Projective varieties with non-residually finite fundamental group
Publications Mathématiques de l'IHÉS, Tome 77 (1993), pp. 103-119.
@article{PMIHES_1993__77__103_0,
     author = {Toledo, Domingo},
     title = {Projective varieties with non-residually finite fundamental group},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {103--119},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {77},
     year = {1993},
     mrnumber = {1249171},
     zbl = {0818.14009},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1993__77__103_0/}
}
TY  - JOUR
AU  - Toledo, Domingo
TI  - Projective varieties with non-residually finite fundamental group
JO  - Publications Mathématiques de l'IHÉS
PY  - 1993
SP  - 103
EP  - 119
VL  - 77
PB  - Institut des Hautes Études Scientifiques
UR  - http://www.numdam.org/item/PMIHES_1993__77__103_0/
LA  - en
ID  - PMIHES_1993__77__103_0
ER  - 
%0 Journal Article
%A Toledo, Domingo
%T Projective varieties with non-residually finite fundamental group
%J Publications Mathématiques de l'IHÉS
%D 1993
%P 103-119
%V 77
%I Institut des Hautes Études Scientifiques
%U http://www.numdam.org/item/PMIHES_1993__77__103_0/
%G en
%F PMIHES_1993__77__103_0
Toledo, Domingo. Projective varieties with non-residually finite fundamental group. Publications Mathématiques de l'IHÉS, Tome 77 (1993), pp. 103-119. http://www.numdam.org/item/PMIHES_1993__77__103_0/

[1] E. Ballico, F. Catanese, C. Ciliberto (Eds.), Classification of Irregular Varieties, Lect. Notes in Math., 1515, Springer, 1970.

[2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology, 2 (1968), 111-122. | MR | Zbl

[3] A. Borel, Introduction aux groupes arithmétiques, Paris, Hermann, 1969. | MR | Zbl

[4] J. Carlson and D. Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ. Math. IHES, 69 (1989), 173-201. | Numdam | MR | Zbl

[5] P. Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris, série A-B, 287 (1978), 203-208. | MR | Zbl

[6] M. Goresky and R. Macpherson, Stratified Morse Theory, Springer Verlag, 1988. | MR | Zbl

[7] H. Grauert, Über Modifikationen und exzeptionnelle analytische Mengen, Math. Annalen, 146 (1962), 331-368. | MR | Zbl

[8] M. Gromov, Sur le groupe fondamental d'une variété kählérienne, C. R. Acad. Sc. Paris, série 1, 308 (1980), 67-70. | Zbl

[9] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lect. Notes in Math. 156, Springer, 1970. | MR | Zbl

[10] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symposium Internacional de Topologia Algebraica, México, 1956, 129-144. | MR | Zbl

[11] S. L. Kleiman, Towards a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344. | MR | Zbl

[12] K. Kodaira, On Kähler varieties of restricted type, Ann. of Math., 60 (1954), 28-48. | MR | Zbl

[13] A. I. Mal'Cev, On the faithful representation of infinite groups by matrices, Math. Sbornik, 9 (1940), 405-422 ; English translation, AMS Transl., 45 (1965), 1-18. | Zbl

[14] G. A. Margulis, Finiteness of quotient groups of discrete subgroups, Func. Anal. Appl., 13 (1979), 178-187. | MR | Zbl

[15] G. Mess, The Torelli group for genus 2 and 3 surfaces, Topology, 31 (1992), 775-790. | MR | Zbl

[16] J. Millson, Real vector bundles with discrete structure group, Topology, 18 (1979), 83-89. | MR | Zbl

[17] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Studies 78, Princeton Univ. Press, 1973. | MR | Zbl

[18] M. S. Raghunathan, Torsion in cocompact lattices in coverings of Spin (2, n), Math. Annalen, 266 (1984), 403-419. | MR | Zbl

[19] J.-P. Serre, Arbres, amalgames, SL2, Astérisque, no 46, 1977 ; english translation : Trees, Springer, 1980. | Numdam | MR | Zbl

[20] D. Toledo, Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc., 22 (1990), 339-343. | MR | Zbl

[21] O. Zariski, Algebraic Surfaces (Second Supplemented Edition), Springer, 1971. | MR | Zbl