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SOME GROUPS WHOSE REDUCED C-ALGEBRA IS SIMPLE
by M. BEKKA, M. COWLING and P. DE LA HARPE (*)

1. Introduction

Let r be a discrete group. Denote by^(r) the Hilbert space of all square-summable
complex-valued functions on F, and let ^(^(F)) be the G^-algebra of all bounded
linear operators on^(r). The group F acts on^(r) by the left regular representation Xp,
defined by the formula

OrMf) W ==/(T~1 ̂  V Y e r, V/e^(r), V x e F.

The reduced C*-algebra C^F) of F is the norm closure in ,Sf(^(r)) of the linear span
ofXp(r). It is a G^-algebra with unit. Recall that a normalized trace on a G*-algebra A
with unit is a linear map a : A -> C such that (r(l) == 1 and a{a* a) ^ 0 and 0(06) = (r(&a)
for all a, b in A. Such a map is automatically continuous (see [Dix], 2.1.8 and 2.1.9).
The algebra C^(r) has a canonical trace T : C^(r) -> C, defined by r(l) = 1 and
T(Xr(y)) = 0 for all y in F\{ 1 }.

Suppose r is a nonabelian free group. A remarkable result of R. Powers [Pow]
is that C^(r) is simple (i.e., it has no nontrivial two-sided ideals) and T is the unique
normalized trace. This has been generalized by many authors (see, e.g., [Ake], [AkO],
[Hal], [PaS]).

Let G be a connected semisimple Lie group without compact factors and with
trivial centre, and let F be a lattice in G. A well-known conjecture asserts that C^(r)
is simple. The main result of this paper is that this conjecture is true. In fact, we prove
a more general result, from which the conjecture follows immediately, using the Borel
density theorem (cf. [Zim], 3.1.5), which shows that lattices are Zariski-dense. A little
notation is necessary before we enounce our main result.

In this paper, we let G denote the adjoint group of the Lie algebra g of a semi-
simple Lie group G; by this, we mean the algebraic group of automorphisms ofg whose
Hausdorff connected component is isomorphic to the quotient of G by its centre. Also,
for a topological group H, the symbol H^ indicates the group H with the discrete topology.

(*) This research was partially financed by the Australian Research Council, which supported the first two
authors as Senior Research Associate at the University of New South Wales and Senior Research Fellow.
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Theorem 1. — Let G be a connected real semisimple Lie group without compact factors.
Let H be a subgroup of G with trivial centre, whose image in G under the canonical projection is
Zariski-dense. Then C^HJ is simple and has a unique normalized trace.

The following property of a discrete group F implies that G^F) is simple.

Definition 1. — A discrete group F is said to have property P^ if, for any finite subset F
of r \{ 1 }, there exist VQ in F and a constant C such that

00

S a, Xr(jCo-3 ̂ ) || < C || a Ha V a e^(Z+), V x e F.
3-1

Here a, is the jth-term of the sequence a, and Z and Z"1" denote the sets of integers and
positive integers respectively.

It is immediate that, if F has property P^, then C^F) has a unique normalized
trace (for this, it suffices to consider singleton sets F only). Indeed, for any A: in F\{ 1 }
and any trace a, there exist j/o in F and a constant G such that

„ ]^.!^) <^o(XpW)||= ^-^X^o-3^)) ^ c V J e Z + ,

and hence (r(Xp(A:)) = 0.
We shall show (Lemma 2.1) that, if F has property P^, then C^F) is simple.

In turn, property P^ is a consequence (see Lemma 2.3) of the following combinatorial
property.

Definition 2. — A discrete group F is said to have property P^ if, for any finite subset F
of F\{ 1 }, there exist y^ in F and subsets U and A, (indexed by a finite set S ) of F such that

(i) F\U £ U , e s A , ;
(ii) xV n U = 0 for all x in F;

(iii) VQ 3 A, n A, == 0 for all j in Z^ and all s in S.

This definition should be compared with the <( table-tennis criterion " in Lemma 4.1
below, and with the definition of Powers' group in [HaS], Note that condition (iii) implies
that the setsj/j"3 A, andj/j"^ A, are disjoint ifj and/ are two different integers.

In a number of cases, property P^m follows readily from geometric data about F. To
formalise this, we introduce another condition for a group F acting on a compact space B.

Definition 3. — Let F be a discrete group F acting on a compact set B. Then (F, B) is said
to have property Pg^ if, for any finite subset F ofF \{ 1 }, there exist y^ in F, a finite subset { b,: s e S }
o/*B, and open neighbourhoods V, ofb, in Bfor each s in S, such that

(i) { b,: s e S } is the set of fixe(1 points of the action ofy^ on B, and, for each b in B, there exists s
in S such that lim^^ y[ b == b,;

(ii) xV, n V,, == 0,for all s, s ' in S and all x in F;
(iii) for all s in S and j in Z4-, if b e V, and y^ b ^ V,, thenf^1 b (/: V,.
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An easy compactness argument (see Lemma 2.4) shows that if F acts on a compact
space B, and (F, B) has property P^, then F has property P^.

So the real problem is to establish the following result.

Theorem 2. — Let G and H be as in Theorem 1, and let B denote the Furstenberg boundary
ofG. Then (H^, B) has property Pg^.

In the real rank one case where the action of G on B is simpler, we can offer a
different proof of independent interest of Theorem 1, at least for subgroups which are
both Zariski-dense and discrete. Before formulating this result, we introduce one final
property of a discrete group.

Definition 4. — A discrete group F is said to have property P^ if, for any finite subset F
of r\{ 1 }, there exists y^ in T of infinite order such thatyfor each x in F, the canonical epimorphism
from the free product < x > * <j/o > onto the subgroup < x,y^ > of F generated by x and y^ is an
isomorphism.

It is easy to show (Lemma 2.2) that property P^ for a discrete group F implies
property P^a, and hence the simplicity of C^(r), and uniqueness of the trace thereon
(Lemma 2.1). We also prove the following result.

Theorem 3. — Let G be a connected simple Lie group of H-rank 1 and trivial centre, and
let r be a discrete subgroup of G, Zariski-dense in G. Then F has property P .̂

Essentially the same proof establishes the simplicity of the reduced C*-algebras of all
nonelementary, torsion-free groups which are hyperbolic in the sense ofGromov; cf. [Ha3].

Remark 1. — The subscripts ana, corn, geo, and nai are abbreviations for analytic,
combinatorial, geometric, and naive respectively. We like to think of P as the first letter
of <( permissive 5). For example, a group F has property P^i, or is permissive in the
naive sense, if it is so free that, for any finite subset F of F\{ 1 }, there exists a partner j^
of infinite order in F such that each pair {A;,j /o} (where x e F) generates a subgroup
which is as free as possible.

Remark 2. — Subsets { Xj :j e Z4' } of a group F such that, for some constant G,

II.J ^rMI^GII^I, V^e^),

have already appeared in the literature (see [Lei], [AkO]).

Remark 3. — Let H be a group as in Theorems 1 and 2, so that H has property Pcom*
We do not know whether H has property P^ in general.

In [HoR] and [Ros], it is proved that C^(PGL(^, k)) is simple with a unique
normalized trace (concerning the uniqueness of the trace, see also [Kir]), where n ̂  2
and k is any discrete field which is not an algebraic extension of a finite field. As a conse-
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quence of Theorem 1, we are able to generalize this to algebraic groups over arbitrary
fields of characteristic 0.

Corollary 1. — Let k be a field of characteristic 0, and let G be a connected, semisimple
algebraic group, defined over k, with trivial centre. Let F be G(k), the group of the k-rational points
ofG, equipped with the discrete topology. Then C^F) is simple, and has a unique trace.

Theorem 1 has two natural generalizations, with similar proofs. The first of these,
Theorem 4, describes the structure of Ci^HJ, in the case where H has finite centre,
as a direct sum of finitely many simple subalgebras. In order to give the precise statement,
we introduce some notation. Let F be a discrete group with finite centre Z. For ^ in Z,
the dual group ofZ, let \ be the representation of F induced by ^. Denote by C*(r, ^)
the C*-algebra generated by {\{x) : x e F}. It has a canonical trace T^ defined by
^(^cW) = XW for x in z ̂ d ̂ {\W == 0 for A; in F\Z. The reduced C-algebra G^F)
decomposes as the direct sum of the algebras G*(F, ^).

Theorem 4. — Let G be a connected real semisimple Lie group, without compact factors,
with finite centre. Let H be a subgroup ofG with finite centre Z, whose image in G under the natural
projection is Zariski-dense. Then, for every 7 in Z, C^H^, -/) is simple and has a unique trace.

The second generalization of Theorem 1 deals with reduced crossed-product algebras.

Theorem 5. — Let F be a discrete group with property P^m. Let A be a G*-algebra with
unit, and let a be an action of T on A. Denote by B the corresponding reduced crossed-product algebra
A x^, r r1. If the only T-invariant ideals in A are trivial, then B is simple. If A has a unique
Y-invariant trace, then B has a unique trace.

This paper is organized as follows. In Section 2, we show that when F has property
Pana? ^en C^F) is simple. We also establish the relationships between the various
properties introduced in Definitions 1 to 4. Sections 3 and 4 are devoted to the results
about semisimple Lie groups, and Section 5 to the generalizations and corollaries of
Theorem 1.

Some of the results in this paper were announced in [BGH],
It is a pleasure to thank Donald Cartwright, who read this paper very carefully,

for a number of useful suggestions.

2. Properties P^, P,^, P,eo, and P^

In this section, we show that property P^ implies the simplicity of the G^-algebra,
that P^ and P,̂  both imply P^, and that Pg^o implies P,^.

Lemma 2.1. — Let T be a discrete group. If F has property P^, then C^(r) is simple.

Proof. — Observe that, since C^(r) is a Banach algebra with unit, the closure
of any proper ideal of C^(r) is still a proper ideal. Hence, it is sufficient to prove that
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C^(r) has no nontrivial closed two-sided ideals. This amounts to showing that any
unitary representation of F which is weakly contained in Xp is actually weakly equivalent
to Xp (for the notion of weak containment, see [Dix], Chapter 18).

Let TC be a unitary representation of F which is weakly contained in Xp. The Dirac
function &i at the group unit is a positive definite function associated with Xp. Since
Xp is cyclic, we need only show that S^ is the limit, uniformly on finite subsets of F, of
sums of positive definite functions associated with n (see [Dix], 18.1.4).

Let F be a finite subset of F\{ 1 }. By assumption, there exist j^o in F and a constant G
such that, for all x in F,

S^.Xp^-^^)!! ̂  C [| a \\, V a e^Z^.

In particular,

lim
J->00

-S;^p(^-3^) 0 VA:eF .

Since TT is weakly contained in Xp, this implies that

lim
J -> 00

1 J
. .^7T(jo 3 Xfo) =0 V x e F.

Take a unit vector ^ in the Hilbert space of TT, and define the normalized positive definite
function 9, to be < T C ( - ) TC(^) ^, Tr(j^) ^ >. Then 9, is a matrix coefficient of TT, and

1 S 9,W = 8iW V ^ e F u { 1 }.lim ^j-^co j ,^i D

Lemma 2.2. — £^ F 6^ a discrete group. If T has property P ,̂ then F has property P .̂

Proof. — Let F be a finite subset of F\{ 1}, and letj/o in r of infinite order be such
that < X,VQ > is the free product of < x > and <j/o > for all x in F.

Fix x in F and write r" for the group < x,y^ >. Denote by Wo the subset of F'
consisting of the words which do not begin with a nontrivial power ofj^o, and by W,
the setj^ Wo, for all^' in Z. Observe that the sets W, are pairwise disjoint. Then, denoting
by X the regular representation of r" and by /^ tne characteristic function of a subset A
of r', we have, for/and g in ^(F') andj in Z,

l<^)/^o)5>l<^o~^)/^>l

K^)(xwo^)/)^(^)^>l^

+|<^)(Xr'\Wo^)A^)^>

K^)^)(xw.,/)^(^)^>l
+ I < ^(^) (Xr'xwo ^(-^o) /), Xwo ̂ (^) S >

II Xw,/ll 1 1 ^ 1 1 + H / 1 1 || Xwo^^ll

II Xw.y/11 1 1 ^ 1 1 + 1 1 / H || Xw.y^ II,

where we used the fact that A?(F'\Wo) S Wo.
16
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Now take a in l\7^) and define the operator T^ on ^(F') by the formula

T^== I.a.U^'xyi).
3-1

Then

|<T^>|^ SJ., | [||xw,/ll IHI +||/|| || Xw,^l|]

<2|MU|/||||^|| V/^e^r).
Thus ||TJ|<2|M|2. Since

II ̂  ̂ 3 ̂ ) || = || ̂  ̂ W ̂ ) II,

the required inequality is proved.
Note that T^ is not a priori a bounded operator on ^(r'). One may get around

this by considering a with finite support, and then applying a limiting argument. D

Remark 4. — It should be mentioned that Lemma 2.1 is implicit in [Pow] and
[AkO], and that Lemma 2.2 can easily be deduced from [Lei] or [AkO]. For a better
understanding of later arguments, we preferred to give independent, quick proofs. Since
free groups are readily seen to have property P^, it should also be observed that a
combination of both lemmas provides a short proof of Powers' theorem.

Our next lemma is a generalization of Lemma 2.2. In particular, it implies that
if r has property P^m, then F has property P^.

Lemma 2.3. — Let T be a discrete group with property P ,̂ and let ̂  be a Hilbert space.
Let Q denote the space of all bounded operators T on the Hilbert space ̂ (F; Jf) ofsquare-integrable
^-valued functions on V for which there exists a bounded JS (̂Jf) -valued function B on F such
that Tf{x) = B{x)f{x) for all x in F and all/in t\T\^. Suppose that (T,),^i is a sequence
of operators in 2. Let F be a finite subset of T\{ 1} , and let j^ U, and {A, ^s e S} he as in
Definition 2. Then

[I ̂ T,X(^-^^)|| ̂  2 | S | (J|j| T,||2)1/2

for all x in F, where \ denotes the regular representation of T ^^(F;^).

Proof. — We need to observe that operators in Q commute with multiplications
by characteristic functions of subsets of F. Now, for all/and g in ̂ (r;Jf), and T in Q,

|<TX(AO/ ,^>|^ |<TXM^/,^>|+|<TXMx^/^>|

= I < Tx,u XW /, g > [ + | < \{x) ̂  u/, T^ > |

=|<^TXM/,^U^>|+|<XW^^/T^>|

< II^W/llllx^^ll+IIXrw/IIIIT^II

< S [||TXW/||||^||+||x A,/III|T^||]
(t o
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for all x in F. For each positive integer j\ write R, for X(j^) T, ̂ (j^). It is clear that
R, e Q. Hence whenj^ 1,

| < R , X M X ( ^ ) / , X ( ^ ) ^ > | < S [||R^(^)/||||XA^(^)^||
» €? 8

+11%A^(^)/111|R^(^)^||]

- S [||R,x(^)/||||^^^||
868

+I|X^A,/III |R;^)^I | ] .
Now

| 2^T,x(^-^^)/^>| = I 2^<X(^-QR,x(^)/^>

< SJ<R,X(A;)X(^) / ,X(^)^>|

< S ([S HR^^/HT^S llx^A^IIT2
a e S i = = l j = = l -

+ E S iix^A^irrc.s iiR;x(^)^n2]1/2)
^ S ([S <R,x(^)/,R,A(^)/>]1/2 l l ^ l l

a e 8 3=1

+11/11 [jl/R^^R^O^r)

<|S|(||^X(^)*R;R,X(^)||1/2

+||SX(^)•R,R^(^)||1/2)||/||||^||
^''l

< 2 JSKSJIRJI 2 ) 1 7 2 11/11 1 1 ^ 1 1

=21S|(2J|T,||2)1/2||/|| ||^|1,

since the setsjg"^ A, andj/o"3 Ag are disjoint for different integers j andj'. D

Lemma 2.4. — Z^ F be a discrete group, which acts on a compact space B. If (F, B) Ao^
property Pg^o, ^% F to property P .̂

Proo/l — Let F be a finite subset of F\{ 1 }, and letj/o, b^ and {V,:.? e S}, be as
in Definition 3. Let So be the set of all s in S such that for some b in B\U, ̂  g V,, j^ A -> A,
asj->oo. For i in Z"^ and s in So, we define B,, as follows:

B^j^-VA U ĵ 'v..
o^i«
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Using condition (iii) in Definition 3, it is easy to show thatj/o-1 B,, == B, ̂ . Conse-
quently, the setsj^'B,, and B,, are disjoint for all positive integers j.

Define V thus:

v = U v,.
«es

Then xV c B\V for all x in F. Since Imij^ b e { h,: s e So } for all b in B\V,

B\Vc= U U j^V,,
iez-*- «eso

and since B\V is compact, there exists I in Z4" such that

B\V cr U U B,,.
i-i seso

Now write j^i forj^, and define B, (for any s in So) by the rule

B, = U B,,,.< = i

It is clear that the sets y~^ j B, and B^ are disjoint for any positive integer j.
We fix an arbitrary base point &o in B, and for any subset A of B, we define the

subset A of r by the rule

A = = { Y e r : Y & o e A } .

Thenj^ B, and B, are disjoint for any positive integer j. Further, xV c r\V for all x
in F, and

r\v c: u B,.
»eso

Taking A, to be 6,, for s in S^, and U to be V, we are done. D

3. Proof of Theorems 1 and 2

In view of the results of the previous section, it suffices to prove Theorem 2.
Before we give the general proof, it may be helpful to consider a particular situation,

namely, where F is PSL(yz, Z).

Example 1. — Let n be an integer greater than 1, and G be the group PSL(^, R).
Let H be a subgroup of G containing PSL(TZ, Z), hereafter written F. The group G
acts in the usual way on the real projective space RF^^ henceforth denoted by B.
We shall check that (H^, B) has property Pg^. For this, fix a finite subset F ofH^\{ 1 }.

Choosey in F with eigendirections h^ . . . , b^ in B and corresponding eigenvalues
Xi, ..., \ satisfying \ > Xg > . . . > \ > 0; examples of such matrices y ' are direct
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sums of two-by-two blocks of the form j for pairwise distinct positive integers j\

and of a trivial block (1) in case n is odd. Using the fact that F is Zariski-dense in G,
it is easy to see that F contains a conjugate^ ofy with eigendirections b^ . . . , & „ in B
such that

x{b^ ...,^}n{^, ...,^}=0 V ^ e F .

The details of this are in the proof of Theorem 2 below.
Denote by [̂  : ... : x^] homogeneous coordinates on B with respect to the eigen-

directions &i, . . . , & „ ofj/o. So b, == [0 : ... : 0 : 1 : 0 : ... : O], with 1 in the ,$-th place.
For small positive s, define V, by the rule

( x \
V, = [x^ : ... : ̂ J e B : x, + 0 and -1 < e when t =1= s .

^8 !

One may choose s so small that condition (ii) in Definition 3 is satisfied. If b == [x^: ... : A;J
in B, let j+ (respectively s_) denote the smallest (respectively the largest) integer for
which x^ 4= 0. It is clear that

hjr̂  b = ̂  and lim ,̂-j b == b,_

so that condition (i) in Definition 3 holds. Finally, condition (iii) is fulfilled by definition
of the sets V,.

Throughout the remainder of this section, G, Z, and G denote respectively a
connected real semisimple Lie group without compact factors, its centre, and the
associated adjoint group.

Let KAN be an Iwasawa decomposition of G. We denote by M, M', and W the
centralizer and normalizer of A in K, and the Weyl group M'/M. The Lie algebra of
a group is denoted by the corresponding lower case gothic letter. Fix a choice of positive
roots of (g, a) such that

n = S 9a.aa*
a>0

Let A~^ = exp a+, where a+ is the positive Weyl chamber in a. We denote the minimal
parabolic subgroup MAN of G by P, and the Furstenberg boundary G/P by B.

The following crucial lemma is proved in [BeL], appendice, as a consequence of
results from [GoM] and [GuR], A proof also appears in [Mos], p. 63, in the case where
H is a lattice.

Lemma 3.1. — Let G be a noncompact semisimple real algebraic group, and let H be a
Zariski-dense subgroup ofG. Then there exists an element y^ in H which is " maximally hyperbolic ",
i.e., which is conjugate in G to an element of MA"^.
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Note that if H is a subgroup of the real semisimple not necessarily algebraic Lie
group G, then anyj/o in H whose image in G is maximally hyperbolic is itself maximally
periodic. Lemma 3.1 therefore implies the following result.

Lemma 3.2. — Let G be a noncompact connected real semisimple group, and let H be a
subgroup of G whose image in G under the canonical projection is Zariski-dense. Then there exists
an element VQ in H which is maximally hyperbolic.

Next, we need some information about the action of an element^ m MA4' on
the Furstenberg boundary B. For each w in W, choose a representative Sy, of w in M'
and write by, = Sy, P. (Note that s^ P is independent of the coset representative chosen
for w.) Then, by the Bruhat decomposition (cf. [War], 1.2), B is a disjoint union:

B = = U N^.
w e w

Let w be the longest element in W, and N be the subgroup opposite to N. Then
N = ̂  NJ^ x. Since B == s-^ B, we have also

B = U NA,.
w 6 W

Let (B and 6 denote the Killing form and the Cartan involution on g. Then

(X, Y) ̂  - |B(X, 6Y) V X , Y 6 9

is an inner product on Q with respect to which M acts by isometrics (by Ad, the adjoint
representation of G), and A4' acts by centralizing m©a, by "shrinking" n, and by
"expanding35 n. More precisely, if || - ]| denotes the norm corresponding to this
inner product, and J\)6=A+, then || Ad(jo) X || < || X || if Xen\{0}, while
| |Ad(^ )X | |> | |X | | i fXen \{0} .

Observe that, for any w in W and X in 9,

(1) j/oexp(X)&,=exp(Ad(jo)X)^.

Together with the fact that s^1^1 s-^ e MA4', this shows that

lim f^b == ̂  V b e N6^, and .lim y{ b == ̂  V b e N^.

It is clear that the fixed point set of the map b t-^o b is {by,:w eW). We shall need
to understand this map; in particular, we need to study the action near all the fixed
points.

For any w in W, and any Ad (M)-invariant subalgebra I) of g, Ad(^) I) is inde-
pendent of the coset representative s^ for w in M'/M, so we may denote it by w!). Clearly

^ m, == ̂  Nj;1 b^ = exp^n) ̂ .
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Since N^g is a neighbourhood of b^ Zariski-dense in B, the set s^ N6g is a neighbourhood
of 6^, Zariski-dense in B, and X h-» exp(X) b^ is a bijection of ^n onto this set, which
is biregular (in the algebraic-geometric sense) and diffeomorphic (in the differential-
geometric sense). In view of formula (1), this shows that the action ofj/o on B near b^
is equivalent to that of Ad(j^) on ^n near 0.

For w in the Weyl group W, the coset representative s^ acts on the Lie algebra
(by Ad), stabilizing the subalgebras m and a, and permuting the root spaces Q^ amongst
themselves, so ""n is a sum of root spaces, and we may write

^^(nn ̂ ^(n n^n).

If we take neighbourhoods Ug of 0 in ^n of the form
U , = = { X e n n w n : | l X | | < e } x { X e n n w n : l | X | | < s } ,

where e e R4', we see immediately that, if X e Ug and Ad(j^) X ^ Ug for some positive
integer j, then this is because the projection of Ad(j^) X into its n n "It-component
has length at least e, and we deduce that Ad^^) X ^Ug.

This is essentially all the information we need about the map b \-^VQ b, but it may
be worth pointing out that this line of reasoning can be pushed a little further to show
that expert) b^ is a MA-invariant neighbourhood of the singular Bruhat cell Ni^.
Indeed, for a fixed w in W, n = (n n ^n) ® (n n ^n). A standard argument (see, e.g.,
[Wal] ,8.10.2) implies that

N == exp(n n ^n) exp(n n ^n).
Now

N6^ == exp(n n ̂  w exp(Ad(w~1) (n n ^n)) ^
c exp(n n "'n) w exp(n) b^
== exp(n n "^n) b^
c exp^n)^.

These neighbourhoods therefore provide a finite open cover of the Furstenberg boundary B,
and understanding the action of MA on each of them is tantamount to understanding
the action of MA on B.

By replacing j/o by yy^y~1 if necessary, we deduce that any maximal hyperbolic
element has a similar action on B.

We summarize the relevant parts of this discussion as a lemma.

Lemma 3.3. — Lety^ m G he conjugate to an element ofMA^. Then there exists a subset
{ b^ : w e W } of B such that the following holds. For any b in B, there exist w^. and w_ in W,
such that

^m^b==b^ and ^m^b==b^.

Further, the fixed points by, all have arbitrarily small neighbourhoods Uy, with the property that
ifbeV^jeZ-^-and ylb^V^ then J^^U,.
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Proof of Theorem 2. — Let H be a subgroup of G, with trivial centre, whose image
in G under the canonical projection n is Zariski-dense. Fix a finite subset F of H\{ 1 }.
Take a maximally hyperbolic element^ in H, whose existence is assured by Lemma 3.2,
and a subset { b^ : w e W } of B, as in Lemma 3.3.

First, we claim that there exists an element^ in H such that

y x y - l { b ^ : w e W } n { b ^ : w eW}=0 V x e F.

Indeed, for w\ w" in W and x in F, the set {y e G :yxy~~1 b^. 4= b^..} is clearly the
inverse image under n of a Zariski-open subset of G. We prove below that it is nonvoid
by contradiction. Our claim then follows because the intersection of all these sets is
still the inverse image under n of a nonvoid and Zariski-open subset of G, and the image
of H in G is Zariski-dense.

Suppose that there exist w\ w" in W and x in F, such tha.1 jyxy~1 b^ == b^.. for
allj in G. Then b^,, == xb^, so xy~1 b^ =y-1 xb^ for allj/ in G. Then the stabilizers
of b^. and xb^, coincide. As P is its own normalizer in G, this implies that b^ == xb^.,
i.e. w' = w". Now we have xy~1 b^, =y~1 b^ for allj/ in G, and since G acts transitively
on B, x fixes every point of B. Hence x is central, since G has no compact factors. This
contradiction proves our claim.

By replacing y^ withjr'1;^, if necessary, we may therefore assume that xb^ + h^,,
whenever A: e F and w\ w" e W.

Take open neighbourhoods U^ of the points b^ such that xV^ n U^, = 0
whenever x e F and w ' , w" e W, and such that if b e U^, j ̂  1 and y{b ^ U^, then
y^^b ^V^. (this is possible by Lemma 3.3). This establishes that (H^, B) has pro-
Perty Pgeo. n

Remark 5. — It may be of interest to observe that, when one combines the arguments
of this section with those of Lemma 2.3, the final conclusion is that

II S ^X(jo-^^)l|^2(|W|-l)||^|,.
3=1

The point is that one of the fixed points, namely b-^, is dropped out in the passage
from Pg^ to P^m, because no point b of B\{ b^ } has the property that lim^^ y{ b = b^.
In particular, in the rank one case, where | W | == 2, we obtain the same constant as
for the free group (see the proof of Lemma 2.2).

Moreover, by looking at other boundaries, one may reduce this constant further.
The example given earlier of subgroups of PSL(^, R) containing PSL(n, Z) shows that,
for these groups, the constant 2(| W| — 1), equal to 2(n\ — 1), can be replaced by
2(n- l ) .

Remark G. — In the recent theory of operator Hilbert spaces developed by
U. Haagerup and G. Pisier [HaP], there are estimates similar to some which appear
in the proof of our Theorem 2. More precisely, by considering in Lemma 2.3 operators T.
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which commute with the translation operators \(x) for all x in F, and unravelling the
last group of inequalities in the proof, without the last two lines, we obtain the inequality

II^T.XC^-^^II^ ( |W| - 1) [II^T^TJI^+II^T,^!^].

4. Proof of Theorem 3

First, recall the following well-known lemma (see [Ha2], p. 130, or [Tit], Pro-
position 1.1).

Lemma 4.1 ( < ( Table-tennis criterion "). — Let G be a group acting on a set X, and
let H and K be subgroups of G. Assume that K has at least 3 elements. Suppose that there exist
disjoint subsets A and B of X such that A(B) c A for all h in H\{ 1} and k{A) c B/or all k
in K\{ 1 }. Then the subgroup of G generated by H and K is the free product H * K.

Proof of Theorem 3. — We assume now that G has R-rank 1. The Riemannian
symmetric space G/K, denoted by X, has strictly negative curvature, and B is the
boundary of the compactification X of X, as in [BGS], 3.2. The elements of G may
be classified by means of their fixed points in X (see [BGS], 6.8, or [EbO], Section 6):
any A; in G is elliptic, when x has a fixed point in X, or parabolic, when x has no fixed point
in X and exactly one fixed point in B, or hyperbolic, when x has no fixed point in X and
exactly two fixed points in B.

Further, if A; in G is parabolic or hyperbolic and if a^ and a^ are the fixed points
of x in B (of course, a^ == a^ if x is parabolic), then (permuting a^ and a^ if necessary)

lim x3 b = a-i and lim x3 b == a»
^ -». 4- oo j ->— ao

for all b in H\{a^a^}.
Let r be a discrete subgroup of G, Zariski-dense in G. Observe that any elliptic

element x in F has finite order, since it is contained in a compact subgroup of G.
We shall now prove that F has property P^. Let F be a finite subset of F \{1}

and set
r =={(xJ)eF x Z : x 3 ^ ! } .

Let
Bo = { b e B : x3 b + b V (xj) e F1 }.

Recall that, for any x in G, x3 is of the same type (elliptic, hyperbolic or parabolic)
as x for allj in Z\{ 0} (see [BGS], Lemma 6.5). This shows that Bo is a finite intersection
of Zariski-open nonvoid subsets of B. Hence Bo is a Zariski-open nonvoid subset of B.

Let jo be a hyperbolic element of F, with attracting fixed point b^e B and repulsing
fixed point b^eB. Since F is Zariski-dense, the F-orbit of b^ intersects BQ. Hence, by

17
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conjugating j/o if necessary, we may assume that b^ e Bo. It is clear that we can find a
neighbourhood V (with respect to the Hausdorff-topology on B) of b^ such that
x3f V n V = 0 for all (^j) in F1.

Since F is Zariski-dense, we may chooser in F so that

{yi h.yi M ̂ {h.h}== 0-
Then j^o jy^~1 andj^o have no common fixed points in B. Hence, for a sufficiently

large positive integer j, the element y^ defined by the rule y^ ^J^^i^oJ^i"1)^^ has
its fixed points in V.

Replacing y^ withj^ for a sufficiently large i, we may assume that
^(B\V) sV VjeZ\{0} .

Now define U by the formula

U = U x3 V.
(a^GF1

Then V n U == 0,^ U c V for all nonzero integers j and ̂  V c U for all {xj) in F1.
Hence, by Lemma 4.1, < x,jy^ > is isomorphic to < x > * <j/g > for all A: in F. D

5. Extensions and corollaries of Theorem 1

In this section, we prove Corollary 1 and Theorems 4 and 5. The following simple
observation will be useful for the proof of Corollary 1.

Lemma 5.1. — Let T be a discrete group, and let { r\ : i e I} be a family of subgroups
of r with the property that every finite subset of F is contained in some 1^. Assume that C^(F,) is
simple and has a unique trace for any i in I. Then C^(F) is simple and has a unique trace.

Proof. — Let n be a unitary representation of F which is weakly contained in Xp.
Let F be a finite subset of F, and let i in I be such that F is contained in I\. By assumption,
Xp. is weakly contained in the restriction of n to 1 .̂ Hence S^, the Dirac function at
the group unit, is the limit on F of sums of positive definite functions associated to TT.
This shows that Xp is weakly contained in TT.

The assertion concerning the trace is trivial. D

Proof of Corollary 1. — Every finite subset of G{k) is contained in G(A') for some
finitely generated subfield k' of k. By the lemma above, we may therefore assume that
k is a finitely generated field of characteristic 0. It is well-known (and easy to prove)
that such a field may be embedded in C. So we may further assume that k is a subfield
ofC. There are two cases to distinguish: if k is totally real, then k is dense in R, so G{k)
is dense in G(R), and if not, then k is dense in C, so G{k) is dense in G(C). A fortiori,
in the first case, G{k) is Zariski-dense in G(R), and in the second, G{k) is Zariski-dense
in G(C), considered as a real group, by restriction ofscalars. Hence, the claim follows
from Theorem 1. D
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Proof of Theorem 4. — Write F for H^. For ^ in Z, let ̂  denote the trivial extension
o f ^ t o F (i.e. ^(y) = 0 for all y in F\Z). Let TT be a unitary representadon of F which
is weakly contained in 7^, the representadon of F induced by ̂ . Then TT is weakly contained
in Xp and the restricdon of TC to Z is a muldple of /.

Let F be a finite subset of F. The proof of Theorem 2 combined with that of
Lemma 2.3 shows that there exists^ in F such that

(2) i| S^rO'o-^)||<2(|W|-l)||fl||a Vfl6^(Z+) V^eFn(r\Z).

Because X^ is a subrepresentadon of Xp, and TC is weakly contained in 7^, the same
inequality holds with X^ or TT in place of Xp.

Now, proceeding as in the proof of Lemma 2.1, let ^ be a unit vector in the Hilbert
space of TT and let 9, be < T C ( - ) Tr(j^) ^, 7i;(j^) ^ >. Then

Urn \ S <p,W=^) V^eF .
J-i-OO J ^^i

This shows that \ is weakly contained in TT. Hence C*(r, ^) is simple.
Let T be a trace on C*(r, ^). The version of inequality (2) for X^ shows that

T(X^)) =0 VA;er\Z.

Since ^{\(x)) == ^(A:) for all x in Z, T is unique. D

Proof of Theorem 5. — The proof of the simplicity is similar to that of Proposition 10
in [HaS].

We may assume that A acts faithfully on some Hilbert space J?\ Then the reduced
crossed-product A x^, r r, also known as B, may be defined to be the C*-algebra on
^(r;^) generated by the operators given by the formulae

W (x) = a^(o) W v ^ e^(r;jf) v A: € r
(X(v) S) W = S(T-1 ^) V S e^(r; Jf) V ^ e r,

as a runs over A, and y runs over F. Any element ofB may be considered to be an infinite
sum Sygp fly X(y), where dy e A. There is a condidonal expectadon e : B ̂  A, defined
by the rule

e{ S ^(T)) =al•ver

Let I be a nonzero ideal in B, and let b •== Sygp^X(y) be a nonzero element
of I. Replacing b by bb* if necessary, we may assume that a^ ^ 0, and a^ 4= 0.
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According to [HaS], Lemma 9, we may even assume that a^ 1, by replacing b
by the element

S ^X(Y,)^(Y71)^,
i==i

for appropriately chosen a, in A and y, in F. Hence, upon replacing b by a^1 b, we
may assume that a^ = 1.

Now there exist a finite subset F of F\{ 1} and an element V in B of the form
1 4- SYGF^Y^T) suc^ that

A-^'ll^.

(3)

Letj^o in F and S be as in Definition 2. Then, according to Lemma 2.3,

1 S Sa^(^)X(^-^^)
J ver ^=1

1 S)W)(S <X(y))X(^)
J ^-1 Y6P

2 | S |
r s IKII-<

Vj T£P Y

Hence
1 J

- Sx(^-Q(6'-i)x(^) <
II J^

for J large enough. It follows that

I I I J 1 J

. S X(^-0 b\(^} - 1 < - 2 X(^-') (^ - b1) X(^)
J 3 " 1 | J1"1

+ J^X(^-O(A'-I)X(^)
2
^

so that (1/J) S^ ^(jo'Q ^(j^o) is inverdble in B. As this is obviously an element of I,
the equality I == B is proved.

The uniqueness of the trace is also a consequence of inequality (3) above. Indeed,
let T be a trace on B. Then (3) shows that T(flX(y)) = 0 for all a in A and y in T\{ 1}.
Hence T == a o e, where a is the unique F-invariant trace on A. D

Remark 7. — In fact, the above proof shows the following somewhat more general
result: any trace on B is of the form a o e for some F-invariant trace CT on A.

Example 2. — Let G be a semisimple Lie group without compact factors and with
trivial centre. Let F be a lattice in G. Then T acts minimally on the compact space G/P
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for any parabolic subgroup P ofG (see [Mos], Lemma 8.5). So the C^-algebra C(G/P)
of all continuous functions on G/P has no nontrivial r-invariant ideals. Hence, the
reduced crossed-product G*-algebra G(G/P) x^ y F is simple. Moreover, there is no
r-invariant probability measure on G/P (see [Zim], 3.2.23). Therefore C(G/P) x<, , F
has no trace.

Example 3. — Let F be a group acting simply transitively on the set of vertices
of a building of type ^2, as in [CMSZ1] and [GMSZ2] (some of these are lattices in
semisimple algebraic groups, and some are not). Mantero, Steger and Zappa (private
communication) have shown that F has property P^o? and so the reduced G*-algebras
of the group and of the group acting on the boundary of the building are simple. Guyan
Robertson (private communication) has obtained related results on this crossed product
algebra, including the nuclearity thereof.

REFERENCES

[Ake] C. A. AKEMANN, Operator algebras associated with Fuchsian groups, Houston J . Math., 7 (1981), 295-301.
[AkO] C. A. AKEMANN and P. A. OSTRAND, Computing norms in group C*-algebras, Amer. J . Math., 98 (1976),

1015-1047.
[BCH] M. BEKKA, M. COWLING and P. DE LA HARPE, Simplicity of the reduced C*-algebra of PSL(n, Z), Inter.

Math. Res. Not., 7 (1994), 285-291.
[BeL] Y. BENOIST and F. LABOURIE, Sur les diffeomorphismes d*Anosov affines a feuilletagcs stable et instable

differentiables. Invent. Math., Ill (1993), 285-308.
[BGS] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of Nonpositive Curvature, Birkhauser, 1985.
[CMSZ1] D. I. CART-WRIGHT, A. M. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively

on the vertices of a building of type Ag, I, Geom. Ded., 47 (1993), 143-166.
[CMSZ2] D. I. CARTWRIGHT, A. M. MANTERO, T. STEGER and A. ZAPPA, Groups acting simply transitively on

the vertices of a building of type A,, II, Geom. Ded., 47 (1993), 167-223.
[Dix] J. DIXMIER, Les C*-algebres et lews representations, Gauthiers-Villars, 1969.
[EbO] P. EBERLEIN and B. O'NEILL, Visibility manifolds. Pacific J . Math., 46 (1973), 45-110.
[GoM] I. A. GOL'DSHEID and G. A. MARGULIS, A condition for simplicity of the spectrum ofLyapunov exponents,

Soviet Math. Dokl., 35 (1987), 309-313.
[GuR] Y. GUIVARC'H and A. RAUGI, Proprietes de contraction d'un semi-groupe de matrices inversibles, Israel

J . Math., 65 (1989), 165-196.
[Hal] P. DE LA HARPE, Reduced C*-algebras of discrete groups which are simple with unique trace. Springer

Lecture Notes in Math., 1132 (1985), 230-253.
[Ha2] P. DE LA HARPE, Free subgroups in linear groups, L9 Enseignement Math., 29 (1983), 129-144.
[Ha3] P. DE LA HARPE, Groupes hyperboliques, alg^bres d'operateurs, et un theoreme de Jolissaint, C. R.

Acad. Sci. Paris, 307, Serie I (1988), 771-774.
[HaP] U. HAAGERUP and G. PISIER, Bounded linear operators between C*-algebras, Duke Math. J., 71 (1993),

889-925.
[HaS] P. DE LA HARPE and G. SKANDALIS, Powers' property and simple C*-algebras, Math. Ann., 273 (1986),

241-250.
[HoR] R. E. HOWE and J. ROSENBERG, The unitary representation theory of GL(w) of an infinite discrete

field, Israel/. Math., 67 (1989), 67-81.
[Kir] A. A. KIRILLOV, Positive definite functions on a group of matrices with elements from a discrete field,

Soviet Math. Dokl., 6 (1965), 707-709.



M. BEKKA, M. COWLING AND P. DE LA HARPE

M. LEINERT, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math., 52 (1974), 149-158.
G. D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Princeton University Press, 1973.
W. PASCHKE and N. SALINAS, C*-algebras associated with the free products of groups. Pacific J . Math.,
82 (1979), 211-221.
R. T. POWERS, Simplicity of the C*-algebra associated with the free group on two generators. Duke
Math. J., 42 (1975), 151-156.
J. ROSENBERG, Un complement a un theoreme de Kirillov sur les caracteres de GL(n) d'un corps innni
discret, C. R. Acad. Sci. Paris, 309, Serie I (1989), 581-586.
J. TITS, Free subgroups in linear groups, J . Algebra, 20 (1972), 250-270.
N. WALLACH, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, 1973.
G. WARNER, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, 1972.
R.J. ZIMMER, Ergodic Theory and Semisimple Groups, Birkhauser, 1984.

M. B.:
D^partement de Math^madques, University de Metz,
He du Saulcy, F-57045 Metz, France.

M. a:
School of Mathematics, University of New South Wales,
P. 0. Box 1, Kensington, NSW 2033, Australia.

P. H.:
Section de Math^madques, University de Geneve,
C. P. 240, CH-1211 Geneve 24, Switzerland.

Manuscrit refu Ie 24 fevrier 1994.


