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FINITE GROUP ACTIONS AND 6TALE COHOMOLOGY
by JEREMY RICKARD

Abstract. — If a finite group G acts on a quasi-projective variety X, then H^(X, Z/n), the etale cohomology
with compact support of X with coefficients in Z/n, has a Z/n[G]-module structure. It is well known that there is
a finer invariant, an object RI^X, Z/n) of the derived category ofZ/n[G]-modules, whose cohomology is H;(X, Z/n).
We show that there is a finer invariant still, a bounded complex Ac(X, Z/n) of direct summands of permutation
Z/n[G]-modules, well-defined up to chain homotopy equivalence, which is isomorphic to Rrc(X, Z/w) in the derived
category. This complex has many properties analogous to those of the simplicial chain complex of a simplicial
complex with a group action. There are similar results for /-adic cohomology.

1. Introduction

Recall that if G is a finite group and R is a commutative ring, then a "permu-
tation" RG-module is a free R-module M on which G acts in such a way that it fixes
setwise an R-basis of M. Of course, this R-basis is not usually determined uniquely,
even up to isomorphism of G-sets.

If a finite group G acts simplicially on a finite simplicial complex X, and if we
assume that the stabilizer of each simplex fixes the simplex pointwise (which will always
be true after taking the barycentric subdivision of X), then it is clear that C^(X, R),
the simplicial chain complex of X with coefficients in a ring R, is a bounded chain
complex of finitely-generated permutation RG-modules, where the degree n term is
the module with permutation basis given by the set of ^-simplices of X. Thus the sim-
plicial homology H^(X, R) (or, similarly, the cohomology H^X, R)) of X is the homo-
logy of a natural bounded chain complex of permutation modules. If, moreover, G acts
freely on X, then C^(X, R) is a complex of free RG-modules.

More generally, if G acts on a topological space Y that is G-homotopy equivalent
to the geometric realization of a finite simplicial complex X with a G-action, then the
singular homology (or cohomology) of Y with coefficients in R is the homology of the
singular chain (or cochain) complex of Y, which is a complex of RG-modules that is
chain homotopy equivalent to a bounded complex of finitely-generated RG-modules,
namely the simplicial chain (or cochain) complex of X. Thus in this situation as well
there is a bounded chain complex of permutation RG-modules, natural up to chain
homotopy, underlying the homology or cohomology of Y.
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82 JEREMY RICKARD

For algebraic varieties, dtale cohomology and /-adic cohomology have many
properdes that are similar to those of singular cohomology for topological spaces. Indeed,
if X is a quasi-projective variety defined over C, then the (Stale cohomology H^(X, Z/n)
is the same as the singular cohomology H*(X(C), Z/%), where X(C) is the set ofC-rational
points of X with the classical topology. Deligne and Lusztig prove in [5, Proposition 3.5]
that if a finite group G acts freely on a variety X over a field k of characteristic different
from the prime /, then the Aale cohomology with compact support, H^(X, Z/^), is
the homology of a bounded chain complex of finitely-generated projective Z/Z^G]-
modules. This result is similar to the case ofsimplicial complex, except that it is necessary
to allow projective modules rather than just free modules (it is easy to see that this really
is necessary by considering the case of a cyclic group of order p acting freely by trans-
lations on the affine line over a field of characteristic p).

In this paper we shall generalize this to the case of arbitrary (i.e. not necessarily
free) actions. We prove that if the finite group G acts on a quasi-projective variety X
over an algebraically closed field, and if R is a finite commutative coefficient ring, then
there is a bounded chain complex A^(X, R) of finitely-generated direct summands
of permutation R[G]-modules whose homology is the ^tale cohomology with compact
support of X with coefficients in R. Moreover, this chain complex is natural up to chain
homotopy. Note that, just as it was necessary to use projective modules rather than
just free modules in the case of a free action, it is necessary to use summands of permu-
tation modules rather than just permutation modules in the case of an arbitrary action.

In Section 4 we show how constructions that can be performed on the variety X,
taking quotients and fixed points for the action of subgroups of G, correspond to cons-
tructions on the chain complex.

We hope that the results of this paper may be of independent interest, but we
shall briefly outline our own reason for wanting these results.

This has to do with Broud's conjectures on equivalences between derived cate-
gories of blocks of finite group algebras [3]. Whenever such an equivalence occurs,
we can always take it to be given by taking the tensor product with a bounded complex
ofbimodules [8], and so the problem becomes to find this complex ofbimodules.

On the one hand, there are good reasons to think that, for general groups, the
bimodules occurring in this complex may be taken to be summands of permutation
modules for the direct product of the two groups concerned. If this were so, then it would
give an explanation at the level of derived categories, at least for principal blocks, for
the phenomenon of "isotypies" [3] (which are compatible families of perfect isometrics),
by allowing us to construct, using the "Brauer construction" (see Section 4), corres-
ponding compatible families of equivalences of derived categories.

On the other hand, Broud has more specific conjectures about how this complex
should arise in the case of finite reductive groups. In this case, where the groups concerned
are some reductive group G and the normalizer N^(L) of some Levi subgroup of G,
he conjectures that the restriction of the complex of bimodules to G x L should be
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isomorphic, in the derived category of Z([G X L]-modules, to RI^(X,Z,), where X
is a Deligne-Lusztig variety. We refer to [3] for more details.

The results we prove in this paper show that these two aspects of Bronx's conjec-
tures are compatible.

Let us now set out some of the basic notation we shall use.
• If A is a ring then a module for A, or an A-module, will always mean a left module

unless specified otherwise.
• A-mod will be the category of finitely generated left A-modules. Usually A will be

(left) noetherian, so A-mod will be an abelian category.
• A-proj will be the category of finitely generated projective left A-modules.
• If M is an object of an additive category, then add-M will be the category of direct

summands of finite direct sums of copies of M.

We shall use the language and basic machinery of derived categories [11, 7, 2].
In particular we shall use the following notation.
• K6^) is the homotopy category of bounded chain complexes over an additive cate-

gory ^.
• D^J^) is the bounded derived category of an abelian category ^/.

For results on ^tale cohomology, the key reference is of course SGA4 [1]. A less
encyclopaedic treatment can be found in the volume containing [11] (especially the
first article in this volume), and [10, Chapter V] contains a brief introduction concen-
trating on the results most relevant to Deligne-Lusztig theory. We have attempted to
give quite detailed references to [1] for the results we use.

2. Complexes representing etale cohomology

Throughout this section we adopt the following notation.
• k is an algebraically closed field.
• X is a separated scheme of finite type over k (for example, a variety).

If A is a ring and if ^ is a torsion sheaf of A-modules on X, then the
Aale cohomology with compact support of X with coefficients y is defined as the
homology H^(X, ̂ ) of an object Rr^(X, ̂ ) of the derived category D\A-mod) of
A-modules. Since RI^(X, 3F} is usually only defined up to isomorphism in the derived
category, or in other words up to quasi-isomorphism, there are many different bounded
complexes of A-modules that may be chosen to represent it. In this section we shall show
that, with some reasonable restrictions on A and ,̂ there is a canonical (up to chain
homotopy equivalence) choice of such a complex, and that this complex has nice properties.

As in the proof of [5, Proposition 3.5], where Deligne and Lusztig show that if
a finite group G acts freely on X then RF^(X, Z//") may be represented by a bounded
complex of projective Z/^G] -modules, we shall use the following result.
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Proposition 2.1. — Let Abe a right and left noetherian torsion ring, and let ̂  be a construe-
tible sheaf of A-modules on X such that the stalk ̂  is a projective A-module for every k-rational
point x. Then RF^X, ĵ ") may be represented by a bounded complex of finitely generated projective
A-modules.

Proof. — For the convenience of the reader we shall sketch the proof from [5,
Proposition 3.7], taking the opportunity to give references to some relevant facts about
^tale cohomology from [1].

By [1, XVII (4.2.8)], y has finite Tor-dimension (the set of A-rational points
of X is a "conservative set of points" by [1, VIII (3.13)]). Therefore, by [1, XVII
(5.2.10)], RF,(X,^) has finite Tor-dimension. By [1, XVII (5.3.6)], RF,(X, ̂ )
also has finitely generated homology. These two conditions on RF^(X, <^) ensure that
it is quasi-isomorphic to a bounded complex of finitely generated projective A-modules. D

The following technical lemma will be used several times in what follows. Note
that the left derived functor LJ(RF^(X, ^r)) may be calculated by applying J to the
bounded complex of projective A-modules that, by Proposition 2.1, represents RF^(X, ̂ r).

Lemma 2.2. — Let A and B be two torsion rings, both left and right noetherian, and let ^
be a constructible sheaf of A-modules on X whose stalks <^ are projective A-modules for each
k-rational point x of X. Let J be any additive functor from A-mod to 'B-mod. There is a natural
isomorphism

Lj(Rr,(x,^))^Rr,(x,J(^))
in D^B-wo^), where J^ )̂ is the sheajification of the presheqf J {^).

Proof. — We may regard J(A), the image of the free A-module of rank one, as
a B-A-bimodule. Then there is a natural morphism of functors

6:J(A)^~->J(-),

where 9(M) is the map corresponding with respect to the adjunction isomorphism

Hom^J(A) ̂  M,J(M)) ^ Hom^M, Hom^(J(A),J(M)))

to the map
M ^ Hom^A, M) -> Hom^A), J(M))

induced by J. For a projective A-module M, 6(M) is an isomorphism.
By [1, XVII (5.2.9)] there is a natural isomorphism

J(A) ®^ RI\(X, y} ̂  RIYXJ(A) ®t ̂ ).

Since the stalk of ^ at each ^-rational point is projective, J(A) ®^ ̂  is the same as
J(A)®^[1, XVII (4.2.8)].
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Recall that the tensor product of sheaves ^o ® ̂ ils t^le sheafificadon of the presheaf
obtained by taking the tensor product of sections of ^o ̂ d ^v\ let us denote this presheaf
by ^o®° ̂ r There is a map of presheaves

J(A)®1^-^J(^)

induced by 6, which induces an isomorphism on stalks at ^-rational points, since the
stalks of ^ at these points are projective. Therefore we get an isomorphism

J(A)®^^J(^)

when we sheafify.
Finally, 6 induces an isomorphism

J(A) ®t Rr,(X, ^) ̂  LJ(Rr,(X, ^)),

since 6(M) is an isomorphism for projective M. D
If, as above, 3^ is a constructible sheaf of A-modules on X, and ifMis an A-module,

then we can apply the functor Hom^(M, —) to y to get a presheaf of End^(M)-modules
on X. Because Hom^(M, —) is left exact, this presheaf is actually a sheaf. In general
it will not be constructible, since it is not necessarily a sheaf of finitely generated modules.
However, with suitable finiteness conditions on A and M it will be constructible. This
is certainly the case if A is an Ardn algebra (i.e., A is finitely generated as a module
over an artinian centre) and if M is a finitely generated A-module. In all the examples
we shall consider, A is actually a finite ring.

If, in addition to these conditions, M is such that the stalk ̂  at each ^-radonal
point of X is an object of add-M, then Hom^(M, ̂ ) has End^(M)-projective stalks
at A-radonal points, since Hom^(M, -—) induces an equivalence of categories

add-M -> End^(M)-^ro;,

with a quasi-inverse equivalence given by M ® g ^ — . Also, the -endomorphism
ring End^(M) of a finitely generated module for a torsion Ardn algebra is itself a torsion
Ardn algebra — since it is finitely generated as a module for the centre of A — and so
Proposidon 2.1 applies to Hom^(M, ^"). The following definition therefore makes
sense.

Definition 2.3. — Let A be a torsion Artin algebra, and let S^ be a constructible sheaf of
A-modules on X. If M is a finitely generated A-module such that ̂  is in add-M. for each k-rational
point x of X, then define ^(X, ̂ , M) to be the object M®^ P* of K^A-mod), where
P* is the bounded complex of projective End ̂ (M) -modules which, by Proposition 2.1, represents
Rr,(X,Hom^(M,^)).

Since the complex P* of projecdves is well-defined up to chain homotopy equi-
valence, the same is true ofU^X.J^, M).
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Let us also remark that there is always some module M with the properties required:
since ^ is constructible, there are only finitely many isomorphism classes of stalks ̂ ,
at ^-rational points, all of which are finitely generated A-modules, and so we may take M
to be the direct sum of modules, one from each of these isomorphism classes.

The most important property of Qc(^? ^-> M) is the following.

Proposition 2.4. — In the derived category Db{A-mod), there is an isomorphism between
H,(X,^,M) and RF,(X, ̂ ).

Proof. — By Lemma 2.2,

^(X, ̂ , M) ^ M ®^ RF,(X, Hom^M, ̂ ))
^ RF,(X, M®^ Hom^M, ̂ ))
^ RF,(X, ̂ ),

all isomorphisms being in the derived category. D
Proposition 2.4 tells us that, once we have chosen M, there is a canonical (up

to chain homotopy equivalence) choice of a complex of objects of add-M that repre-
sents RI\(X, y}. Now we shall see that this complex is even independent of M.

Proposition 2.5. — With the notation of Definition 2.3, if N is any finitely generated
A-module then there is a natural isomorphism

n,(x, y, M) ^ a,(x, ̂ , M © N)
of objects of K^A-mofl?).

Proof. — Let E = End^(M) and E = End^MON), and let

J == Hom^M © N, M ®E ~),

considered as a functor from E-mo^ to JL-mod. Note that J takes projective E-modules
^

to projective E-modules and that there are the following two natural morphisms of
functors.

First, there is a morphism

a:J(Hom^(M, -)) ^Hom^(M®N, -)

of functors from A-mod to E-mod, where a(S) is an isomorphism if S is in add-M.
Second, there is a morphism

( B : ( M ® N ) ® g J ( — ) ->M®E —

of functors from JL-mod to A-mod, where (3(T) is an isomorphism if T is in JL-proj.
There is a map of presheaves

J(Hom^(M, ^-)) -> Hom^M ® N, ^-)
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induced by a. The induced maps of stalks at ^-rational points are all isomorphisms
because the stalks of y at these points are all in add-M, and so after sheafifying we get
an isomorphism

J(Hom^(M, ̂ )) ^ Hom^(M ® N, ^").

Therefore, using Lemma 2.2,

RI\(X, Hom^MC N, ̂ )) ^ Rr,(X,J(Hom^(M, ̂ )))
^LJ(Rr,(X,Hom^(M,^))).

So if we let P* be the complex ofprojecdve E-modules that, by Proposition 2.1, repre-
sents RlyX, Hom^(M, ̂ )) and Q* be the complex of projective E-modules that
represents RI^(X, Hom^MCN, ^")), then Q* ^ J(P*) in the homotopy category.

Therefore (3 induces an isomorphism

a,(X, y, M C N) ^ (M © N) ®^J(P*)
s M ®B P*
^ ^(X, ̂ , M)

in K^A-woflf). D
In the light of the previous Proposition let us make the following definition.

Definition 2.6. — Let A be a torsion Artin algebra, and let y he a constructible sheaf of
A-modules on X. Then U;(X, ̂ r) is defined to be U;(X, ̂ ', M), where M is the direct sum
of A'modules, one from each isomorphism class that is represented by ̂  for some k-rational
point x of X.

The following theorem is mostly just a summary of what we already know about
Qg(X, «^'), together with some facts about it that follow easily from the corresponding
facts about RI^(X, ̂ ).

Theorem 2.7. — a) If A is a torsion Artin algebra, then U;(X, —) is an additive functor
from the category of constructible sheaves of A-modules on X to the homotopy category K^^A-mod).

b) If all the stalks of ̂  at k-rational points of X are in add-^/l for some A-module M,
then U;(X, ̂ ) is a complex of modules from add-M.

c) The composition of H;(X, —-) with the usual quotient functor from ^^(A-mod) to
D^A-morf) is isomorphic to RF^X, —).

d) Iff: Y -> X is a finite morphism of separated schemes of finite type over k, then there
is an induced map from t2c(X, ̂ ) to ^(Y,/* ̂ ).

Proof. — a) If 6 : ̂  -> ̂  is a map of constructible sheaves of A-modules on X
then, if we define M to be a direct sum of A-modules, one from each isomorphism class
which occurs as a stalk of either 3^ or ^ at a ^-rational point of X, then 6 clearly induces
a map

^(X,^,M)->^(X,^,M).



88 JEREMY RICKARD

But, by Proposition 2.5, Q,(X, ̂ •) and Q,(X, ^) are naturally isomorphic to ̂ (X, ̂ , M)
and U;(X, ^, M) respectively, so 6 induces a map

Hpc,6):H,(x,^)^(x,^).

A similar argument shows that if 6 and 9 are composable maps between sheaves, then

^(X,6o9) =^(X,6)o^(X,<p).

b) By definition, D^X, ̂ , M) is a complex over add-M, and ^(X, ̂ ) is iso-
morphic to ^(X,^,M) by Proposition 2.5.

c ) This follows from Proposition 2.4.
^ For suitable M, / induces a map

RF,(X, Hom^M, ^)) ^ RF^Y,/* Hom^(M, ^))
^Rr,(Y,Hom^(M,/*^)). D

Let us end this section with the following lemma, a corollary of Lemma 2.2,
which will be useful later.

Lemma 2.8. — Let A and B ̂  torsion Artin algebras^ let U be a finitely generated A-module,
and let F be an additive functor from add-U to 'B-mod. If ̂  is a constructible sheaf on X of
A-modules that are in add-U, then

^(X, F(^)) ^ F(^(X, ̂ )),

where F(^) is the sheafification of the presheaff'(^).

Proof. — Since End(U)-^ and End(F(U))-pny are equivalent to add-U and
add-F(U) respectively, we get a functor

J : End(U)-^y -> End(F(U))^r<y

by composing these equivalences with F. We can extend J to a functor on the whole
of the module category End(U)-w^. For example, the functor

^U) ®End(u) - : End(U)-77W -> End(F(U))-m^

restricts to a functor isomorphic to J. It should cause no confusion if we also call this
extended functor J, and we shall do so.

Now, by definition oft2,(X, ^r),

F(^(X,^))^F(U®^)P*)

^F(U)®E^)J(P^
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where P* is a bounded complex ofprojective End (U)-modules that is quasi-isomorphic
to RFJX, Hom(U, e^)). But, by Lemma 2.2,

J(P)^Rr,(X,J(Hom(U,^)))
^ RF,(X, F(^))
^ ^(X, F(^)),

and so the claimed isomorphism follows. D

3. Finite group actions

Throughout this section we adopt the following notation.
• G is a finite group.
• k is an algebraically closed field.
• R is a finite commutative ring.
• X is a quasi-projective variety defined over k with an action of G.
• Y is the quotient variety X/G.
• TT : X -> Y is the projection map.

Consider the constant sheaf R on X. Its direct image n^ R is a sheaf of R[G]-
modules on Y, and because n is a finite map there is a natural isomorphism

RF,(Y, ̂  R) ^ RF,(X, R)

in the derived category D^R-moJ). We can therefore regard RI\(X, R) as an object
ofD^RI^Gj-wo^). Since ̂  R is a constructible sheaf, the results of Section 2 apply, and
we can make the following definition.

Definition 3.1. — The object A^(X, G, R) — or just A^(X, R) if it is clear which group
is involved — of K^R^-mod) is Q,(Y, TT, R).

Theorem 3.2. — In the derived category D^R^-wocf), the complex A^(X, R) is iso-
morphic to Rr^(X, R). It is a complex of direct sums of direct summands of permutation modules
of the form R[G/H], where H runs through the set of stabilizers of k-rational points o/*X.

Proof. — This follows immediately by applying Theorem 2.7 to the sheaf 7^ R on Y,
since the stalk of n^ R at a point n{x) of Y is just the permutation module R[G/H],
where H is the stabilizer of x. D

If there is some restriction on which subgroups of G occur as point stabilizers
then we get a restriction on which modules can occur in Ag(X, R).

Corollary 3.3. — Let K. be a subgroup ofG. If the stabilizer of every k-rational point o/*X
is conjugate to a subgroup o/'K, then A^(X, R) is, up to homotopy equivalence, a bounded complex
of relatively K-projective summands of permutation modules. D

12
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If we consider an even more trivial special case, where all the point stabilizers
are trivial, we recover Deligne and Lusztig's result for free actions.

Corollary 3.4. — IfG acts freely on X, then A^(X, R) is, up to homotopy equivalence, a
complex of projective modules. Thus in this case A^(X, R) coincides with the complex constructed
by Deligne and Lusztig in [5, Proposition 3.5]. D

As in [5, Proposition 3.5] we can get similar results for /-adic cohomology by
taking an inverse limit.

Theorem 3.5. — Let I be a prime number. There is a canonical (up to chain homotopy
equivalence) bounded complex of summands of permutation Z,^[G]-modules, which we shall denote
by A^(X, G, Z() — orjustA^'X, Z,) if it is clear what G is —, which is isomorphic to RF^(X, Z,)
in D\Zt[G]-mod) and such that

A^X.Z/^A^X.Z^Z/^.

Proof. — The proof works exactly as in [5], the only extra ingredient being the
fact that, for a permutation Z,[G]-module M, the natural map

End^(M) ̂  Z/^ -> End^(M ̂  Z//-)

is an isomorphism [9]. We have, for a suitable permutation Z,[G]-module M,

RF,(Y, Hom(M, TT, Z//")) ^ RF,(Y, Hom(M, ̂  Z/^1)) OO^-i Z/^,

and, by [6, XV, 3.3, Lemme I], we can choose explicit bounded complexes K^ of pro-
jective modules, one for each positive integer %, such that K^ is isomorphic in the derived
category Db(End(M®Z//w)-m^) to Rr,(Y, Hom(M, TT, Z/^)), and such that K^ is
the reduction mod /n ofK^i. Taking the inverse limit of the K^, we get a complex K^,
of finitely generated projective End (M)-modules. Using [6, XV, 3.3, Lemme 1] again,
K^ is independent, up to homotopy equivalence, of the choice of K^. So the theorem
follows by taking

A,(X,Z,)=M®^^K-,. D

4. Quotients and fixed points

We shall keep the notation of Section 3. Also we shall be considering fixed points
of group actions, and we shall use the standard notation XG for the fixed points of a
group G acting on an object X.

First we shall show that taking the quotient of X by some subgroup of G corres-
ponds to taking the fixed points of the subgroup on the complex Ag(X, R). Notice that,
since the fixed point functor is not exact, it is not defined on the derived category. There-
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fore it is important that we consider the object A^(X, R) of the homotopy category
rather than the coarser invariant RI\(X, R) in the derived category.

Theorem 4.1. — Let H be a subgroup of G. Then, with respect to the natural actions of
No(H) on the quotient variety X/H and on the H-fixed points ofR[G]-modules, there is a natural
isomorphism

(A,(X, G, R))3 ̂  A,(X/H, N^(H), R)

in K^RCN^H)]-^).

Proof. — Let N = No(H). Let MQ be the direct sum of all the permutation R[G]-
modules R[G/GJ, one for each subgroup G, of G, and let E^ = End^^(Mo). Similarly
define M^ and E^. Thus the categories of finitely generated summands of permutation
modules for R[G] and R[N] are just add-M^ and add-M^ respectively.

If we let F be the H-fixed point functor from add-M^ to R[N]-worf then, by
Lemma 2.83

Q,(X/G, F(^ R)) ^ F(Q,(X/G, 7.. R))

in K^RpNT]-^), where F(TT, R) is the sheafificarion of F(TT,R).
If we let 9 : X/H -> X/HN^(H) and ^ : X/HN^(H) -> X/G be the projection

maps, then (^ R^ is isomorphic to the direct image ̂  9, R (where here R is the constant
sheaf on X/H), which is the direct image of the sheaf 9^ R of permutation R[N]-modules
on X/HNo(H). In particular, F(TC, R) is a sheaf, and so is isomorphic to F(TC^ R). We
have

Ho111!̂ ^^ R)11) ^ no111^1^ ̂  9^ R)
^ ^Hom^M^^11).

and so, using the fact that ^ is a finite map,

RIYX/G, Hom^(M^(7r. R)3))
a Rr,(X/G, ̂  Hom^(M^, 9. R))
s Rr,(X/HNo(H), Hom^,(M^, 9. R)).

Therefore, if we take P* to be a bounded complex of projecdve E^-modules representing

Rr,(X/HNo(H), Hom^{M^, 9. R)),

we have
A,(X/H,N,R)sMi,®,,P*

sQ^X/G^^R)^
s (Qc(X/G, TT. R))H

a (A,(X, G, R))" D

The analogue of this theorem for /-adic cohomology also holds, and follows easily
by taking an inverse limit.
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The previous theorem shows that the operation on the chain complex A^(X, R)
that corresponds to taking the quotient of X by a subgroup of G is exactly the same as
it is for the singular chain complex of a topological space; namely, taking the fixed points
of the subgroup on the chain complex. We shall now see that this analogy holds for
another operation on X: taking the fixed points of a subgroup of G. We shall first make
some comments on this operation in the context of simplicial homology.

In general, if R is a commutative ring and X is a simplicial complex with a sim-
plicial action of a finite group P, one cannot recover the simplicial chain complex
C^X^ R) of the fixed point set X1* from the chain complex G^(X, R) of R[P]-modules.
This can be seen even with 0-dimensional simplicial complexes: there are examples
of P-sets Si and Sg such that the permutation modules R[SJ and R[SJ are isomorphic,
but the fixed point sets Sf and Sj* have different cardinalities.

However, if R is a field of characteristic p and P is a j&-group, then this problem
does not arise. In this case, if P is a subgroup of a group G, there is a functor (the "Brauer
construction", see [4]) from R[G]-mod to RpN'^P)]-^ defined by

M ̂  M(P) == M^l S Tr^M^,
Q<P

where
Tr^ :M^ ^M^

is the relative trace map, defined by

Tr^(^) = STU:,
7T

the sum being over a set of representatives TC of the cosets P/Q. The natural map

Brp : M1* -> M(P)

is called the Brauer morphism.
I fM= R[S] is a permutation module, then M(P) is isomorphic to the permutation

R[NQ(P)]-module R[S11]. In fact there is a diagram of functors, commutative up to
isomorphism,

G-sets ———> No(P)-sets

! I
R[G]-mod —> R[N^(P)]-w^

where the vertical arrows are the functors taking a permutation set to the permutation
module with that set as basis, the first horizontal arrow is the P-fixed point functor,
and the second horizontal arrow is the Brauer construction described above.

Thus, ifX is a G-simplicial complex then the simplicial chain complex C^X^ R),
considered as a complex of R[N^(P)] -modules, is isomorphic to G^(X, R) (P), the
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Brauer construction applied to the simplicial chain complex of X. We shall now see
that there is an analogous result for dtale cohomology.

Theorem 4.2. — Let L be an l-subgroup of G. Then A^X^ N^L), Z//) is isomorphic,
in KWEN^L)]-^), to A,(X, G, Z/Q (L).

Proof. — We have the following commutative diagram of natural maps of varieties.

X1- ——a-^ X

I3 I"y y

XWL) ^> X/G

First we shall show that n^ a,, Z/Z is isomorphic to the sheafification of {n^ Z//) (L).
There is a natural map

T : (TT, Z//)1--^ a, Z/Z

of sheaves on X/G that is the composition of the inclusion of the L-fixed points into
TT^ Z// with the map obtained by applying TT^ to the adjunction map

Z// -> a, a* Z// = a, Z//.

If L' is a proper subgroup of L, then we have the relative trace map

. Tr^ : (TT, W -> (TT, Z//)1-.

Ifj/ is a ̂ -rational point of X/G, then the maps on stalks atj/ induced by Tr^. and T are just

Z/^TT-^^)]1-' ̂  Z/^-^J.)]1- -^ Z/^Tt-^^)1-],

and so the composition is zero. Therefore T factors through the Brauer morphism to
give a map

(^Z//)(L) ^7r,a,Z//

from the presheaf obtained by applying the Brauer construction to TC^ Z//. This map is
an isomorphism on stalks at ^-rational points, so gives rise to an isomorphism of sheaves
from the sheafification of (7^ Z//) (L) to ^ o^ Z//.

Let My be the direct sum of permutation Z/^NJI^j-modules Z//[N^(L)/NJ,
one for each subgroup N^ ofN^(L), and let E^ be the endomorphism ring of M^. Then

RI^XWL), Hom^^(M^, (3. Z/^))
^ Rr,(X/G, Y* Hom^^(M^ (B, Z//))
^ RF,(X/G, Hom,^^(M^, ̂  p, Z//))
^ Rr,(X/G, Hom^^^,(M^, TT, a, Z//))
^ RF,(X/G, Hom^^(M^,(^ Z//) (L))).
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So if P* is a bounded complex of projecdve E^-modules isomorphic to these objects of
D\'E^mod) then

A^N^Z/O^M^P
^(X/G,(7r,Z//)(L)),

which is isomorphic, in K^Z/^N^L)]-^), to

Qe(X/G, TT, Zfl) (L) ^ A,(X, G, Z/Q (L)

by Lemma 2.8. D
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