banach scale by

| b I, = S^o(i-i) ] ̂  for b ==(^ . .., b,) E ̂ .

For subsets MC 0^ we set M, = M n (^),. For a submodule I of Q^ denote
by p(I) the maximal weighted order of a minimal standard basis of I, cf. secdon 5. For
a eN" set | a | = a^ + • • • + a,». Let m^ denote the maximal ideal of G^.
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Rank Theorem 3.1. — Let E = ̂ , E, == <.^ W F = ̂ . £^ ̂ j) e^+p
^ a vector of convergent power series in two sets of variables x and y with g{x, 0) == 0. Let
1 = (^(^ °)) c ̂  ^ ^e submodule generated by the partial derivatives w.r.t. y, and write
g{x,y} = Sm^y. For any c eN z^A

(3«I)^ord(0+<;. |a |

for all | a [ ^ 2 a^ ^A that
f:^^T:a^g{x,a{x))

has constant rank at 0 there are local analytic isomorphisms u and v of E ,̂ and F at 0 linearizing f

rf^^T,/.

Remark. — There always exists a ^ with (B(w^ I) < ord(wj + c.| a | for c ̂  CQ,
see Remark c ) , section 5.

Proof. — We reduce to the Rank Theorem for Banach scales. Equip E == w6. (P9
A J. C t) ft

with
IML = ^ ' ^ 1 ^ 1 , for <?== (^, ...,^) eE,.

The pseudonorm is contractive, |M|,< || a \\,. for f l e E ^ and ^<j ' , because
\ ̂  1. Set /=7 + h with / == T^f and A : E, -> F of order ^ 2. Let A, == SA^ be
the power series expansion of kg in continuous homogeneous polynomials and set
i h,\, = S | h^ | ^ for r > 0, cf. [U]. We prove:

a) I : JL^ -> F admits a compatible scission cr: F -> E^, satisfying | <r, [ ̂  q.^~3

for some constant c^ > 0 and all small s > 0 where p = p(w^ I).
b) For any constant ^ > 0 there is an r > 0 such that, for all small s > 0,

l^ l r^ ^••y0^.
^ There are constants 0 < ^3 < 1/<?(<? + 1) and r> 0 such that, for all small

s> 0,
l(^)Jr^ c^r.

Let us show ^: Let N be the number of monic monomials of degree c in the
variables x^, ..., ̂ . Let p : Q^ -> E<, == m^O^ be the canonical surjecdve ^-linear
map. Provide 0^ - p with the Banach scale structure given by

I a \s = S, | a, [„ for a = (^, . . . , ̂ ^) e 0^.

Then p is compatible and satisfies | pj ̂  1 for all small s > 0, since \ ̂  1 and
thus | x" \,^ s0 for monic monomials x"- of degree c. By Theorem 5.2 the ^-linear map

/p.-e^F^
admits a compatible scission T : ̂  -^ ̂ <p with

M^r^0
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for some constant ^ > 0 and all small s > 0. Then a :== pr: F -> E^ is a compatible
scission of / with

| crj^ ^i.^"0,

proving ^. To see b), note first that one has, by definition of | AJy,

\hs\r^^2 SUp IS^i^m^l,.^
llail^l

< ̂ 2 sup S|^^ | mJJ ̂  l^.r^ S|^2 | ̂  \,.s^.r^.
SlaJ^s^

Now set 4(^) = | mj,^10'1 ̂ "p. It follows from X, ^ 1 and the assumption on p that
d^s) decreases as s goes to 0. Moreover

Sla|^24(^)^ l a l^^3•Sla|^2l^a|ao• r l a l

converges for small SQ and r since g{x, jy) converges. Therefore for any ^ > 0 there is
an r > 0 such that

lAJ^ASi^^o).^'^^

for all s < SQ. This is 6^1, and c ) follows from a) and b). Thus 2.1 applies and the Theorem
is proven.

Examples. — a) Consider g[x,f) == xy +jy2 where 1̂  == {x)^1. As

/: (^ ->0^:a}^xa + a2

has constant rank at 0 it can be linearized locally near 0 for c ^ 1.
b) The map/: 0^ -> 0^: a »-> xya + {x2 +j/2) a2 has constant rank at 0. Further-

more, I = {xy), and [3(1) > 2. Hence Theorem 3.1 cannot be applied to linearize/
on ^2. But one can use the Rank Theorem for Banach scales directly. Provide 0^ with
the Banach scale structure associated to X = (X^, Xg) = (1, 1). These weights are not
permitted in 3.1. The natural projection (9^ -> I and division by xy induce a compatible
scission cr. One calculates

|oJ^^2 and \h,\^2s2r2

for the quadratic part h{d) = {x2 +j/2) a2. Thus the norm estimate (ii) of Theorem 2.1
is satisfied and/: (9^ -> (9^ can be linearized locally at 0.

4. Application: stabilizer groups

We apply the preceding results to prove the smoothness of stabilizer groups. Let
G = Aut(C", 0) be the group of germs of analytic automorphisms of (C!̂  0) and p be
a natural number. The contact group K is the semidirect product

K = Aut(C-, 0) x GLW
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defined through the right action ofG on GLy(^J. It is an open subset of k == m 0" © 0^.
By Proposition 6.1, one can prove that K and G are infinite-dimensional Lie groups
in the sense of [Mi, sec. 5]. The tangent space k o f K has a natural Lie algebra structure
[y, w] = ad(^) w where k -»k : u i-> ad(y) w is the tangent map of K ->k : g h-> Ad{g) w
and Ad(^) :k->k is the tangent map of conjugation with g. Identifying elements
of ^ with derivations of ^ the Lie algebra of G is g = { D e Der ̂ , D(^J C m^}
with the usual bracket [D, E] = DE — ED. The bracket on k equals

[(D, v), (E, w)] = ([D, E], [y, w] + Dw - Ev).

The contact group acts analytically on the space (9^ of rows from the right by
A(<p, a) = (h o 9) .a,

Theorem 4.1. — For A e ̂  ̂  stabilizer group

K , = = { ( < p , ^ ) eK^cxp)^-^}

^ a submanifold of K, A^^ a Lie subgroup. Its Lie algebra is

k ^ = { ( D , y ) e k , D A + ^ = 0 } .

Proo/. — a) For fixed c e N consider the finite-dimensional algebra V^ == fl^/m^ and
the finite-dimensional algebraic group A, == AutV, ix GL^(VJ. There is a natural
surjecdve homomorphism of lie groups TC, : K -> A,. Let K, = Ker 7^, H = K^ and
He = H n ^-c- we 2^??^ tihe Rank Theorem to show that for c sufficiently large, H^ is
a submanifold of K,. Writing (p{x) == x + ̂ {x), a{x) = 1 + b{x) we identify K, as a
manifold with the space E, == m^. ̂  + < Then H, equals the zero-fiber of the analytic map

/: E, -> ̂ /(^ b) == ^(^ + ̂ . (1 + A) - h.

Its Gateaux-differential is given by

7^/(D, ^) = Dh{x + +). (1 + A) + A(^ + ^) .^.

If To/(D, v) == 0 then

^.6)/(D(^ + ̂  ̂  + ^).(1 + & ) ) = = 0.

Hence/is flat at 0. The Rank Theorem implies that/can be linearized locally.
b) Similarly as in [Mul, sec. 2] it is shown using Artin's Approximation Theorem [A]

that the image B^ = ?^(H) is an algebraic subgroup of A^. Below we shall see that
^c : K -> A^ admits locally at 1 e A^ an analytic section o : U -> K which restricts
to a section U n B^ -> H of the restriction H ->B^. Then

^'(U) ^ U X K, :^ ̂  (T^), (a^))-^)

is an analytic isomorphism with inverse

U X K^T^U) : (^)-XT^.
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It restricts to a bijective map

^(l^nH-^UnB,) x H,.

Therefore H is a submanifold of K.
c ) To prove the existence of a let a^ be the Lie algebra of A^ and TT^ : k ~> a^

the tangent map of TC^. Moreover let h = k^ and b^ = ^c(h). Using again the Approxi-
mation Theorem it is checked that b^ is the Lie algebra of Bg. By solving an appropriate
initial value problem one can show that the Lie group K admits an exponential map
exp:k ->• K, i.e., an analytic map such that for all (D, v) ek the map

C -> K : t \-^ exp t(D, v)

is a one-parameter subgroup with initial velocity vector (D, v), see also [PI, sec. 1].
Since the exponential map of the finite-dimensional Lie group A^ is a local analytic
isomorphism near 0 e a^ and since the exponential map of K maps h into H, see step d )
below, the existence of the section a follows from the corresponding infinitesimal assertion:
TCC : k -> a^ admits a continuous linear section T : a^ —> k which restricts to a section
b^ -> h of the restriction h -> b^. For this take the canonical section T() : a^ -> k which
maps (D^, z^) e a^ onto the unique polynomial of degree ^ c — 1 in the fiber of (D^, z^).
Then adjust T() by defining

T = (id,,- pe) o T o : a, ->k

where s : k -> ̂  is given by s(D, v) == DA + Ay and p : ̂  ~^k^ is a scission of s res-
tricted to k^ = Ker ̂ . This T is a continuous linear section of TC^ . To show that it
maps b^ into h, take (D^, z^) e b^ and let (D, v) = T()(D^, y^) + (D', »') be an ele-
ment of h mapped onto (D,, yj. Then (D', y') ek, and sTo(D,, y,) = — s(D', y').
This implies ST(D^, y^) == 0 and r(D^, y^) eh.

d) It remains to show that the Lie algebra of K.̂  is k^ and that exp maps k^ into K^.
Clearly

{(D,y) ek,exp^(D,y) e K^ for all t}CT^K^Ch^

Conversely, if (D, v) ek/,, calculation shows that
d
^ ( A o < p J . ^ === 0 for ( < P ( , ^ ) == exp^(D,y).

Therefore exp ^(D, y) e K^. This proves the Theorem.

Let now XC (C^, 0) be a reduced hypersurface defined as zero-fiber X == /r^O)
of some A e ̂ . Let

G^={yEG,y (X)=X}

be the group of embedded automorphisms of X. Thus

G x = { ? e G , A o c p e ^ . A } .
14
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For 9 e Gx the factor a e 0^ such that ho 9 == h.a is a unit which is uniquely
determined by 9. Therefore the projection K -> G : (9, a) i-> 9 induces an isomorphism
of groups K^ ^> GX. Thus we may view G^ as a Lie group. IfXis isomorphic to another
hypersurface YC (C^ 0), say defined by g e 0^^ then h and g are in the same K-orbit:
g == ( ^09 ) . ^ for some (9, a) e K. Conjugation with (9, a) induces an isomorphism
K^ -^ K.̂  of Lie groups. In particular, the Lie group structure on G^ is independent
of the chosen equation A, and isomorphic hypersurfaces X, Y have isomorphic Lie
groups Gx, Gy. The converse is also true:

Theorem 4.2. — Two reduced hypersurfaces X, Y 0(0^,0), ^ ̂  3, ar^ isomorphic if
and only if their Lie groups G^ Gy of embedded automorphisms are isomorphic.

Proof. — Let D^ o = { D e g, DA e A. ̂  }. The projection k == g ® (?„ -> g induces
a continuous isomorphism of Lie algebras k^ ^> D^ o • Both k^ and D^ o are ^-sub-
modules of k, respectively g, hence closed subspaces. By the Closed Graph Theorem
[Gr, chapter 4.1.5, Theorem 2] we conclude that k^-5-D^o ls even an isomorphism
of topological vector spaces. Therefore, ify: G^ -^Gy is an isomorphism of Lie groups,
the tangent map off at the unit induces an isomorphism D^ o ̂  DY o °^ topological
Lie algebras. By [HM2, part II, Theorem and Comments d), e ) in section 1] the topo-
logical Lie algebra D^ o determines X up to analytic isomorphism. Therefore X and Y
are isomorphic.

5. Scissions of ^-linear maps

In order to construct and control scissions of ^-linear maps we need a version of
the Grauert-Hironaka Division Theorem with special attention paid to norm estimates
[Ga], [Haul.

For fixed X = (Xo, X') eR^4'^ with Z-linearly independent components \, ele-
ments ofN14^ are ordered by zoc < j(B ifX(ia) < X(j(B), where X(za) == \(i — 1) + 2^ X^ a^;.
Define a total order on the set of monic monomial vectors (0, ..., 0, x^y 0, ..., 0) of (9\
by setting (0, ..., 0, ^3, 0, ..., 0) < (0, ..., 0, ̂  0, ..., 0) if j(3 < zoc where i and j
denote the position of x01 and x^. Denote by in {a) and in (I) the initial monomial vector
and initial module of elements and submodules of 6^. Set

A(I) = = = { 6 e^, no monomial of b belongs to in(I)}.

For a standard basis m^ ..., m^ of I with initial terms ^.i, .. .3 ^y, partition the
support of in(I) as a disjoint union Uf^i M, with M,C supp(^.pi,). Then set

V(I) == { a e ̂ , supp(^. jji,) C M, for all i}.

Any weight vector X as above induces on Q^ a Banach scale structure

H^SJM^ for^S^^e^.
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In the sequel when dealing with fl^-linear maps l\0^-> 0^ we consider on the
domain space Q^ the Banach scale structure defined by

I b \s = SJ b, |,

and on the target space 0^ the one given by
|^=:S^o(i-l)|^.

Division Theorem 5.1. — Let 1 : 0^ -> 0^ be an 0 ̂ -linear map, say l{a) ==-- a. m = S, a, m,.
A^w<? ̂  ̂  m^s form a standard basis of I == Iml. Set K. == Ker / and let A (I) and V(I)
6^ defined as above.

a) I@ A(I) = ̂ , K®V(I) = ̂ , fln^ these decompositions are compatible.
b) There is a constant c > 0 such that for all small s the following holds: For any e e (fl^),

the unique elements a e V(I), and b e A (I), z^A e = S ̂  ̂  + b satisfy

(min, 1 m, |,). | fl |, + [ b |,^ S | <zJJ mj, + | b |,

^ c [ S ̂  ̂  4- b |, == <: [ e [,.

Proo/*. — We may assume that all m, are + 0. For s > 0 with Wi, ..., m e (fl^
the continuous linear map

«,: V(I),® A(I), ̂  (^),: (^ 6) ^ a.m + b

will be shown to be bijective for small s. To this end supply the Banach space V(I), © A(I),
with the norm

||(^)||, =SJ^J^+|^.

By definition of V(I) the map

v,: V(I),CA(I), -> (^),: (a, b) h .̂pL + b

is bijecdve, bicondnuous of norm 1, and its inverse v',1 has norm 1 as well. Decompose u,
into u,==v,+w, where w,{a, b) == a.m' with m[==m,—^. There are constants
f? > 0 and s > 0 such that

I v-i \B < I ̂  L < ^ I p-i L and I ̂  I, ̂  ^e I ̂  I,
for all i and all sufficiently small s. This yields

| w,\ ̂  ^e and | w, »71 | < s6 < 1

for small s, say ^^ ^o. Using the geometric series one sees that u, v^1 = id + w, u^1

is inverdble with

K".^1)-1^-,-1——:^
A — SQ
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Consequently u^ is invertible and
| u^1 | < c' for ^^ SQ.

This implies part b) of the Theorem. Since trivially I, n A (I), == 0 we obtain moreover
I,®A(I), = W, and K,©V(I), = (^).. This gives .̂

Example. — Consider 1:0^-^0^ given by m^== x +jy, m^ == A; — y. Assume
\< Xa. Then 1 .^i — 1 .^ == 2j^ but there is no constant c> 0 such that for all
small s

I 1 U ̂ i 1. + I - 1 LI m, |, == 2(^ + ̂ )

is bounded by
^ | 2j /1, == 2c.^.

The reason is that m^ m^ are not a standard basis.

We now use the Division Theorem to estimate the norms of projections onto sub-
modules I C Q\ and of scissions of fl^-linear maps / : O1^ -> 0\. Consider the Banach
scale structures on 0^ and 0^ as defined above. Let ^ = (0, .. ., 0, x^y 0, . . . , 0) with
entry in thej,-th place the unique minimal monomial generator system of in (I). The
number

(3(1) ==max,X(7,a,)

is called the weighted order of I w.r.t. the weight X. It equals the maximal weighted order
of the elements of a minimal standard basis of I.

Theorem 5.2. — Let 1 : 0^ -> 0^ be an (!) ̂ 'linear map with image I == Im / and p = |B(I).

a) The projection TT; : 0^ -> I induced by the decomposition <B\ == I © A (I) is compatible
and satisfies for some constant c > 0 and all small s > 0

l(^i)J^-

b) I admits a compatible continuous linear scission a : 0^ -> 0^ satisfying/or some constant
c> 0 and all small s> 0

\(5,\^C.S~^.

Proof. — By the choice of the norms, a) follows from part b) of the Division
Theorem. For b) choose a minimal standard basis m^ . . . ,TT^ el with ^==inw, .
Consider the fl^-linear map V : 0^ -> 0^: a i-> S a^ m^. The Division Theorem gives
a compatible decomposition

Ker/'®V'(I) =^\

Then T' = (/' jv')"1:1 -> ^^ is a compatible continuous linear section of //. Moreover
there is a constant c ' > 0 such that

^ l ^ i l s l ^i la^ ^ ' 1 Sfl,wJ,
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for a eV(I) and all small s. By definition of (3 we have s^ == min, [ (JL, |g and thus

Kl^'.?-3.
Choose an fl^-linear map p : fl^' -> (P^ with commuting diagram

(pp1

Observe that p is compatible with | p, | ^ c" for some constant c" > 0 and small s.
Then a == pr' TT^ is a compatible continuous linear scission of / satisfying a norm estimate
as claimed.

Remarks. — a) For an ^-linear map / : O^ -> 0^ with image I one trivially has
Im^Cl^ . The existence of the compatible scission cr implies that Im /, == I, for
small s. This is false if instead of the Banach scale structure defined by Z-linearly inde-
pendent weights Xo, ^3, ..., \ as above we would have taken different Banach scale
structures. For example define | a [y == S [ a^ \ s^3 for a == S a^ x^y3 e C { x,jy } == 6^.
Let / : ^2 -> (9^: a P-> a. {x — y ) with I == Im / == {x •— y). For fixed s > 0 set

00 1 Jfc—l

a^ s — s^y-1-1.
n-O Vfe2^ <-0

We then have
00 0

l^-jOI.-S ,2<°0••o /?
oo ^

| a |, == S _— = oo.
fc-o ^.j

Thus <z. (A: —y) e I, but ^ Im ^.
b) We can now prove the corollary of section 1: Let /: U -> Q\ be an

analytic map in a neighborhood UC 0^ of 0 given by substitution in some g{x^y).
Then / has constant rank at 0 if and only if / is flat at 0. In this case / is of
constant rank at 0 w.r.t. A(I), where I == Im /. Indeed, let CT be the scission constructed
above. Then Ker la == Ker 71:1 == A (I). Now our claim follows from the results of
section 1.

c ) For any submodule I of 6^ the weighted order (B(m^ I) increases at most linearly
with coefficient 1 in c. To see this, consider the inclusions

<.in(I)Cin«I)Cin(I).

Let {JL be an element of the minimal monomial generator system of in (m^ I). Then
[x == x01 v with v an element of the minimal monomial generator system of in (I) and
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x^ e Q^. If [ a | > c, (JL belongs to w^.in(I) but is not a minimal monomial vector of
this module w.r.t. the componentwise order on N\ The first inclusion implies that it
neither is minimal in in(w^ I) which is a contradiction. Therefore | a | < c and
(B« I) < (3(1) + c.

6. Banach scales

For details and the basic notions of this and the next section we refer the reader
to [BS, He, Gr, U]. A Banach scale is a topological vector space E, HausdorfF, locally
convex, and sequentially complete together with pseudonorms [ [5, s eJ!L and .?>(),
such that

(i) 3! s < s ' then | |̂  | ^,
(ii) E^ := { a e E, | a \y < oo } is a Banach space with norm | |g,

(iii) E === Ug Eg as topological vector space with the final topology.

We often say that E is a Banach scale. But the reader is reminded that the Banach
spaces E, with their fixed norms | |g are part of the structure.

Remarks, — a) For r e R, r > 0, let Bg(0, r) = { a e Eg, ] a |g < r} be the open ball
of radius r. Then B(0, r) :== U, B,(0, r) is open in E. Indeed, for s< s ' and a 6 E,» C E,
we have | a \y ^ | a |,., hence B^(0, r) C B,(0, r). Therefore

B(0, r) n E,, == B^(0, r)u U^(B,(0, r) n E,,)

is open in E^ as E^ C E, is continuous for s < s\
b) Let F be a closed linear subspace of a Banach scale E == U^ E,. Then F == U, F,

with F, == E^ n F is a Banach scale. In fact, it is immediately seen that a subset A C F is
relatively closed if and only if A n Fg is closed in F, for all s. Thus the final topology of F
with respect to the inclusions Fg C F coincides with the relative topology, which proves (iii).

c ) Let F be a Banach scale. Every decomposition F = I ©J as an algebraic direct
sum of closed linear subspaces is in fact topological. To show this it is enough to prove
that the projection TT : F -> I with kernel J is continuous. By the Closed Graph Theorem
[Gr, chapter 4.1.5, Theorem 2] it suffices to show that graph TT is closed. But this is
obvious from

graph n = {[a, b) e F ® I, a — b ej }.

A continuous linear map / : E -> F between Banach scales is called compatible
if, for small s, I restricts to a map l y : E^ -> F,. Then /, is necessarily a continuous linear
map. Since the relative topology on F, induced from F is a Hausdorff topology coarser
than its Banach space topology this follows from the Closed Graph Theorem, see [Gr,
chapter 1.14, Corollary to Theorem 10].

A decomposition F == I©J as a direct sum of closed linear subspaces is called
compatible if F,= Ig^Jg with I, = Fy n I, J, = Fg n j for small s. Then clearly the
projections onto I and J are compatible.
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An analytic (i.e. continuous and Gateaux-analytic) map / :U->F, U C E
open is called compatible at a e U if, for small s, f restricts to an analytic map
fs: U, -> F, where U, is a suitable neighborhood of a contained in U n E .
In that case the chain rule gives that T^f, = T^f\, for the Gateaux-differentials
r,/:E-^F and r,/:E,->F,.

Proposition 6.1. — Let E and F be Banach scales, U C E an open set andf: U -> F a
map. Then f is analytic if and only if, for all analytic curves y : T -> E with T C C open and
y(T) C U, the composition f o y : T -^ F is analytic.

Proof. — [He, Theorem 3.2.7 d}].

Inverse Mapping Theorem 6.2. — Let E = U, E,, F = U, F, be Banach scales, and
letf: U -> F be an analytic map in a neighborhood UC E ofO withf{0) == 0. Assume:

(i) The Gateaux-differential I == T^f: E -> F is an isomorphism of fopological vector spaces.
(ii) The composition l~1 of is compatible at 0 with restrictions {l~1 of)y: U, -> F,.
(iii) There are constants 0 < c < \fe{e + 1) and r> 0 such that for all small s> 0

K^o/L-id^J^.r.

Then f is a local analytic isomorphism at 0.

Proof. — We proceed exactly as in the usual proof of the Inverse Mapping Theorem
in Banach spaces. Upon replacing/by l~1 o/we may assume F = E and / = T^f^ id^.
Write / = id^ + h and define recursively

^°=0, ^-idE-Ao^.

As ord h > 2 it is shown by induction (using Proposition 6.3 below) that
ordQ^4'1 — g") > n. Let g be the unique formal power series satisfying ord(g — gn)> n
for all n. Then also ord(/o g —fo g") > n. Since ord(/o g" — id^) = ord(^ — gn+l)> n
we conclude that/o g == idg, i.e. g is a formal right inverse of/. We shall show that g
converges on the open set B(0, r') = U, B,(0, r') for r' == ((l/^) — c) .r. Note that r ' > 0
since c < l/^. Let us first prove by induction that

i.;i,<^
for small s. Indeed, using assumption (iii) we have

\g:\r'-\^-hogn-l),\,

^ '•'+|A.L|,?-1|,,

< r'+\h.\,

< r' + c.r ==r-.
e
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But then, since ord(g — g^ > n, we also have

1 - 1 r

l^ lr '^-.
0

This implies that g induces analytic maps g,: B,(0, r ' ) -> E, with | g, |,, < r\e
as well as an analytic map g: B(0, r') -> E. Thus the following holds:

f°g = idB(o,r-p gW = 0, T^g = idg

ce
I <?s — ^E |r' ^ c f • r ' With <?' == —————.

1 — ce

Using <:< !/<?(<? + 1) we see that c' < \je. Hence the whole argument above can
be applied to g with r and c replaced by r' and c\ Setting r" == ((!/<?) — ^') .r' we find
an analytic map /: B(0, r") -^E with ^o/^id^,^. Uniqueness of the inverse
implies/=/|B(o,r-)- Thus/: B(0, r") ->/(B(0, r")) is an analytic isomorphism.

Example. — We indicate what can happen if the norm estimate (iii) in the Inverse
Mapping Theorem is violated. View E = = ^ = = = C { A ; } a s a Banach scale as in section 5.
Then n :}L ->JL: a \-> a — a (0 ) i sa compatible continuous linear map. Define/: E -> E

/(.)=.+-'--"""=.+'!g'.
x x

It is analytic and compatible at 0. Its Gateaux-differential is given by

TJW = » + ̂ .
X

In particular, TQ/== id^. Nevertheless/is not a local analytic isomorphism
at 0. In fact, if a e E is invertible, a{0) + 0, we have for b :== a{0). {x + 2a)~1

that T^f(b) = {\fx) n{{x + 2a) b) == 0. Hence there are points a e E arbitrarily close
to 0 such that 3^/is not injective. This phenomenon can be explained by comparing
the size of the terms of order ^ 2 at 0 with T^f == id^. For this let us calculate |/, — idg |,.
We have f{a) = a + 1?(a) where P(<z) = (l/^) .n{a2) is a continuous homogeneous
polynomial of degree 2. For fixed s we have | n{a2) |, == | a2 — a\0) \,^ \ a2 \, ̂  \a |^.
If a == x.s~1 then | a \, == 1 and | n{a2) \, == 1. This implies | PJ == s~1 and

l/.-idEj.=|PJ,=r2..-1.

But we cannot find a constant c such that r2^-1 < c.r for all small ^. Note that 7^/is
injecdve for a e {x), say of order ^ 1. Moreover, 7^/: (9^ -> (9^ is surjecdve for all a
close to 0. Indeed, x + 2^ is not in {x)2 for a close to 0. Hence given c e ^3 we can solve
^ = (A; + 2a) & for b. Then T^/(^) == c.
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Proposition 6.3. — Let f: V -> F, g : V -> G be analytic with U C E, V C F open
andf{V) C V. Then gof:V ->Gis analytic and for a e U

^o/)=r^o7V.

Moreover, if 0 e U, /(O) = 0 e V ̂  ̂ (0) = 0, the expansion of g of at 0 ^ ̂ w ^ the
composition formula for formal power series applied to the expansions ofg and f at 0.

Proof. — The first part is standard. For the second, one can assume by the Hahn-
Banach-Theorem that E = G = C. Let g == S g, be the expansion of g in homogeneous
polynomials and ̂  be the corresponding z-linear symmetric maps. Let then i be fixed.
As g^ is continuous there are a constant c > 0 and a continuous seminorm p on F such
that

I gi{^ ..., b,) | ̂  c.p{b^) ... p{b,) for all ^ . . . , ^ e F.

Fix ff near 0. By [BS, Proposition 4.1] there are constants M > 0 and 6 e ]0, 1[ such that

P{fkW^ M^ for all k.
Consequently

S^S,^.,^.,J^(/^),...,/^))|^2;S^^^

^cM1^!^1} Q^< oo.

As g^ is z-linear and condnuous we obtain

gi{fW=gi{M^-JW
== s^^2:A:l+...+A,-A:^i(/^(^. •••./fc.(^))-

This is the power series expansion ofg, of. For sufficiently small r > 0 we have

g(fW==^g,{f{a)) for H<r,

the series converging uniformly on | a \ < r, see [BS, proof of Theorem 6.4]. By Weier-
strass5 Theorem on (locally) uniform sequences of analytic functions

g{f{a)) =S,S^,S,^,.^^,^(/^), ...^(<z))

is the power series expansion on | a \ < r.

7. Analytic maps between power series spaces

We now specialize to power series spaces. Equip 0^ with pseudonorms defined
through weight vectors as in section 5. Then (P^s) = { a e Q^ \ a |, < oo } is a Banach
space and ̂  = U, Q^{s) with the final topology a Banach scale [GR]. Partial differen-
tiation and integration (9^ -> 0^ as well as algebra homomorphisms 0^ -> 0^ and
fi^-module homomorphisms are continuous linear maps, hence analytic. The next result
characterizes analytic maps with finite-dimensional domain [Mti2, sec. 6]:

15
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Proposition 7.1. — a) For a map f: T -> (B^, TCC^ ̂ , the following conations
are equivalent'.

(i) / zj analytic.
(ii) / ^ continuous and. for all jet maps n,: (9^ -> {(PJm^1)9 the composition n, of is

analytic.
(iii) For every t^ e T there are open neighborhoods T' C T of t^, V C C" of 0 and an ana-

lytic map g : V X T' -> C9 such that for t e T' :f(t) [x) = g{x, t).
(iv) For every t^ e T r̂<? flr<? ̂  o/^ neighborhood T'CT of ty and an s> 0 such that

/(T) C^) andf: T' -> ̂ ) ^ ̂ .̂

b) Assume that (i) ^ (iv) hold. Let g(x, to + t) = S^ ^ ̂ p A;3 /a 6^ ^ power series
expansion of g near (0, to). For t e C^ /^

/^)=Si,i^S3^^^e^.

rA^w /(^ + ^) = 2^y^) ^ /A^ ^ow^r series expansion off near IQ.
c) For t e T' as in (iii) ^0^3 ̂  Gateaux-differential T^f: C^ -> 0^ is given by

7V(^,...,^) ==^^g{x,t).b,.

The main examples of analytic maps between power series spaces are given by
substitution:

Proposition 7.2. — Let g:V x W ->Cq be analytic, where V X WCC" X C^ is
an open neighborhood of 0. Let U = { a e ̂ , a(0) e W }, and define f: V -> (P9, by substitution
ing-.Ad) {x) =g{x,a).

a) fis analytic. For a e U its Gateaux-differential T^f: (9^ -> (9^ is given by

^/(^i,...,^) ==^^g(x,a).b,.

b) Let g{x,jy) == S^p^ap^V be the expansion of g. For a e Q^ let

f,(a)=^^g^x^a-e^.

Then f [a) = S^^(a) is the power series expansion off near 0.
c ) f is compatible at 0.

Proof. — We may assume q = 1. a) Propositions 6.1 and 7.1 imply that/is ana-
lytic. For a eU and b e^, let h(t) =f{a + tb), t eC close to 0. Then

h{t) {x) ^g(x,a+tb) =:7i{x,t).

By Proposition 7 . 1 c ) we have

TaAb) = ̂ l^0 = w^ ̂ l^0 == si ̂ ^ ̂ •

6^1 For small ^ the f^ are continuous homogeneous polynomials 0^(s) -> 0^{s) of
degree k. For f l eB^O^r ) , r sufficiently small, the series S^j^(fl) converges to f{a)
in ^(^). Hence/restricts to an analytic map B,(0, r) ->(P^{s). This proves b) and c).
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