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Introduction

This paper describes an intersection theory for arithmetic varieties which generalizes
the work of Arakelov and others on arithmetic surfaces. We develop a theory both of
arithmetic Chow groups, and intersection products between them, for arithmetic varieties.
By an arithmetic variety we mean a quasi-projective variety over an arithmetic ring,
i.e. a regular noetherian ring equipped with a set of complex embeddings, see 3.1.3
below. Note that via the complex embeddings any arithmetic variety X determines an
analytic space Xoo. In a second paper [G-S 4], using the results of the present paper,
we develop a theory of characteristic classes for Hermitian vector bundles over arith-
metic varieties. The main results were announced in [G-S 2].

The idea that one should compactify the prime spectrum of the ring of integers
in a number field by adding the archimedean completions of the number field as primes
at infinity has been known for a long time; for instance A. Well, in his paper [We I],
discussed in some detail the analogy between function fields of curves and number fields,
in which the role of the point (s) at infinity of an algebraic curve is taken by the archi-
medean completion (s) of a number field (in [We 2], p. 252, he attributes this idea to
Hasse or Artin). Given the successes of intersection theory for varieties over fields, such
as Well's proof of the Riemann hypothesis for curves over finite fields, it is natural to
look for an analogous theory for varieties over rings of algebraic integers. However,
unless one has a theory which includes the prime at infinity the analogy will be incomplete
and one will not have a good theory of intersection numbers. For example on Spec(Z)
the degree of a zero cycle is not invariant under rational equivalence; indeed all such
cycles are rationally equivalent to zero, while the natural definition of the degree of the
divisor of a rational number q is log | q |. However this defect is remedied if one adjoins
a point v at infinity to Spec(Z) corresponding to the real completion of Q,, and defines
the y-adic valuation of a rational number q to be — log | q |. The assertion that a principal
divisor has degree zero is then just the product formula.

Given an arithmetic surface X over the ring of integers in a number field F,
S. J. Arakelov [Ar] < c compactified " X by choosing a Hermitian metric d^ on each
Riemann surface associated to X by the choice of an Archimedian place v of F. To the
data X == (X, d^) he associated a divisor class group C1(X) which is an extension of the
usual class group G1(X) by a real vector space. He then showed that a real valued pairing
could be defined on C1(X); it was later shown by Hriljac [Hr] and Fairings [F] that
from this pairing one could recover the N^ron-Tate height pairing for divisors of degree
zero. Arakelov also showed that the group C1(X) is isomorphic to the group of isomor-
phism classes of line bundles on X equipped with <c admissible 9) Hermitian metrics at
each infinite place (where " admissible 55 means that the curvature is a constant multiple
of the volume form of the Riemann surface). In [De 2] P. Deligne showed that the inter-
section pairing of Arakelov could be extended to the full group of Hermitian line bundles
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on X. In the note [G-S I], we announced an extension of Arakelov's theory to higher
dimensional varieties X which have projective nonsingular generic fibers: once a Kahler
metric is chosen on X^, one defines a codimension p cycle to be a pair (Z, h) consisting
of a codimension^ cycle Z on X and a harmonic {p — l,p — 1) real form on Xoo. This
construction was also made by A. A. Beilinson in [Be 2] and was inspired in part by
his extension to higher dimensions of the Neron height pairing in [Be 1].

The theory described in this paper builds on the results of Deligne as well as those
of Arakelov. We develop an intersection theory on any arithmetic variety X which does
not depend on the choice of a Kahler metric on X^. Define an arithmetic cycle on X to
be a pair (Z, g) consisting of an algebraic cycle Z and a Green current for Z, i.e. a current
on the complex manifold X.̂  satisfying the equation

d^g+S^^^

with (o a smooth form (the cohomology class of which is then the Poincar^ dual of the
cycle Z). The classes of arithmetic cycles for an appropriate notion of linear equivalence
form the arithmetic Chow groups CH*(X). We prove that these groups have a product
structure and functoriality properties which are analogous to those of the classical Chow
groups of varieties over fields. The proofs use both complex geometry (one has to
construct Green currents with reasonable growth) and K-theory of schemes (in order
to get algebraic intersections to exist over Spec Z, using the methods of [G-S 3]).

Let us give an outline of the paper. In section 1, we develop the basic existence
theorem for Green currents on a complex manifold. In particular we show
(Theorem 1.3.5) that a Green current for a cycle Z may always be represented (possibly
after adding to it currents of the form 8u + ~8u) by a form which is C°° away from Z
and which is " of logarithmic type" along Z (see 1.3 for che precise definition). In
a previous version of this paper we used instead a notion of " logarithmic growth 5?

along Z, but forms of logarithmic type are easier to work with. Our methods in this
section are similar to those used byj. King in [K 2], except that he considers 8 instead
of dd6.

In section 2, we examine the relationship between Green currents and intersecting
cycles. In particular we define a product on Green currents, the ^-product, which is
compatible with the intersection product of cycles which meet properly. This *-product
is analogous to the *-product of differential characters defined by J. Gheeger in [G],
We prove that the sie-product is both associative and commutative. We also show that
even when cycles Y and Z do not meet properly, the ^-product of Green currents can be
used to define a product current Sy.S^; supported on Y n Z. A similar result had already
been obtained by King in [K 3].

In section 3 we introduce the arithmetic Chow groups and describe their basic
properties. We show that these groupes fit into a collection of short exact sequences
which involve the Beilinson regulator maps for K^ of a complex variety [Be I], and we
compute these groups in some simple cases. In section 4.3 we show that the arithmetic
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Chow groups of a nonsingular arithmetic variety have, at least when tensored with
the rational numbers, a commutative ring structure. If (Y, g) and (Z, h) are arithmetic
cycles such that Y and Z intersect properly on X, then their product is defined as
(Y.Z,^ • K), with Y.Z defined as in Serre [Se], However, since there is not as yet an
intersection theory with integer coefficients for arbitrary regular schemes, if Y and Z
do not intersect properly we must appeal to the results of [G-S 3] on intersection theory
with rational coefficients to define the product Y.Z. But in section 4.3 we show that,
given any mapy: X -> Y of relative dimension d between nonsingular arithmetic varieties
which is proper and induces a smooth map of complex manifolds Xoo -> Y^, one can
define an intersection pairing from CiP(X) ®C^^d-p+l(X) to CH^Y), without having
to tensor with Q^. This pairing is a direct generalization of the pairing defined in [De 2].
In 4.4 we show that our theory is functorial, without having to tensor with Q^, while
in 4.5 we show that if one restricts attention to varieties which are smooth over a Dede-
kind domain, then using work of Fulton in [Fu], one can define the product on CH*(X)
without having to tensor with Q^.

Finally in section 5 we discuss two complements. First we show how the intersec-
tion pairing on the Arakelov Chow groups CH*(X) of a compactification X = (X, co)
of an arithmetic variety X is induced by the pairing of section 4.3. We also show that
given two different choices of Kahler metric on X, giving rise to compactifications X
and X', there is an isomorphism 6 : GH^X) -> CH^X') which identifies the intersection
products. Second we describe the basic ingredients in a theory of correspondences between
arithmetic varieties, and we observe that the change of metrics isomorphism 6 mentioned
above is induced by a correspondence.

Finally, let us mention a few topics which may be worth exploring. First, Green
currents play a crucial role in Nevanlinna's value distribution theory (as in [Sha],
[Go-G] for instance); our formalism might be of use there, for example see the discussion
of Levine forms in [G-S 4]. Second, the analogy between arithmetic Ghow groups and
differential characters deserves further examination. Third, for noncomplete arithmetic
varieties, our theory may well not be optimal, since it ignores the Hodge theory of such
varieties; it may in fact be useful to impose on differential forms growth conditions such
as those considered by M. Harris and D. H. Phong in [H-P]. Last of all, one could
imagine an adelic intersection theory, in which cycles would be pairs (Z, (^)), with Z
an algebraic cycle on a variety over a number field F, and gy a choice of a Green current
at each place v of F. However we do not know what the j&-adic analogs of Green currents
should be.

In doing this work we were helped by conversations with S. Bloch, J. B. Bost,
P. Deligne, 0. Gabber, D. Grayson, J. Kazdan, D. Kazhdan, D. Quillen, D. Rama-
krishnan, L. Szpiro (who introduced the second author to Arakelov theory several years
ago), and P. Vojta. The first author benefited from visits to IHES, while both authors
had the support of IAS during the final stages of writing the paper.
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1. Green currents

1.1. Currents on complex manifolds

1.1.1. We shall start with a brief review of currents on complex manifolds, fol-
lowing the original book [deRh] of deRham and the article [K 1].

Let X be a complex manifold of (complex) dimension d; for simplicity we suppose
that all the components of X have the same dimension. The space A"(X) of C°° complex
valued n-forms on X has a topology defined using the sup norms, on compact subsets
of coordinate charts of X, of the k-fold partial derivatives of the coefficients of a form,
for all k ^ 0, see [deRh] § 9 for details. Since the topology is defined by a family of semi-
norms, A^X) is a locally convex topological space. Let A^(X) be the subspace ofcompactly
supported forms. We write ^(X) for the bornological dual of A^(X) and ^(X) for
the dual ofA^X); these are the spaces of currents of dimension n on X, and of currents
with compact support, respectively; note that ^(X) C ̂ (X). Since X is a complex
manifold, we have the decomposition

A;(X)=©,,.^A^(X)

and the corresponding decomposition

^(X)^©^^^(X);

there is a similar decomposition of^(X). The exterior derivative
d = d ' + d" : A^(X) -^A^+^X)

induces a dual homomorphism
6 = &'+ 6" : .^(X)-^(X),

which restricts to b : ̂ +i(X) -> ̂ (X), i.e. ifT e ̂ ,+i(X), a e A^(X) : ̂ T(a) = T(rfa).
Note that b decomposes as the sum of the maps:

^:^,,(X)^,_^(X)

A":^,,.(X)^,,,_,(X).

1.1.2. Examples.
(i) Chains. — Any smooth oriented singular ^-simplex

CT : ̂ n -> X

or more generally any smooth n-chain c = S^cr, defines a current 8g e^(X):

^^^.J^Op).
By Stokes theorem

^=8^.
13
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(ii) Analytic sub spaces. — We give C^ with coordinates ^, . . . , z^ the orientation
determined by the volume form

/i^
\^j dz! A dz! A . . . A dZj, A rf^ = dx^ A rfyi A . . . A rf^ A ̂ ;

here ^ = x, + y/, for 1 ̂  r ̂  k. Note that any C-linear automorphism Ck -> Ck is
orientation preserving, as are the natural isomorphisms C? x C^-> C?^, where
Cy X C1 is given the exterior product of the orientations of (? and Cf.

Our choice of orientation on C^ for all k ^ 0, determines an orientation on any
(finite-dimensional) complex manifold. Therefore, for any closed A-dimensional subma-
nifold M C X , there is a current S^e^(X), defined by

W=S^i^

for a e A^(X) and z : M -> X the inclusion map. More generally, if i: Y -> X is a
A-dimensional analytic subspace of X, we can define a 2^-dimensional current Sy (first
introduced by Leiong [Le]) by

W=J^a=J^a;

here Y^ is the (dense, open) subset of smooth points in Y, while n : Y -> Y is a resolution
of singularities of Y. Note that 8y e ̂ (X) since, if oc^fl e A^ ̂ X) for /» + y = 2^,
i* a == 0 unless p == q = k.

m

(iii) Analytic cycles. — If Y == S ^[YJ is an analytic cycle of dimension A, i.e. a

finite formal sum of ^-dimensional closed analytic subspaces Y, C X, we define
K

8y == S ̂  8y..

(iv) L1 forms. — There are products

^(X)®A-(X) ->^_JX)

which decompose into

^(X)®A^(X) ->^_^_,(X).

If Te^(X), aeA^X), we denote their product by T A a, and if (BeA^^X),
the product is defined by

( T A O C ) ((B) =T(aAp) .

In particular, since X is d dimensional, there is a map
A-(X)-^,_^_,(X)
a i-> 8^ A a.

Often we will write [a] for 8^ A a, or, when the meaning is clear, simply a. More gene-
rally, if a is an I^-form on X, i.e. in any coordinate patch a has coefficients which
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are locally L1, the integral f a A ? is well defined, for (3 e A^'^'^X), so that we have
a map

LUX,Q^)^^^,,(X).

N.B. — If a is not G00 on the whole ofX, do not confuse a and [a], since in general
[rfa] and rf[a] will not be equal. Their difference is called a residue.

1.1.3. The spaces Q^ y have a natural topology ([deRh] § 10), for which the maps
A^^X) ->^_y^_^(X) are continuous, with dense image. This leads us to write

^-,.,_,(X)=^^(X);

we may view Q^ Q{X.) as the space of forms of type Q&, q) with distribution coefficients
([Sch], [deRh]). It is important to note, however, that this identification depends on
the choice of orientation of X.

Furthermore, the map a h-> [a] does not send d to &, but rather, if a 6 A^X) and
(BeA^-^X),

[ r f a ] ( P ) = J ^ a A p = ^ r f ( a A p ) - ^ ( - l ) n a A ^

which, by Stokes theorem, since a A (3 e A^(X), is equal to

(- l^+^aArflB^-ir+^aDdB).

So [rfa] = (- l)"+^[a]. Therefore, if we define
d= (- l^+^^X) -^.S^^X),

the inclusion A"(X) ->• ^"(X) commutes with d.
Similarly, we can embed

A:(X)C^(X)=^_JX).

1.1.4. Iff:y->YS~r is a holomorphic map of compact complex manifolds
we have maps

y.;A».<'(Y) -^"•''(X)

and dual maps
./.:^-.,.-«(X)^^_,,,_,(Y)

which may be viewed as maps

/^^(x^^r^'TO
If/is smooth, then/, extends the integration over the fibre homomorphism (see [G-H-V]
Gh. IV for example)

^.•A^x^Ar^-m
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which itself induces a dual homomorphism

y*;^.ff(Y) -.^^(X)

extending/* on forms.
If/ is proper, then we have maps

/*:A^(Y) -^A^(X)
/-^-p..-.(X)->^_,,,_,(Y)

and / :^^(X) -^^-^-^Y),

which, when/is smooth, extends to

J ^^(X) -^A^-^-^Y).

If/ is birational, for any (locally) V-form a on Y, we have an equality of currents

M -/.([/'(a)].

1.1.5. The following remark will be useful (see also [K2]). Let / :X->Y
be a projective morphism between smooth quasi-projective complex varieties and a a
smooth form on X which is locally L1. Then the map/: X ->f(X) is generically smooth
([Ha], III, Corollary 10.7), therefore, by Fubini theorem, there is a dense Zariski open
set U C/(X) and an L1 form (3 on U such that the current/[oc] is given by the following
convergent indefinite integral

/.M(^)=J^A7]

for every smooth form T] with compact support on Y of the appropriate degree. In par-
ticular, when /(X) = Y, we get /[a] = [(B]. When the degree of a is less than
2(dim(X) — dim/(X)), the current/[a] vanishes (since the degree of/*(7)) is too small).

1.1.6. Remarks. — (i) If X is compact then A*(X) = A^(X) and we can omit
the distinction between ^*(X) and ^(X).

(ii) From now on we will ignore b == V + ^", and work solely with
d == d' + d'1 = a + a.

Note also that d6 == {if in) (9 — B), so

dd0 = - ̂ d == -t- aa.
27T

1.2. Green currents

1.2 .1 . Theorem. — Let X be a compact Kdhler manifold. Suppose T) e ̂ ^(X), p, q ^ 1,
is d-closed and is either d, S, or ~9 exact. Then there exists y e ̂ "^^-^X) such that

ddc^=-^66^=^
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In addition'.
(i) I f p == q and f\ is real, then y can be taken to be real.

(ii) I f p = q, F : X -> X is an antiholomorphic involution^ and F* T] = (— l)^, then y ^»
6^ chosen so that F* y = (— I)3'"1 y- Similarly if F ^ holomorphic and F* T) = T], ^w
Y ^w ^ <Ao.wz ^ ^Aa^ F* Y == Y.

(iii) IfU C X ^ an open set, and r\ \^ is G°°, then y may be chosen so that y [^ ^ C00.

Proo/*. — This is well known. In [G-H], p. 149, it is shown that if-/] is C00, an explicit
solution of 88u = T] is given by ± 8* 8G^ Y], G^ being the Green operator associated to
the ^-Laplacian, which is a G00 form (see also [Wel], Gh. V, Prop. 2.2, for a simpler
formula). Since the operators 8*, y and G^ extend to currents, the same formula gives
a solution of the equation when T] is a current. Since dd° is real, ifv] is real, then dd° y == f\
implies that dd°(Im y) = 0 and we can replace y by its real part, proving (i). For (ii),
observe that ifF is holomorphic, it commutes with dd° and so if F* T] = Y], (1/2) (F* y + y)
will be an F-invariant solution, while if F is antiholomorphic, it anticommutes with dd°
and so (1/2) (y — (— 1)^ F* y) is the desired solution. Finally, for (iii), we use the fact
that Gg is represented by a kernel on X X X which is C00 away from the diagonal ([deRh])
and hence the singular set of Gg(T) is contained in the singular set of T.

1.2.2. Theorem. — Let X be a complex manifold. Then'.
(i) If^ is a current on X such that c^y is smooth (i.e. equals [<?]for some G°° form <pJ, then

there exist currents a and (B such that y = co + 8a + ̂ P ^^ ^ smooth.
(ii) If ̂  is a G^ form on X J^A ̂ ^ co = 8u 4- ,̂/î  currents u and v, then there exist smooth

currents a and (B such that co == ^a + ^(B.
(iii) TyX ̂  compact andKdhler, and y ̂  ̂  current on X satisfying 88^ = 0, ^A^% y :== (x) + ̂ a + ̂ P

z^7A d) harmonic. Furthermore^ if y ^ smooth, both a a^af (3 ^% &^ chosen to be smooth.

Proof. — First recall that by [Do] Th. 1.4 or p. 385 of [G-H], the d, B and B coho-
mology of currents on X is the same as the rf, 8, and 8 cohomology of G°° forms on X.
We now prove each part of the theorem in turn:

(i) If 88g == T] with T] smooth, then T] = ^{^g), hence T) = 8cx. for some G°° form a.
So 8{8g — a) == 0 and 8g — a = p + 8g-^, where (B is smooth. This implies that
88g-^ = v]i = 8{(x. + P) is smooth. By repeating this argument we get a sequence of cur-
rents g^ such that 8g^ == ̂  + &^+i with ^^ smooth.

But, since 1) (resp. 3) has bidegree (0, 1), resp. (1, 0), one can choose g^ with no
component of type (p, q),p^ n. When n is big enough this implies g^^.^ = 0. Therefore
8g^ == u^ is smooth, hence g^ = co^ + ^Pn? with (»)„ smooth. So

^n-i+apj ==a^-.i+a^
is smooth, and therefore

gn-l = ̂ n-l + ̂ _i + ̂ Pn-i
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with ^n-i smooth. By repeating this argument one concludes that g == <o + 8a 4- 8(3,
with <o smooth.

(ii) If G) = 8u + ^? then 3co == %y and hence, by part (i),
v == a + 8x + ~8y

with a smooth. Therefore
By = 8a + B .̂

Similarly 8u == BjB + 88z with (3 smooth. Therefore co = Ba + ^(B + 88{z — x). By
part (i), z — x === y + ^J + 8t with y smooth. Therefore ^3(2: — ^) = ^(y)? so

co = a(a + ̂ r) + ^P.
(iii) This is a corollary to Theorem 1.2.1. Since 88^ = 0, 3y ls both 3 exact and

d closed. Hence by the theorem, 8^ == 88aL for some a, which may be taken to be smooth
if Y is. Therefore B(y — Ba) == 0. Similarly, there exists (B (G00 if y is) such that
(?(y — ^(B) = 0. Hence d{^ — 801 — ^(B) = 0. Since the rf-cohomology of currents and
forms is the same, this implies that there exists 9, C00 if y is, such that

Y — 8(x. — 8^ == (x) + d(y

for G) harmonic, i.e.
Y = o ) + a ( a + 9 ) +^(P+9).

1.2.3. For X a complex manifold, let us write

A^ == A^X)/^-113 + BA^^-1)

^^(X) = .^^(X)/^^-110 + B^'0-1).

Observe that by (ii) of Theorem 1.2.2, the natural map A^X) -^©^(X) is an
injection. The homomorphisms 88 on both forms and currents factor through A^'^X)
and ^^(X). By (i) of Theorem 1.2.2, the kernel of 88:QP1q(X.) ->^+ l ' f f+ l(X)
is contained in A^'^X). If X is compact and Kahler, the space

H^X) ==: (kerg: A^X) -> A^^^X))/^^3-^^)

can be identified with the space of harmonic forms of type Q&, q) on X, and by (iii) of
Theorem 1.2.2, we have exact sequences, and a map between them:

0 —> H^X) —> A^X) —> B^^^X) —> 0

II ! I
0 —> H^X) —> ^(X) —> ^+l t f f4- l(X) —> 0

Here Bilt'*(X) and ^"'"(X) are the spaces of exact forms and currents, respectively.

Definition. — If X is a complex manifold, and Y == S^[YJ is a codimension p
analytic cycle on X, a Green current for Y is an element g e ̂ "^ ̂ "^X), which is the
class of a real current, such that d^ g + 8y = <o, with co a G°° form (necessarily of
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type {?,?)). Such a Green current always exists ifX is compact and Kahler, since ifco is
any real {p, p) form representing the cohomology class of Y, 8y — co will be exact and
we can apply Theorem 1.2.1. If | Y | is the support of Y in X, we define a Green form for Y
to be a G00 form g on X — | Y |, locally L1 on X, for which [g] is a Green current for Y.

If F: X -> X is an antiholomorphic involution, such that F(Y) == Y, then
P8y = (— l^Sy? and g "^y be chosen so that F* g = (— l)^-1 g.

1.2.4. Lemma. — IfX is a complex manifold, and Y a codimensionp analytic cycle on X,
any two Green currents/or Y differ by an element ^^"^"^X) C ̂ -^-^(X).

Proof. — If d^g, + 8y = ̂  for i = 1, 2 with ^ C00, then

^C?l - <?2) = 27T V=~l((0i - (O^)

is a smooth fomi. Hence by Theorem 1.2.2 (i), g^ — g^ = y + ̂  + 8v with y smooth,
Le- ^1-^2 e^-^-^C^-^-^X).

1.3. Green forms of logarithmic type

1.3.1. We shall now give a geometric construction of Green currents. This cons-
truction will be used in 2.1 to define pull-backs and ^-products of Green currents. The
basic example is the case of a divisor Y in a complex manifold X. Then there exists a holo-
morphic line bundle S on X and a meromorphic section s of S such that Y is the divisor
of.? (see [G-H], Gh. 1.1 for a construction of JS? and s). Choose a smooth Hermitian
metric on »§f, i.e. a norm || ||. Then log || s ||2 is an L1 function on X, and by the
Poincar^-Lelong formula ([Le] and [G-H], Ch. 3),
(1.3.1.1) ^([loglMI2])^--?

for p a closed smooth (1, l)"form on X, namely the first Ghern form of (oS^, [| [|). In
other words [— log || s ||2] is a Green current for the divisor Y. It can be shown that all
Green currents for divisors are obtained in this way ([G-S 4], 2.5).

We shall use Hironaka's resolution of singularities to construct Green currents
in arbitrary codimension (when X is algebraic) from the case of divisors. But first we
introduce the notion of forms of logarithmic type.

1.3.2. Let X be a quasi-projective complex manifold, and Y C X a closed analytic
subspace in X which does not contain any irreducible component of X.

Definition. — A smooth form 73 on X — Y is said to be a form of logarithmic type
(or log type) along Y if there exists a projective morphism

7T : Z -> X

and a smooth form 9 on Z — TT'^Y) such that
(i) Z is smooth, TC'^Y) is a divisor with normal crossings (d.n.c.), and TT is smooth

over X ~ Y;
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(ii) 7) is the direct image by n of die restriction of 9 to Z -— TT'^Y) ;
(iii) for any point x e Z, there is an open neighbourhood U of x, and a system of holo-

morphic coordinates (^, ..., ^J of U centered at x such that TC-^Y) n U has
equation ^ ... ^ == 0, for some ^ < w, and there exist smooth B and B-closed
forms a, on U, i == 1, . . ., k and a smooth form (B on U with

(1.3.2.1) < p ^ = S a ^ l o g l ^ ^ + l B .

1.3.3. When T] is a form of log type along Y, as in Definition 1.3.2, it follows
from the Fubini theorem (as in 1.1.4) that T] is locally L1 on X and that [7]] = 7r,[(p],
Furthermore:

Lemma. — (i) Letf: X' -> X be a morphism of smooth quasi-projective varieties and f\
a form of log type along Y C X. Iff~\\) does not contain any component o/X', the form /*(•/])
is of log type along /"^(Y).

(n) Letf: X ->X7 6^ a projective morphism of smooth quasi-projective varieties and T) <?
form of log type along Y C X. Assume that f is smooth outside Y, and thatf^f) does not contain
any component ofX\ Thenf^) has log type along /(Y) and the equality of currents [/,(-/])] =/,[T]]
holds.

(iii) 7/' 7]i ZJ o/ log ̂  along Yi C X and ^ is of log type along Yg C X, their sum
7] = 7]! + ̂  ^ ^/^g ̂  ̂ o^ Yi u Yg.

Proo/'. — To prove (i) consider a diagram

Z' ^-> Z

-i I-y 4'
X' -̂  X

where Z and TC are given by Definition 1.3.2, w' is projective, Z' is smooth, (./TC') -1 (Y)
is a d.n.c. in Z', and the induced diagram

z' - (/TC^-KY) -̂  Z - TC-^Y)

"'1 1"y ^

X'-y-^Y) ——/—> X - Y

is cartesian (in particular TT' is smooth over X' —/"^(Y)). Such a diagram can be obtained
by resolving the singularities of the closure of (X' —/"^(Y) X^ (Z — TT'^Y)) in the
fiber product X' x^Z (using [Hi] Theorem II; see also [Del] (3.2.11)^). Since
7] = 7^(y) we deduce that

./"(^/^(y)- <T(?)
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on X' —/"^Y). Let E^ be a component ofTc'^Y) with local equation ^ == 0. Its pull-
back by/' as a Carrier divisor is S^.E^ where E^ is a component of (./7^')~1(Y)

with local equation z\ == 0. Therefore, locally on Z', we may write
/-(9) = S/'-(a,) Sn,,log 1 .; |2 +/"(?).

We conclude that/^T]) is of log type along /"^(Y).
To prove (ii) let n: Z -> X and 9 be as in Definition 1.3.2. The d.n.c. TT'^Y)

is contained in {fn)~1 (/(Y)). Using [Hi], Theorem II, we may find a projective map
p : Z' -> Z which is an isomorphism outside (f^p)~1 (/(Y)), and such that both (^p)~1 (Y)
and (j^)~1 (./(Y)) are d.n.c. The form 9' =^*(<p) then satisfies the conditions of Defi-
nition 1.3.2, showing that f^) has log type along/(Y).

To prove (iii) we consider TT, : Z^ -> X and 9.; on Z, — TT^^Y^) satisfying the condi-
tions of 1.3.2 with 7r,(9,) == T^, i = 1, 2. Then the form 9 == 9^ + 93 on the disjoint
union Z^ u Zg is such that 7^(9) = T], where n is equal to TT, on Z^, i = 1, 2. Therefore
T) is log type along Y^ u Yg.

1.3.4. Let T] be a form of log type along Y as in 1.3.2. We need to compute dd^T]].
Let E^, i el, be the (smooth) irreducible components of TC'^Y) and s^: E, -> Z the
inclusion.

Lemma. — There exists a smooth form b on Z, and, for every i el, a <)- and 8-closed smooth
form a^ on E^ such that

ddcW=^^M+b).

If E, has local equation z^ == 0, the form a^ is locally equal to the restriction of a, to E^ n U
(see 1.3.2. {iii)}.

Proof. — Of course dd^] == TT, dd^]. Choose an open subset U C Z as in 1.3.2 (iii)
k

and write 9^ = S a^ log | ^ [2 + P as in loc. cit. By the Poincar6-Lelong equation
(1.3.1.1) we know that, on U,

dd° log | ̂ l2^^,

where E, has local equation ^ = 0. Therefore, since o^ is 8- and 0-closed,

^<![y]|v=^s..([<(a,)])+[^<!p].
The forms dd6 (3 and s^(a,) are uniquely determined by this equation. Therefore these
are restrictions to U of forms ^ (resp. b) defined on the whole ofE, (resp. Z).

1.3.5. Let X be a smooth quasi-projective complex variety and Y C X a closed
irreducible variety of codimension p > 0. A Green form of log type for Y is a smooth real

14
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form g eA^-^-^X — Y) which is of log type along Y and whose associated cur-
rent [g] on X is a Green current for Y, i.e. such that dd^g] + 8y is smooth. For example,
whenj& = 1, — log || s |[2 is a Green form of log type for Y == div(^) (see 1.3.1).

Theorem. — For any Y C X as above, there exists a Green form of log type for Y.

1.3.6. To prove Theorem 1.3.5 we first consider the case where X is projective,
Y is smooth and the restriction map IP'^X) -^H^Y) is surjective for all q ^ 0.
Let Z be the blow up of X along Y and E C Z the exceptional divisor, so that we have
the diagram

E -^ Z

\ \-"Y

Y —^ X

If N is the normal bundle of Y in X, E = P(N) is a smooth divisor in Z.

Lemma. — Ifn == codim^(Y), there is a real, closed smooth form a of type (n — 1, n — 1)
on Z such that

^(^E7^ a) == 8y.

Proof. — Let [Y] e H^? "(X, R) be the cohomology class with supports of Y. Since
E == TC-^Y), TT*[Y] lies in H^X.R), a group isomorphic to H"-1*"-^ R) by the
cap-product x h-> x n [Z], But we claim that the restriction map

^H^Z.R) ->H^(E,R)

is surjective for all q ^ 0. Indeed (D IP'^E.R) is a free module on © H^fY.R)
f f ^O q^Q v /

with basis ^, t = 0, ..., n — 1, where ^ =J**[E] is the pull-back of the cycle class
of E in H^^Z^). Since i* is surjective and TT^ i* = j* n*, we conclude that j* is
surjective.

Therefore we can choose a closed real form a of type (% — 1, n — 1) on Z such
that j*(a) is a representative of 7r*[Y] n [Z] in H"-1'"-^ R). Then 7i;Y,(j*a)
represents TCY,(7r*[Y] n [Z]) in H°*°(Y, R). By the projection formula

7^(^[Y] n [Z]) === [Y] n TT,[Z] = [Y] n [X] = [Y],

in H^Y^R). Since any closed current of type (0,0) on the compact manifold Y is
determined by its cohomology class, we conclude that

^(SE ^ a) = fc^ a)] == z,(l) == SY.

This proves the Lemma.
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1.3.7. We keep the notations of 1.3.6 and construct a Green form of log type for Y
as follows. Choose a line bundle ,S? on Z, a holomorphic section s in JS? with divisor E,
and a smooth Hermitian metric on S?. Let

P-SE-^CioglMI2]
be the first Chern form of ,Sf, and a be as in Lemma 1.3.6. Then

^(E- log || s ||2 A a]) + SB A a == p A a.

Since 8^ A a represents ^[Y] in IP'^Z, R) (see 1.3.6), so does (B A a. Let o be a closed
form of type (^ n) on X representing [Y]. The closed forms ^(co) and (S A a are coho-
mologous on Z, hence, by 1.2.1, there exists a smooth (n — 1, n — 1) form y on Z
such that

dd0^ = TC*(CO) — P A a.

Therefore
dd\[- log || , ||2 A a + Y]) + SE A a == ^(co),

and A ]̂) + Sy = <o,

where ^ == TC,(— log || s ||2 A a + y) is a Green form of log type for Y.

1.3.8. Proposition. — Let X be a smooth projective complex manifold and i: Y -> X a
closed irreducible submanifold of codimension n. Let ex. be a closed [p,p)form on Y. Then there exists
an (n+p — 1, n +p — 1) form g of log type along Y such that dd6^}) + z,[a] is smooth
on X.

Proof. — Let r C Y X X be the graph of the immersion i: Y -> X, and pi: Y X X -> Y
and p^: Y X X -> X the two projections. For any q ^ 0, the composite map

H^Y) 4. H^Y x X) —> H^(r)

is an isomorphism, therefore, by 1.3.7, we know that F has a Green form of log type g^ on
(Y x X) — r. In particular p' = rf^r] + 8r is smooth on Y X X. By Lemma 1.3.3 (ii),
the form g == p^{gr ^ P*i a) has log type along ^(F) == Y. This form has the property
that

dd^g] + tja] = A.^kr] A ?\ a) + ̂ ,(8r A p\ a) = A,(P' A^ a)

is smooth over X.

1.3.9. Let now X be a smooth projective complex manifold and YC X a closed
irreducible subvariety of codimension p > 0. By [Hi] we know that there is a proper
map T C : X - > X with X smooth and E = ^""^(Y) a d.n.c. Using either deformation
to the normal cone [Fu] 6.6 or algebraic K-theory [Gi 4], we know that TC*[Y] e GH^X)
is represented by an algebraic cycle class Y] e GIP'^E). The cycle class 73 is necessarily
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k

a sum of cycles ij = ^ST), with T). eCH^E,), where E;, ..., E^ are the irreducible

components of E. Hence, tf [Y] e H^(X, R) is the fundamental class of Y in coho-
mology, then TC*[Y] e H^- "(X, R) is a sum of classes [7;.] e H^X, R) under the obvious

k l

map ©H^(X,R) -^H^(X,R). It follows that for i= 1, . . . , & , there is a real,
closed (^ — \,p — 1) form a, on E, such that, if s, : E, -> 5c is the inclusion, TT^Y] is

represented by the current S; s^[aj. Now, by Proposition 1.3.8, there exists a form g,
of log type along E, such that

^kJ + ̂ M = p,

is smooth on X. Since 2; (B, is cohomologous to TI:*[Y], if co is a real closed {p,p) form

on X cohomologou^ to [Y], there exists (see 1.2.1) a smooth real form y of type
(P — \,p — 1) on 5c such that

^y=^((o) - S (B,.

&
Hence, i f ^ = ^g, + y, the form g is of log type along E (by Lemma 1.3.3 (iii))
and such that, on X,

dd^g] + S^JaJ = 7^((o).

Since X — E = X — Y we may view g == ^{g) as a form of log type on X — Y
(Lemma 1.3.3 (ii)), whose associated current on X satisfies

^cb]+^(S^JaJ)=(o.

It remains to show that

T^eJaJ) == 8^.

Let ̂  : Z^ -̂  Z, = 7r(E^) be a resolution of singularities of Z^. Then we may construct
a diagram

E.^Z.

'•i I".
E, -^ z, -r> x

with q^ birational and E, smooth. We have an equation of currents:

.̂.M "^A.^.IA*^]
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which may be verified using test forms on X. Now [^ aj is a current of dimension
2(dim(X) —codim(Y)); hence, since Y is irreducible, ^[^ aj =0 unless Z, = Y.

k

Therefore TC,( S s^[aj) =^(S), where p:^ -^Y -> X is obtained by resolving the

singularities ofY, and S is a closed current in ^°'°(Y). Such an S is a constant, hence
k

T^( S e^[aj) == ^ 8y for [JL e R. But [L 8y represents ^ TT*[Y] in H^(X, R) and there-

fore, since n is birational and so ̂  TI:*[Y] = [Y], we have (JL == 1. Thus we have the equa-
tion of currents on X

dd^g} + 8y == co
as desired.

Now suppose that X is quasi-projective. Then, by resolution of singularities [Hi],
X has a smooth projective compactification X. Let Y C X be the Zariski closure of Y
in X. By the proceeding discussion Y has a Green form of log type ^y. The restriction ^y
of gy to X is then a Green form of log type for Y.

1.4. Examples

— For any point z = {z^ . . . , ̂ ) in C^ let || z \\ = \ ̂  |2 + .. . + | ̂  |2. The form
^(-iniogiMiH^ioglMl)-1

on C" — { 0 } is a Green form of logarithmic type for the origin. This follows from the
Bochner-Martinelli formula ([G-H], p. 372).

— Let Y C P^C) be the linear subspace with equation XQ = ... = x^_^ = 0,
where (XQ, ..., A?J are homogeneous coordinates. On P^C) — Y define

^ = log(| x, |2 + ... + | ̂  |2), G = log(| x, |2 + ... + I ^-i |2),
»-1

a == dd6^ (B == dd6 a and A = (r - a) ( S a" Pp- l-v).

The form A, first introduced by H. Levine, is a Green form of logarithmic type for Y
(see [G-S 4], Proposition 5.1).

— In [B-G-S], Theorems 3.14 and 3.15, one defines an explicit Green form for
the zero section Y in the total space X of an arbitrary holomorphic vector bundle on a
complex manifold. By blowing up Y, one checks that this form is of logarithmic type
along Y.

2. Green currents and intersecting cycles

2.1. Pull-backs and the ^-product

2.1.1. Before discussing the relationship between Green currents and intersecting
algebraic cycles, it will be useful to understand the relationship between currents and
cohomology with supports. Recall that if X is a complex (or more generally a G00 real
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and orientable) manifold, then the cohomology ofX with complex coefficients, H*(X),
may be computed as the cohomology of either the complex of G°° (complex valued)
differential forms on X, A*(X), or the complex of currents on X, ^(X). The inclu-
sion A* CX.) C ^*(X) induces the canonical quasi-isomorphism between these complexes.
If Y is a closed subset ofX, then the relative cohomology groups H*(X, X — Y) (which
are also written Hy(X) and called cohomology with supports in Y) may be computed
as the cohomology of either the mapping cone C(i*) of the restriction map on
forms, i * : A*(X) -> A^X — Y), or the mapping cone G^(i") of the restriction
map i * : Q*(X) -> ^*(X — Y) on currents; here i: (X — Y) -> X is the inclusion.
Note that, by Alexander duality, H^(X) ^ H^_JY) for d == dim^X, where H:(Y)
denotes homology with locally compact supports ([E-S]) or Borel-Moore homo-
logy ([B-M]). A class in H^X, X — Y) can be represented, therefore, by a
pair (oc.p) e A^X) © A^^X - Y) (or ^"(X) ©^-^X - Y)) such that 4 o c = = 0
and ^x-y (B = (— I)""1 ^ a. Two such pairs, (a, (3) and (a', (3'), represent
the same cohomology class if there is a pair (T], ^) e A^^X) © A^-^X — Y) (or
^-TO ©^-^(X - Y)) such that d{^ ^) = (a - a', (3 - j3') with, by definition,
d(^, ^) == (A), ^7) + (— I)71"2 ̂ ). A particularly simple set of representatives of classes
in H*(X, X — Y) consists of the pairs (T, 0) with T a closed current supported on Y;
more precisely, if ^y(X) = ker^*: ̂ (X) -^*(X — Y)) is the complex of currents
supported on Y, the map T -> (T, 0) is the canonical factorization of the map
^y(X) -> ^*(X) through the mapping cone ofi\ When Y is a submanifold of codimen-
sionp withj : Y -> X the inclusion, then we have the natural mapj,: ^*(Y) -^ ̂ ^^{X)
and hence an induced mapj,: H^Y) ^Hy+2p(X). This map is the Alexander duality
map composed with Poincard duality, [B-M] or [Sp], and is an isomorphism. We leave
to the reader the proof of the following lemma.

Lemma. — (i) Let (a, (3) e ̂ (X) ©^-^X) be a pair such that rf(a, (B) == 0. If
(B extends to a current ̂  on X, and we write d^ == a + R, R is a current supported on Y and
(— R, 0) represents the same class in H^(X) as (a, (3). In particular, if

(a, (3) eA^X) ©A^^X - Y)

and p is locally L1 on X, (— ReSy((3), 0) and (a, (3) represent the same class in H^(X).
(ii) Suppose that Y and Z are closed subsets of X, y e H^(X) is represented by

(a, [3) eA^eA^-^X-Y)

and z e H^(X) is represented by (T, 0) with T e ̂ S(X). TA^ (3 A T e ̂ ^^^(X - Y)
extends naturally to a current in ^S^nz^ - (Y n z)) fl7^ ^ u^ e H^^SC^-) tj

represented by (a A T, (- 1)" (3 A T).
(iii) Iff: Z -> X ̂  a map of complex manifolds, Y C X is a closed subset, andy e H^(X)

^ represented by (a, P) e A^X) © A^^X - Y), then (/* a,/^ ?) represents f^y} e H^i^(Z).
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2.1.2. For general background to the discussion of algebraic cycles in this section
see [Fu] and § 3 below. Let/: Z -> X be a map between quajsi-projective varieties over C;

/
we suppose that both X and Z are irreducible and that X is smooth. If Y == S w^[YJ

is an algebraic cycle of codimension p on X, and we write [ Y | for the support of Y,
one can define a rational equivalence class/"(Y) on/'^l Y |) (the " pull-back " ofY)
using either the construction of chapter 8 of [Fu] or higher algebraic K-theory [Gi4].

k

Let us write /^(l Y |.) = S u T, S = U S^ being the union of the irreducible compo-

nents Si, ..., S^ of/"1 (| Y [) which have codimension p in Z, and T being the union
of the components of codimension strictly l&ss than p. Then we have a unique decompo-
sition

/-(Y) = S [̂SJ + t

in which t is a rational equivalence class on T, i.e. an element of the Chow group with
supports GH^(Z). The intersection multiplicities n^ ..., n^ can be computed using either
the purely algebraic theory of multiplicities, as in [Se], Chapter V, or the following
cohomological technique. The cycle Y has a cycle class cl(Y) eHj^(X), constructed
by the methods of [B-M], [B-H]. We denote by y(Y) e H^_^(| Y |) the corresponding
homology class. Using the description of Hj^(X) given in 2.1.1, cl{Y) can be repre-
sented by (8y, 0) e ̂ (X) ® ̂ -^(X - ) Y |). Ifdinic X == d, then/*(Y) has a homo-
logy cycle class y(/'(Y)) ==S^y(S,) + vW ^ ̂ -^{f~\\ Y I)) . Using the Mayer-
Vietoris sequence, one sees that

H^-2p(S u T) ^ H^_^(S) ®H^,(T)

^ ©R^(S,)®H^p(T).

Hence the integers n, are determined by y^^Y)). But by 19.2 of [Fu],
Y(/W)==/-^Y)n[Z].

Hence the n,, and the homology class of t, are determined by jT cl(Y) eH^Y^Z).
We are interested in two special cases of this construction: either when Z is smooth

or when/: Z -> X is a closed immersion (i.e. Z is a closed subvariety ofX). In the second
case, note that

fAF W n [Z]) == r(Y. [Z]) = (rf(Y) u cl{Z)) n [Z]

in Hf^^); here ? = codimx(Z).

2.1.3. We want to define a pull-back operation on Green currents which is compa-
tible with the pull-back operation on cycles discussed previously. Let/: Z -> X be a map
of quasi-projective varieties over C, with X smooth and Z irreducible. Let Y be an irre-
ducible closed subvariety of X of codimension p such that/'^Y) =f= Z. Suppose that
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5y is a Green form of log type for Y, and let [^y] be the associated current. When Z is
smooth, we know from Lemma 1.3.3 (i) that/^y) is a form of log type on Z —/-^(Y).
We define

(2.1.3.1) /-ky] == r/^y)] e^-^-^Z).

The pull-back map extends to Green currents of cycles. If Z is smooth, Y = Sfl,[YJ
and gy. is a Green form of logarithmic type for Y,, and if/"^] Y |) =(= Z, then we define
/fc] = Wky,].

In general, there is a resolution of singularities n : Z ->• Z, where Z is nonsingular
and TT is projective and birational. Let ^ ==/o TT be the composite map. Then ^(^y) is of
log type along ^"^(Y). If/: Z -> X is a closed immersion of codimension y, we define
a current [^y] A 8^ = §z A [^y] in ^+ff-i^+«-i(X) by

(2.1.3.2) kdASz-W^].

This current does not depend on the choice of the resolution n (see 1.1.4).
More generally, if Z = S6,[ZJ and Y = S^.[Y,] are such that Z, $ | Y | for

all z, we define
^]A8z==Sa,[^.]A8^.

Now, if g^ is an arbitrary Green current for Z, we define the •-product of [gy]
and gz by

ky] *gz = ky] A 8^ + (OyA^ ej-+"-i.-+n-i(X).

(Recall that we are, temporarily, writing gy for the Green form and [^y] for the Green
current of Y.)

Remarks. — (i) Though the current [^y] * g^ depends, a priori, on the choice of
form ^y, we shall prove in § 2.2.9 that, in fact, it only depends on the class of [^y]
in ^(X).

(ii) If g^ is another choice of a Green current for Z,

ky] * gz - ky] * gz = ^Y A (&s - <?z) e A(X).

(iii) This *-product is analogous to the product on differential characters, which
has the same name, defined by Cheeger in [G].

2.1.4. Theorem. — Let X be a nonsingular quasi-projective variety over C, and
t

Y = 2 ^[YJ a codimension n cycle on X and, for i == 1, ..., /', fe^ gy. be a Green form of

logarithmic type for Y^; we write g^ == S ^y.. TA^:
1=1 *

(i) If Z = S&JZj ^ a codimension m cycle on X .$^A ^Aa^ Z^. $ | Y | for all j , and
g^ is a Green current for Z, we have

k

dd\[g^\ * gz) + ̂  ̂  S .̂ + T = coy o)z.
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Here \ Y [ n | Z [ == S u T with S the union of the components Si, ..., S^ of \ U [ n | Z |
of codimension m + n, T ^ ̂  ^ow of the components of codimension < m + n,

[Y].[Z]==S^,[SJ+^

and T ^ a cfoW current associated to an U form on a closed analytic subset ofT, representing the
homology class of t.

(11) Let f: Z -^ X be a map between quasi-projective smooth varieties, and let

Y = ^S ^[YJ be a codimension p cycle on Xfor which f~\\ Y |) + Z. If we write
f~\\Y\)=SuT

as above, and ifg^ is a Green form of logarithmic type for Y (i.e. a sum of such forms for each i) , then

^c/+kY]+S^,8s,+T=/-^.

Heref*(Y) == S^[Sj + t is the pull-back cycle class as in 2.1.2, and T is a current supported
on T representing the homology class oft. (Note that o)y == 8y + dd° g^ and co^ = 8^ + dd6 g^).

Proof. — We start with (i). It is enough to show that
dd\[g^~\ A 8^) + S^i ^ 8 .̂ + T = coy 8^.

We shall consider the case in which Y and Z are prime cycles, i.e. irreducible subvarieties
ofX; the general case follows from this one by additivity.

Let/: Z -> X be the inclusion, TT : Z -> Z a resolution of singularities of Z, and
^ =fo n. Since ^(^y) is of log type along ^(Y), there is a projective morphism

7T' : Z' ̂  Z,

smooth outside ^-'(Y), such that E = r-^Y) is a d.n.c., where r == ^ o TC', and a form 9
on Z' — E such that ^(^y) == ^(9) and 9 can be written locally as in Definition 1.3.2
Following Lemma 1.3.4 we write

ddW = ̂ eJO + [b],

where a, is smooth and closed on the component E, of E, and b is smooth on Z'. Since
ky] A 8^== Wg^\ = r,[<p],

we get
dd\[g^\ A 8^) = S r, ̂ [^-| + r,[b].

i£I

Let OY be the smooth form dd^} + Sy. Outside ^-^Y) we have dd° ^(g^) == ^(coy).
Therefore

^[b] =^^((0y) = Q ) Y A 8 ^

On the other hand, we know, from 1.1.5, that for every i in I, the current ^ s, [aj is
equal to [|BJ, where (3, is a closed L1 form on r(E,) C X. We may now distinguish between

15
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several cases, according to the codimension of r(E,) in X. If this codimension is less than
p + q, r(E,) is contained in T, and we denote by T the sum of the currents ^ e, [aj
with r(E,) contained in T. If the codimension of E, is bigger than p + y, the degree
of a, is less that 2(dim(E,) — dim(r(E,))), therefore r, ej<] =0 (see 1.1.5). Finally
when r(E,) is equal to one of the component S,, the L1 form ^ has degree zero. Since
^ is closed, the distribution [|BJ = r, s^[<zj is closed, so it is equal to a constant ^
(apply 1.2.2 (i) to a resolution of the singularities ofr(E,)).

Now we claim that the current R == S r, s^[<| represents ^([Y].[Z]) in

H^^TO. Recall from 2.1.1 that cl(Y) e H^(X) can be represented by

(8y, 0) e ̂ (X) C ̂ ^(X - Y).

Therefore, by Lemma 2.1.1 (i), it is also represented by ((Ov^^y)- Note also
that cl(T) eH|f(X) is represented by (8^, 0). Since SzA^^y extends to a current
dc{^^ [^y]) on X, we conclude, by Lemma 2.1.1 (ii), that

./([Y], [Z]) == cl(Y) u cl{Z) eH^^^X)

is represented by ((OySz, d0^ A [^y])). Applying part (i) of Lemma 2.1.1 again, we
find that this cohomology class is also represented by (R, 0). Therefore R is a current
supported on Y n Z which represents cl{[Y]. [Z]) in H^^+^X). It follows that ^ is
equal to Serre's intersection multiplicity of Y and Z on S^, and the closed current

k

T = R — S ̂  Sg .̂ represents the cohomology class of t in H^'^X).

The proof of (ii) follows essentially the same pattern, with part (iii) of Lemma 2.1.1
replacing part (ii), and R ==- dd\f*[g^\) —/"(coy) being computed by the same argu-
ments as above.

2.1.5. If X is a nonsingular quasi-projective variety over C and Y = S^i ^[YJ
is a codimension n cycle on X, we can approximate an L1 Green form ^y (C°° on X — | Y |)
for Y by G°° forms on X as follows. Choose a locally finite open covering of X by coor-
dinate charts and, for each s > 0, let pg be a G°0 real valued function on X which is:

(i) ^ 0 on all of X,
(ii) < 1 on all of X,
(iii) = 1 outside the neighbourhood Ng(Y) of radius e of | Y | in each coordinate chart,
(iv) === 0 in some open neighbourhood of | Y |.

Lemma. — For each e> 0, ^y = pg^y e .^-^-^X) satisfies:
(i) ^y is a C^form on X.

(ii) dd0 ̂ y 4- co^ == <0y, coy a C°° form supported in the union of the closures of the Ng(Y).
(in) i^^y = ky]-
(iv) |imJ<|=8y.
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Proof. — (i) and (ii) are obvious, (iii) is a basic property of L1 forms and (iv) fol-
lows from (iii).

Keeping the above notation, we have the following corollary to theorem 2.14.

Corollary. — Let X, Y, Z, g^ be as in Theorem 2 . 1 .4 (i). Then we have an equality of
currents, with the limit taken in the space of currents of order ^ 2,

k

Un^AS^S^+T.

In particular, if Y and Z meet properly, lim <o^ A 8^ == 8y z. Similarly iff: Z -> X is as in
part (ii) of the theorem,

l™/-(coy=s^,^.+T.
Proof. — Clearly [gy] A 8^ == lim ^y A 8^, hence

Un̂  <4 A 8z == <OY A Sz - ̂  (^A) A 8^

=(OyA8z-|m^^(^A8^

=(OYA8z-^(kY]A8^

=S^8,,+T.

The proof of the second part of the corollary is similar.

2.2. Associativity and commutativity of the ^-product

2.2.1. We want to prove that the ^-product of Green currents, defined in the
previous paragraph, is both commutative and associative in Q, i.e. modulo the sum of
the images of <) and 8. These properties can easily be checked formally. Indeed, let
§Y9 §Z9 Sw be Green currents for irreducible closed subvarieties Y, Z and W in a complex
manifold X. We get

gy * gz = gy 8z + ̂ ygz == gy 8z + (^y + 8y) ̂

-gy^z+^gz+^g^g^

and Stokes formula implies that ^y * g^ = gy * gy in ^(X).
Similarly

C?Y * gz) *gw== {gv^z + ^ y g z ) * <?w = ,?Y ̂ w + ^Y^W + ^Y ^z^w

while g^ • (̂  * ̂ ) = ,?y * (&z ^w + ^z^w) == ^Y ẑ ̂  + ^gz ̂  + ^Y ̂ z^w

But these formal computations need to be justified since the ^-product [gy] * g^ has
been defined only when Y and Z meet properly and [^y] is the current associated to a
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Green form g^ of log type for Y. Furthermore, the use of Stokes9 formula for currents
and forms requires some work to take care of residues (see 1.1.2). For instance the com-
mutativity of the ^-product will follow from the formulae

^Y^z)] == [^Y^z] + byN^z)] + 27^ &Z

and a[^ ̂ y)] = [^z ̂ y] + kz ̂ y)] - 2nig^ 8y,

when Y and Z meet properly and gy (resp. g^) is a Green form of log type for Y (resp. Z).
For technical reasons, associativity will be shown only when the ambiant variety X
is projective.

2.2.2. It turns out that the proofs of commutativity and associativity will both
make use of the following statement.

Let X be a smooth quasi-projective variety over C. Suppose that Y, Z and W
are irreducible closed subvarieties of X which have codimensions p, q and r respectively,
with p > 0 and q > 0. We assume that Y n Z, Y n W and Y n Z n W have codimen-
sions^ + q,p + r andj& + q + r respectively; this implies that if we write Z n W == S u T
with S = S^ U . . . u S^ the union of the components of Z n W of codimension q + r,
and with T the union of the components of codimension < q 4- ^ then Y n T = 0

k
and Y meets the S/s properly. As discussed in 2.1, [Z].[W] = S ^[SJ + T with

T a rational equivalence class on T. Let gy and gz be Green forms of logarithmic type
for Y and Z respectively. Recall from 2.1.3 and Theorem 2.1.4 that [g^] A 8^y is defined,
and that

^(kz] A 8 )̂ + (T + T = C^ A 8^,

with a == S ̂  8g and with T a closed current of order 0 supported on T repre-
senting the homology class of t on T. Note also that, since Y n T = 0, [^y] A T is
well defined, and that, since Y intersects S, properly, [gy] A 8g. is defined, for all z,
by 2.1.3.

Theorem. — With the notation above, we have an equality of currents m^4'^*""1' »+«+*—i(X):

ky] A (<T + T) + (Oy A [gz] A 8^ = 8^^ A ̂  + [gy] A CO^ A 8 .̂

2.2.3. To prove Theorem 2.2.2 we need a Lemma about blow ups. Let X be
a smooth quasi-projective variety over C, Y C X a closed irreducible smooth subvariety
of codimension p > 0, n: X -> X the blow up of X along Y, D = TC'^Y) the excep-
tional divisor, and/: Z-> X a projective morphism such that Z is smooth and
y'^D) === E is a d.n.c. Let z == 0 be a local equation of one component of E in some
open set U C Z. Let ^ == TT of be the projection from Z to X and r = \ z \ the modulus
of z.
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Lemma. — Assume Y] is a smooth form with compact support on X of degree greater than
2 codim^(Y) 4- !• Then, locally on Z, the form y(^) is the sum of smooth multiples qfr2 and rdr.

Proof. — This is a local question on Z so we may assume that X = C^ with coor-
dinates ^i, . . ., 2^ and that YC C^ is given by the equations ^ = ... == Zy == 0. The
blow up X can be covered by affine subsets U, ^ Cd, with coordinates

(z/i, . . . , ^_ i , ^, ^+1, ...,^, ^p+i? • • • 5 ^). 1^ z < ^

where the map TT is given by

(2.2.3.1) n{u^ ..., ^_,, 2',, ^+i, . . ., u^ ^+1, .. ., ^)

= (^ ^, .. ., ^_i 2:,, ^, ^+1 ̂ , . . ., ̂  ̂ , ^+i, . . ., ^).

An equation ofD n U, is ^ == 0. Since T] has degree at least 2{d — p) +2, when written
in local coordinates in X, each of its components will involve at least two of the diffe-
rentials dZy and d z ^ j ^ p. Locally iny-l(U^), the function f*{z^ is divisible by z. Since
7T*(^.) == Uj ^ whenj^ p (by (2.2.3.1)), we see that 4'*(7)) ls a sum °^ forms divisible
by the product of two terms among z, z, dz, and dz, hence by r2 or rdr.

2.2.4. We now return to the notation in 2 .2 .2 and make geometric constructions
based upon Hironaka's resolution of singularities in its precise form ([Hi], Theorem II).
First we can resolve Y n Z n W i n X b y a succession of blow ups with smooth centers
in the proper transform of Y n Z n W (hence the codimension of these centers is at
least p + q + r), till Y n Z n W becomes a d.n.c. Let W be the inverse image of W
in this resolution and W" -> W be a smooth projective resolution ofW where the inverse
image of Y n Z n W is still a d.n.c. (loc. cit). Let ^ : \V" -> X be the obvious map.
The forms y{gy) and ^{gz) have log type along ^"^(Y) and ^~1{IZ) respectively. So
let TCI : Wi -> W" be a projective morphism with W^ smooth such that D^ = (^i)"1 (Y)
is a d.n.c., and cp^ be a smooth form on W^ — D^ such that ^((pi) = ^*(^y) outside
^"^Y) and (p^ can be written locally as in Definition 1.3.2. Similarly we define
TT, : W, ->W", D, = (^-^Z) and_<p, with 7^(9,) = ̂ ).

Now we consider the closure W of (Wi — D^) x^- (Wg — Dg) in the fiber pro-
duct Wi X^. Wg and resolve its singularities (these are over Y n Z) to get a smooth
variety W and a commutative diagram

W -̂ > Wi
y« "1

^ >k

W^ -̂ -> W"

such that, if h == ̂  p^ = ̂ i Pi : ^ -^ X, then Ey = A'^Oi) == ^-'(Y),
E^ ̂ pz1^) = h"1^), Ey n Ez and Ey u E^ are d.n.c. (see loc. cit. and [De 1]
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(3.2.11)^). The map W -> Wi X^- Wg is an isomorphism outside the inverse image
of Y n Z and there is a cartesian square of smooth maps

W-(E^uE^) ——'—^ WI-DI

"•i !"•
Wg - Da ————> W - ̂ -\Y n Z)

We define ̂  =^(<pi) (resp. ̂  = PlW) on W - Ey (resp. W - E^).

2.2.5. We want to show that ^.A^ is L1 on W and compute the current
^[gi A 9gs] on X.

If we write W as a union U iia of open sets Q^ isomorphic to the polydisc

A » = { z = ( ^ , . . . , ^ ) e C " | S j ^ | 2 < i ^

we can choose a partition of unity S X, = 1 subordinate to { Q, }. Given any smooth
oc

form •>] with compact support on X, we must have

S^[gl A ̂ i] (Y)) = 2 0^1 A ̂ J (A, A*(T))).
a

So, for our computations, we may replace \V by A", denote by E< the divisor of
equation ^ = 0 in A", and assume that

Ey= U E, and E. == U E,.
Ki^fc, z k^i^k %

Finally we may assume that

(2.2.5.1) ^ i=^a , log |^ |2+p

and ^-.S a; log |^ |2+^
i^ki

where a,, (3, a^ p' are smooth forms on A", a< and a,' being 0 and 8-closed. Now the most
divergent terms in ̂  A ^3 when we apply (2.2.5.1) are smooth multiples of

log | z, | dz^k^^ i^ k^.

These are L1 on A", therefore g^ A ̂  is V on \V.
To compute the derivative of [^A a^], we let V[, for any small s>0, be the

A;

set of z e A", such that | z, \ ̂  s. Let Ug == U U^, Wg = 8Ug be its boundary, and

W^ be th6 set of z e Wg such that [ z^\ === s. Let X be a compactly supported function
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on A** and T] a smooth form with compact support on X. From Stokes3 formula for forms
we get

(2.2.5.2) 8[g^ A 8g^\ (XTO) == lim - f (^ A 8g^ A W(^))
6^0 JA"-^

== 1^ f f ^1 A ^2 A ^(7]) + f ^1 A 88(^) A ^(7])
v UA^Ug JA^-Ug

+ S f .5lA^AX^)1.
t-lJWe J

We shall see that each term in this sum has a limit when s goes to zero, and we shall
compute it.

2.2.6. First let k ^ ^ i ^ k ^ . We claim that

(2.2.6.1) HmJ^A^A^) =0.

By hypothesis ^(E,) is contained in Y n Z n W. Therefore, by the construction in 2.2.4,
the map h admits a factorization

\V ~> X" -» X' -> X

where X" -^ X' is a blow up with smooth center of codimension at least p + q + r
containing the image of E,, and X' -> X is birational. The total degree of the direct
image of^ A 8g^ on X" is 2{p + q) — 3, therefore each integral in (2.2.6.1) vanishes
unless 7) has total degree 2 dim(X) — 2{p + q) + 2. Consequently, by Lemma 2.2.3,
^(T]) restricted to W^ is 0(s2). On the other hand, the most divergent term in g^ A ~8g^
near W^ is a smooth multiple of log | ̂  [ == ^/^, i.e. 0(log s). This proves (2.2.6.1).

Furthermore, when k^^ i^ k^, the form 8g^ A ^3 A >A*(T]) is integrable on IPg.
Indeed, when applying (2.2.5.1), the only summand in 8g^^~8g^ which is not L1 is
a smooth multiple of dz,dzj\ z^\2. Because of Lemma 2.2.3, its product with ^*(7])
is also integrable. It follows that the limit

l^L-u/^^^)
exists, and hence so does

J^lA^2A^*(7)).

With some abuse of notation, we may denote it

^E^IA^KT)).

2.2.7. Now assume that 1 < i< k^. We claim again that

(2.2.7.1) |imJ^, ̂  A 9g^ A ^•(T)) = 0.
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This is clear, because the most divergent term of g-^ A 8g^ on W^ is a smooth multiple
of log | z,\.

Finally, when k^ < i < ^, there is only one term contributing to

|™J^lA^2AX&*(7]),

namely, using (2.2.5.1),

nn; Jw* 51 A a^ A {dz^ A ^7])-

Notice that g-^ is V on W^ when s is small enough, and on E,. The limit above is equal to

-2^J^Aa;A)^(7]).

Let a! be the closed form on the smooth part ofA'^Z) = E^ whose restriction to E^,
for k^ < i ̂  A, is equal to the restriction of a,' (see Lemma 1.3.4). We conclude from
(2.2.5.2), (2.2.6.1) and (2.2.7.1) that

(2.2.7.2) Bki A 8g,] (h-W) = J^ ̂  A ̂  A A*(T]) + J^ gi A (̂̂ ) A ^(T])

-^l-^^W

To compute the third integral in (2.2.7.2) we may restrict to A'^Z) — A'^Y). This
subvariety of W is isomorphic to its image in the fiber product (W^ — D^) X^y" W^.
By Lemma 1.3.4,

^c([92])=Se^,]+[&],

where the sum runs over components ofDg, a^ is a ^ and ^-closed form on thej-th com-
ponent, and b is smooth. Denote by a the smooth form on the smooth locus of Dg equal
to a^ on the j-th component. Then

(2-2-7-3) Lz)^^^ -J^-^-^Y)^^^^ ̂ ^

-jB.-^r^Y)^-^^"^2^^

= f . a f\ (^2)* (^Y A "y)).jDa-^TTa^tY) \T <s/ \&x */

As in 2.1.5, let{ ̂  }, 8 > 0, be a sequence of smooth forms on X such that lim [g^] == [^y].
8 "~ "̂ 0

For any 8 the integral

J^ a A {W (^ A 7)) = (^), (^ A 8^) (^ A Y])

was computed in the proof of Theorem 2.1.3 (when we studied Sr^£^[^J). Since

(by (2.1.4)) y(gz) == ^2*(?2) ls a Green form of log type for the cycle ^*(Z), we find

(W* (^ A SD,) = - ^[S^[Z]] = - <T - T.
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Therefore

(2.2.7.4) ^^A^^-^A^^UmJ^^A^^-^AT))

= - Hm̂  [(^ + T) A ̂ ] (7]) = - (((T + T) A ky]) (7)).

Here we used definition (2.1.3.2) for a A [^y] and the fact that gy is smooth on the
support of T, since Y n Z n W has codimension p + q + r.

2.2.8. The integral of forms L gi A S8{g^) A h*{^) may be computed on
(Wi - Di) x^' (W^ - Dg). It is equal to

L-^(YUZ)^) A W^z)) A ̂ ) = - 27^(kY] A 8^ A 0 (7))

by the definition of [g^~\ A 8^. Therefore, using (2.2.7.3) and (2.2.7.4), we may
rewrite (2.2.7.2) as follows:

^lAwnTO)
== J^ ̂ l A ^2 A A*(7]) + 2^(- [̂ 1 A 8^ A ̂  + [̂ ] A ((T + T)) (7]).

Assume now that we interchange Y and Z, and 8 and 8 in this formula. Since Y meets W
properly, we get

8[g2^{gi)]{VW)

= J^ ^2 A B^i A A*(7]) + 27n(- [̂ ] A S^ A G)y + gz A 8^.^]) (^)-

Adding up these two equations (and recalling that dd6 = zaa/271;) we obtain Theo-
rem 2.2.2.

2.2.9. Corollary. — Let X be a smooth quasi-projective variety over C, Y and Z irreducible
subvarieties of X which intersect properly (i.e. such that the codimension of their intersection is the
sum of their codimensions). Then if gy and g^ are Green forms with logarithmic growth for Y and Z,

gy *^z==<?z* ^Y-

Proof. — Take W = X in the thoerem.

2.2.10. Corollary. — 7/*X, Y, Z are as above, and gy, gy are two Green forms with loga-
rithmic growth for Y, then

gv * Sz - gv * gz == {gy - gy) A co^.

Proof. — We know that, as in 2.1.3 (ii),

gz * ,?Y - gz * gy = gz A [Y] + ̂ z A gy - gz A [Y] - ̂  A ^y

== ̂  (^Y-^Y)-

2.2.11. Corollary. — Suppose that X ^ a smooth quasi-projective variety, that Y and Z
<zr<? y^?.y on X z^A intersect properly and that gy (respectively gy) and g^ (respectively g^)

16
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are Green forms with logarithmic growth for Y (resp. Z). If [g^] = [g^] and [g^ = [g^] in
^(X), then ̂  * ̂  = g4 * ̂  ^ ^(X).

Proo/: — We need only show that ̂ y * ̂  == <?Y * ̂ z ^ ̂ (X), since ̂  * g^ = ̂ ' * g^
will then follow by Corollary 2.2.9. By Remark 2.1.3 (ii)

SY * gz - SY * ̂ / == ^y A {gz - g z ) .
By assumption, g^ — g^ == Ou + ^$ since COY is closed,

^Y A C?z - <?z) = ̂ Y ^) + -^Y y).

which represents 0 in ^(X), q.e.d.

Definition. — Suppose that X is a quasi-projective variety, smooth over C, and
that Y and Z are cycles on X which intersect properly. If g^ and g^ are Green currents
for Y and Z, then by theorem 1.3.4 we can represent gy and g^ by Green forms with
logarithmic growth, ^y and ^. We define the "star product", gy * gz as the class,
m ^(X), of^y * ̂ z; by the corollary, this class is independent of the representatives of g^
and gz chosen. One can define in the same way gy A 8^.

2.2.12. Let X be a smooth projective variety over the complex numbers, and
Y, Z, W three irreducible closed subvarieties intersecting properly. By this we mean
that, ifp, q, r are the codimensions of Y, Z, W respectively, codim^Y n Z) = p + q,
codimx(Y n W) = p + r, codim^Z n W) = q + r and codim^Y n Z n W ) = ^ + y + r .
We assume that p > 0 and r > 0. Let gy be an arbitrary Green current for Y and g^
a Green form of log type for W. Then, as in 2.1.5, we may write [g^] = lim[^],
where g^ is a smooth form on X, equal to g^y outside an s-neighborhood of W; then
(QW =r ^w — ^<?w is su^11 that Hn^[(o^] == 8^. Let [Z].[W] be the intersection cycle
of Z and W.

Corollary. — The following equality holds in ^(X):

Un̂  ̂ y A 8^ A co^ = g^ A 8[z^wr

/TZ particular, when Z == X,

l^^Y'^^W = 5 Y A 8 W •

Proo/1 — Since X is projective the images of 8 and 1) are closed (since B and ^ are
continuous and their cohomology groups are finite dimensional). Therefore ^(X) is
separated and, in this group, we can compute

l^yA ̂  ^w = ^(^yA §zA <0w -^yA §z A ̂ W)

= I™ (^Y A 8z A co^ - dd^ A 8z) A ̂ )

== gy A §z A <*>w + ^Yj.tZl A ,?w — ^Y A 8z A g^.

This is equal to ^yA 8^ ̂  by Theorem 2.2.2 (with the roles of Z and W switched).
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2.2.13. Corollary. — Let X be a smooth projective irreducible complex variety, Y and W
two closed irreducible subvarieties intersecting properly. Let g^ e ̂ (X) be any representative of the
Green current gy e ̂ (X) such that Un̂  g^ A co^ exists, where ̂  is defined as in 2 . 1 . 5 ̂
2.2.12. Then the class of lim g^ A <o^ ̂  ^(X) is equal to gy A S^-

2.2.14. Theorem. — Let X be a smooth projective variety of C, and let Y, Z, W ̂  three
cycles intersecting properly on X. Then we have an equality in Q{X),for any choice of Green currents
for Y, Z and W:

C?Y * <?z) * gw = <?Y * (<?Z * <?w)-

Proof. — Without loss of generality we may assume that Y, Z, W, X are irreducible
of positive codimension. The right hand side of the equation is equal to

<?Y A ^[Z].[W] + ^Y A Sz A ^W + ^Y A ^Z A <?W

Choose a representative of^ by a Green form of log type along W, and a sequence g^
of smooth forms converging to g^ as in 2.1.5, with dd0 <?w = ^w — ^w- Then, according
to Corollary 2.2.13, the left-hand side of the equation we look for is equal to

1"̂  C?Y * gz) A COw + <OY A ^Z A <?W5

if the limit exists. But g^ * g^ == o)y A g^ + g^ A 8^ and, from Corollary 2.2.12, we
know that

|™ <°Y A gz A ^W = ^Y A gz A ̂

and hn^ ^y A 8z A ^w ̂  <?Y A ^a.iw]-

This proves the Theorem.

2.2.15. Lemma. — Let X be a smooth quasi-projective variety over C, let W C X x P1

be a closed subvariety of codimension p which is flat over P1, and let Z be a codimension q closed
subvariety of X. Suppose that

(Z x P1) n W = S u T,

with S of codimension p + q, T o/* codimension p -\- q — e {e> 0) and

T c x x {<?i, . . . , ̂ } c x x (P1 - {o, oo}) ^ x x e.
Ay ^ (4.1.2)5 [Z x P1]. [W] == o- + T w^A CT a uniquely determined codimension p + q cycle
on S, and T <z rational equivalence class on T; no^ that we can write T = S^i T, z^A T, supported
in T n (X x { ̂  }). Then if t is the rational function on P1 identifying P1 — { oo } with C,
so div(^) = [0] — [oo], w^ have an equation of currents

[log 1 1 ̂ J A 8^ pi = log I ^ | 2 8, + S log | a, |2 6,,i-i
ze^A 6, a current on X X { fl,} representing T, ZTZ cohomology. (Note that log [t^^ is a Green
current for [W X { oo }] — [W X { 0 }], so the left-hand side of the equation is defined by2.2Al.)
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Proof. — First observe that the cycles div(^). [W] and Z X P1 meet properly,
hence if gy^ ̂  pi is any Green form for Z X P1, by 2.2.9

E10^ I l I2 w] A ^xPi = ^(O.TO A <?ZxPl + log | ^ |2 A 8^ A (Ozxpr

If we apply Theorem 2.2.2, with Y == div(^), g^ == log | 112 and Z replaced by Z X P1,
we find that

[log | 1 1 2 1 J A 8^ pi = log I ^ |2 8, + log | 112 6
fc

with 6 a closed current represented by an L1 form on a subset of U X X { fli, ..., a^ }.
& i= l

We can write 6 == S 6^ with each 9^ a current supported on X X {^}. Because

log | / |2 is a continuous function in an open neighbourhood of X X { fl, } for each
i':== I , . . ., ̂  log [ < |2 6, == log | a, |2 6,. Therefore

[log | t \%] A 8,, pi = log | 112 8, + S^log | ^ I2 6,

as desired.

3. Arithmetic Chow groups

3.1. Arithmetic varieties

3.1.1. Definition. — An arithmetic ring is a triple (A, S, F^) consisting of an excel-
lent regular Noetherian integral domain A, a finite nonempty set S of monomorphisms
(T : A -^ C, and a conjugate-linear involution of C-algebras, F^ : C2 -^ 0s, such that
the diagram

A -̂  0s

1 1 i-
A -̂  0s

commutes. Here 8 is the natural map to the product induced by the family of maps
{ (T : A -> C }o^s- Note that we have an induced commutative diagram:

C®^A -̂ > C?
c®Id Poo

y v

C rs^ A 5 y^ r*2
'Ow /I. ————^ 1̂

where c{z) == z'a.nd 8' == { Id ® (T }^s- we sha11 write C2 === 11 C^ so that cr: A -> Cy.
o £ S

3.1.2. Examples.

1) If the field of fractions of A is a number field F, let 2 = Horn (A, C) be the set
of all embeddings of A into C and let F^ be the usual Frobenius on C2 ̂  C ®Q F induced
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by the complex conjugation. In particular A could be F itself or any localization of the
ring of integers (Py in F. Unless we state otherwise, we shall always use this arithmetic
ring structure for subrings of number fields.

2) A = R or any subring of R, S consists of the obvious embedding A -> C
and Fop is the complex conjugation.

3) Let A == C itself. Then there is an isomorphism C ^ g A ^ C x C sending
z®w to (w, zw). The composition of this map with the natural map A -^C®gA
sending a to 1 ® a is the sesquidiagonal map 8 : a (-> {a, a). It will be convenient to view C
as an arithmetic ring via this map, i.e. we shall write C for the triple { C, { Id, c }, F^ }
where c : C -> C is the complex conjugation and F^(^, b) = (b, a).

3.1.3. A homomorphism of arithmetic rings f: (A, S.^oo) ^ (A', S', F^) is a pair
f-^: A -> A' and f^: 0s -> C^' with f^ a homomorphism of C algebras, such that
Yg.S == S'.^i and F^.y^ ==./rFoo« Since A and A' are subrings of C, f is necessarily
injective.

Note that there is a natural homomorphism of arithmetic rings ^p -> (P-^ corres-
ponding to each extension E/F of number fields.

Also observe that Z, viewed as an arithmetic ring via either of the two equivalent
structures of examples 1) and 2) above, is an initial object in the category of arithmetic
rings.

3.2. Arithmetic varieties

3.2.1. Definition. — If (A, S, F^) is an arithmetic ring, an arithmetic variety over A
is a scheme which is flat and of finite type over S = Spec(A), n : X -> S. IfF is the fraction
field of A, let us write Xp for the generic fibre of X; we shall, in addition, always suppose
that Xp is smooth. If s e S, then we write X(J) = '^:~l(s) for the fibre over s while, if
creS, we write X^^X®,,0 and X^ = U X^^X®^2. Finally, we write

o £ S

XOQ = X^(C) for the analytic space associated with the scheme X^.
The conjugate-linear automorphism Foo of C2 induces a continuous involution

of XOQ. Since Xp is a smooth variety over F, Xoo is a complex manifold. We shall
write A^'^X) for the space of (p, q) forms on X^, and similarly we shall write
^^(X) in place of^'^XJ. Observe that F^ acts on both A^*(X) and^*(X). We
define A^X^) (respectively ^^(X^)) to be the subspace ofA^(X) (resp. ^^(X))
consisting of real forms (resp. currents) satisfying F^o a = (— l^a. Note that dd0

maps A^(XB) to A^^+^Xn) and ^^(Xn) to ^p+lf ̂ '(X^). Similarly we
define:

A^(XR) - A^(Xn)/(Im 8 + Im0),

A(Xn)= ©A^(XB),
v^o
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and, if Xp is projective,
H^(XB) = = { a eH^(X,R) | F^ a = (- l^a}.

Note that when (A, S, FoJ == C, as in example 3.1.2.3) above, X is a complex variety
and A^'^Xg) is just the space of real ( p , p ) -forms on the complex manifold X(C) of
complex points of X.

3.3. Chow groups of arithmetic varieties

3.3.1. Let X be a Noetherian scheme; following [EGA IV] Z^X), the group
of cycles of codimension p on X, is the free abelian group on the set of codimension p
integral subschemes of X. An equivalent definition is:

Z^X) === © Z,v / asexw

where X^ = { x e X | 63:, a; has Krull dimension^ }. If T is a codimension p integral sub-
scheme, we write [T] for the associated cycle. If Y C X is an integral subscheme of codi-
mension (p — 1), with generic pointy eX^"^, then for wy fek[y}* (note that k [ y )
is the function field of y ) we define a codimension p cycle

div(/)=Sordy(/)[V].
v

Here the sum is over all integral subschemes V o f Y of codimension^ in X, and the defi-
nition of the order function ordy( ) may be found in [Fu] A. 3. Note that in contrast
with [Fu] Chapter 1, we have graded our cycles by codimension rather than dimension.
Finally we set

GIP(X) = ZTO/Rat^X),

where Rat^X) C Z^X) is the subgroup generated by all cycles of the form div(/).

3.3.2. If X is an arithmetic variety over A = (A, S, F^) with smooth, quasi-
projective generic fibre and Y is a codimension p integral subscheme of X, Yoo is an
analytic subspace of Xoo (which will be empty if Y n Xp = 0, where F is the fraction
field of A). Since Y is a subscheme of X, Yoo is invariant under F^, hence integration
over YQO defines a current in ^^(Xg), which we denote by 8y. Extending by linearity,
we obtain a map

Z^(X) -^^(XB).

3.3.3. With X and (A, S, FJ as above, let Z^X) be the subgroup of
Z^X)®^-1^-^^

consisting of pairs (Z == S%,[ZJ,^) such that g is a Green current for Z, i.e.
d^g+S^^g)

where c^=co(Z,^) eA^X,,).
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I f Y C X i s a reduced irreducible subscheme of codimension p — 1, let n : Y^ -> Y^
be a resolution of singularities ofY^ with TC proper. For fek(Y)*,f restricts to a rational
functionyon Yoo. The function log |y|2 is real valued and L1 on Yoo; it therefore defines
a current in ̂ "(Y). IfT: ̂  -> X^, is the natural map, then T,[log |/|2] e ̂ -11 ̂ (X).
This current is independent of the choice ofY (see 1.4.4); we will therefore write it as
.̂[log |y|2], for i: Y -^ X the inclusion. Since both Y and f are invariant under F^,

^[log |/|2] E^-^^-^XB). Its class in ^)-1'^(X^) will also be denoted z, log |/|2.
By the Poincard-Lelong lemma ([G-H], [Le]) applied to X^, dd0 i,[log\f\2] ==8div(/p
the current associated to the restriction to Xoo of div(/), viewed as a codimension p
cycle on X. In other words, div(/) = (div(/), — ^ log |/|2) is an element of Z^X).

3.3.4. Definition. — Let X be as in 3.3.2, then we define CIP(X) == Z^X) /R^X)
where RP(X) is the subgroup generated by all pairs div(/) == (div(/), — ^ log |/]2)
forjfeA(W)*, W a codimension^ — 1 integral subscheme, as above. We call the groups
CIP(X) for p ^ 0, the arithmetic Chow groups of X.

We write

CH*(X) == © CH^X)
P^O

and A(Xn) == © A^^X^),
a?^o

where A^ ̂ X^ = A^' ̂ X^/CIm 0 + Im B).

If T] eX(XjB), we shall also write Y) in place of (0, T]) eCH*(X).
We can define several maps involving CH*(X).
(i) ^CH^X) -^CH^X), (Z,5) h-.Z.
Since ^(div(y)) = div(y), this map preserves rational equivalence, so is well

defined.
(ii) a:^-1^-1^) -^CH^X), a ̂  (0, a).
(iii) G) : C]EP(X) -> A^^Xn), (Z, g) ̂  co(Z, 5) == 8^ + ̂ c^

Note that co is well defined since ^^[log |/|2] == 8^(y), so that <x)(div(/)) == 0.

3.3.5. We need some notation in order to state the next theorem. We let
ciP(X)o == Ker(<o :CIP(X) ^A^^X^))
Zy'p(XB) = subspace ofA^^X^) consisting of closed forms
GH^X)^ == subgroup of GHP(X) consisting of cycles homologically

equivalent to zero in the generic fibre.

If Xp is projective,
c : GH^X) ~> H^ ^(XB) is the cycle class map,

and h: Z^^X^) -^^[^^(XR) sends a closed form to its cohomology class.
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Also, recall that we have groups, for any Noetherian scheme X,

Ker{dv-l: ©,e^-1) W -> ®.ex^) Z }GH^-^X)
Im{ ̂ -2 : ©,ex(^) Ka k{x) ^ ©,ex(^) W )'

Here flP~1 and ^2)-2 are the differentials in the E^ term of the spectral sequence of [QJ
§ 7, so that GH^p ~1 is the Ef ~11 ~ p term of that spectral sequence (the notation GEP' v~1

is that of [Gi 1]). The differential rf^-1 sends/eA (A;)* to div(/) and d9-2 is essentially
the tame symbol: see [QJ § 7, [Gi I], [Gr 1] and [Gr 2].

Theorem. — Let X be an arithmetic variety over A = (A, S, F^). Tfcn ^r^ ar^ exact
sequences, where we assume that Xp is projective in (ii) and (iii):

(i) GH^-^X) -^ A^-^-^XB) -^CH^X) -^> CH^X) —> 0;

(ii) GH^-^X) -^IP-^-^XR) -^CH^X)

-^^^ GH^X) ® Z^ ^XB.) ̂  H^ ^Xa) —> 0;

(iii) CH^^-^X) -^ H^-^^-^Xn) -^ CHP(X)o —> CIP(X)o —> 0.

Proo/l — (i) If Z is a codimension p algebraic cycle on X, Z^ admits a real valued
Green current g by Theorem 1.3.5, and replacing g by (g + (— \Y~1 F*ao g)12 if neces-
sary, we may suppose that^ e ̂ p-l' P~1(XB); hence ^ is surJective. Clearly Im(a) C Ker ^.
If [(Z,^)] eKer(^), then Z = S^ div(/a) for/^ eyfc(WJ* with { W ^ } a finite set of a
codimension p — 1 cycles. Hence

{Z,g) ={0,g+ S^[log |/. |2]) + Sdiv(/J.
a a

Now dd\g + 2^.1og(|/, |2)) = ̂ {Z,g) GA^-^XB), therefore, by theorem 1.2.2,

g + ̂  i^og |/« |2] e A"-1- ̂ (Kg) C ̂ -1. "-^XB),

and so Ker(^) C Im(a). A form p eA2'-1'"-^Xa) lies in Ker(a) if and only if

(0,P)=Sdiv(/J,
a

i.e. Sdiv(/J=0,
a

and P^-S^logl/J2 m ̂ -^-^XB).
a

The first of these equations says that

®{/^}eKer{^-1 : © yfe(^ -> ® Z}.
xe^P-^ xex^

It follows that ^((B) = 0, hence we may view p as an element of A2'"1'^'^Xg). To
finish the proof of (i) it suffices to prove that the map

p:Ker^-1 ^A^-^-^Xn)

©0} ^-S^logl/J2
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vanishes on Imdv~2. Since this is a question about currents on Xoo, we may suppose
that (A, S, Fop) == C. Let Y C X be an integral closed subscheme of codimension p — 2>
and let/,.? e^Y)"1; it suffices to show that p^-2^/, g})) = 0 for all such Y,/, g.
Let % : Y -» Y be a resolution of singularities of Y such that D = div(/) u div(^) is a
d.n.c. on Y. From the covariance of the Quillen spectral sequence [Gi 1] we have a com-
mutative diagram, where TT : Y -> X is the composition of % with the inclusion Y -> X:

d^ ^ ^ ̂  p?K,AC?) —^ © k{yY —!— ^OO
1/GY( 1 )

\^ [^ [^

© K^k{x) 4^ © k{xY -^ ^-^-^X)
^ex^-2) a^ex^-1)

It suffices therefore to show that the composition pY. r f^==0 . By ([Gil], [Gr2]) we
know that the ^ y ?9 component of d^ is the tame-symbol

t,:K^k^)->k{^Y ___

( fv(flr) \

t^{f,s} ^(-l)^^^
6 /

associated to the valuation v of k(Y) corresponding to the prime divisor y.
Let D = div(/) U div(^); by assumption D = U^=i D^ is a divisor with normal

crossings on Y, with irreducible components { D^ } for i = 1, . . ., k. Consider the G00 forms
a = log |/|2 B log | ^ |2

and p = l o g | ^ p a log |/|2

on Y — D. Since both a and [B are 0(r~1 log r) near D, they are L1 on Y and so define
currents [a] and [p]. Since the form ^a + ^P vanishes on Y — D, the current ^[a] + ^[P]
is supported on D. If we can show that

^{a[a]+a[p]}=-p-(4{/,^}),
p" being the map with values in ^^(Y) defined by the same formula as the one defining p,
we will be done, since ^[a] + ^[P] = 0 in Q111^). This equation may be checked
locally on Y (note that being == 0 in Q111 is not a local question), so we may suppose
that ? = = A T O = { z e C W | | z | < l } . Furthermore, both sides of the equation are biad-
ditive in {f,g)y so it will be enough to consider two cases:

!)/= z^ g== z^ so D = D l = { z e A W | ^ ==0}. If 9 eA^-1*"1-^), then
(since Ba + 3(3 == 0)

(3[a] + W]) (9) = |imJ^^(a + JB) A 9.

But if we write z-^ = r^°, a + P == (2/r) log(r2) rfr, and hence (a + P) A 9 \r=e vanishes,
so 3[a] + 8[p] = 0. On the other hand, d{ z^ ^ } = { — 1 } ,̂ so p(^{ z^ ^}) = 0.

17
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9) /== z^ g == ^2? so D = DI u Dg, or/=== 2'i and ^ is a unit, or/is a unit and
^ = -2:2, or/and g are units. Then div(/) and div(^) meet properly, so

- PW/, g }) - log I/I2 8div(o) - ̂ g I 8 I2 8dM/)
== log 1/1^ log | g |2- log | g p * log \f\\

A direct computation shows that this is equal to (z'/S^) (^[a] + ^[p]) when/== ^ and
^r == ^; this is clearly true in the other cases.

This equality was also shown during the proof of Theorem 2.2.2. We could also
deduce (i) from Theorem 3.5.4 below, in which for Xp projective we identify p with
the Beilinson regulator map [Be 1].

Turning to part (ii) of the theorem, observe that, if Xp is projective, the image
of p is contained in

Ker^rA^-^-^XB) ->A^(XR)) ^ IP-1' ̂ (XR),

and the image of p is equal to the kernel of a restricted to IP"1' V~1(X^). Next observe
that (Z,,?) eGiP(X) is in the kernel of (^, - o) :GiP(X) -> GH^X) © Z^^X^) if
and only if (Z,^) e Ker(^) n Ker(<o) or, equivalently, (Z,^) = (0, a) and dd° a = 0,
i.e. aeH^-^^-^Xa). If (Z, ̂  eCH^X), then ^c^ + 8z = ^(Z, <?) hence 8z ^d
(o(Z,^) are cohomologous as currents, therefore ^(Z) == A(co(Z, ,§r)). Conversely if
Z eCH^X) and co is a closed { p , p ) form representing its cohomology class, then, by
Theorem 1.3.5, there is a g such that dd° g + 8^ == co. We have shown that
Ker(^ + A) = Im(^, — co); next observe that h, and therefore c + A, is trivially surjective.
This finishes the proof of (ii), and (iii) is a subexact sequence of (ii).

Remark, — If in parts (ii) and (iii) of the theorem we do not assume that Xp is
projective, the sequences remain exact if we replace Hy~11v~~l{'X^) by the group

Ker^arA^-^-^XB) -^A^(Xn)}
HF^-W^

Im a + Im 8

and :EP^(Xn) by the quotient ofZ^Xa) by the image of dd6.
However, such a group need not be finite-dimensional over R. On the other hand,

it can be shown (by extending the < c Dolbeault lemma " of [H-P] to forms of arbitrary
type) that if growth conditions at infinity are imposed to smooth forms on Xg, this
group becomes isomorphic to the Deligne cohomology group H^'^X, R(^)) (see 3.5
below). It would be interesting to redefine the groups CIP(X) by imposing such growth
conditions on forms.

3.4. Computations

In this section we shall compute GH^X) in some simple cases.

3.4.1. Note thatCH°(X) = GH°(X) is the free Abelian group on the irreducible
components of X.
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3.4.2. Ifp = 1 and X is projective over A and irreducible, then GIP^X) === A*
and A^X^) is the space of F^-invariant continuous real-valued functions on X^;
therefore by Theorem 3.3.5, exact sequence (i), we have

A* noeslo8112q) G^X,, R)^ —^ CH^X) —> GHi(X) —> 0.

We shall see in [G-S 4] proposition 2.5 that there is a canonical isomorphism between
GH^X) and the group Pic(X) of isometric isomorphism classes of line bundles on X
equipped with Foo-invariant Hermitian metrics over Xoo.

3.4.3. In particular, if X == A, then we have

A- uoe^0^ ( © R)roo _^ CHI(X) —> GHi(X) —> 0
o £ S

which, for a Dedekind domain, may be rewritten

A* -> ( (D R)^ -> CH^X) ^ C1(A) -> 0.
o G S

Here G1(A) is the ideal class group of A ([L 2]). Specializing even further, if A == 6p
is the ring of integers in a number field, we get

{ 1 } -> [JL(F) -^ ̂ ; -^ R^ ̂  -> CH^X) -^ Gl(^) -> 0

and we can identify
CHTO » P\J(F)/U^,

where J(F) is the idele group of F, see [L 2], F* is the multiplicative group F — { 0 },
and Up is the maximal compact subgroup ofJ(F). This isomorphism is obtained by sending
the idele (a,,) to the arithmetic cycle (Z, g), where Z == S y(aj [v] and g == — log [ a,, |2

v

when v is real and^ ==-- -~ 2 log | a^ |2 when v is complex. Notice that p is, up to a factor — 2,
the classical Dirichlet regulator map ([L2]).

In this case A = Sy, there is a homomorphism

deg:CHi(Spec(^)) ->R

(Z,^)^ logff (Z) +^J^

(here, if Z == © ̂ [pj is a divisor, with ^ prime ideals in ^p, then
ft(Z)=2^#(^),

and if g == {^ }^s. <?o e K. then f g = S ^).
Jx oes

Finally, if A == Z, then

deg : CH^Spec Z) -> R

is an isomorphism, since Z* == (Ji(%), and C1(Z) = { 1 }.
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3.5. The map p and the Beilinson regulator

3.5.1. Let X be a compact complex manifold. If AC C is a sabring and for
^eZ, A{q) = {ZniyACC is the associated constant sheaf, define, for p ^ 0,

H^(X, A{q)) = IP(X, A(y) -^ -^ ... -^r1).

These are the Deligne cohomology groups of X with coefficients in A; see [Be 1] and
[B-G], In [Be 1] Beilinson extended the definition to all pairs (X, U) with UC X an
open subvariety, in such a way that there are exact sequences

_______H^-^X.U;^_______(3.5.1.1) 0
' F^ IP-^X, U; C) + H^-^X, U; A(q))

->H^(X,U;A^)) ^H^(X,U;A(9)) nF^X.l^O) ^0,

where F'^X.U^C!) is the Hodge filtration constructed in [Del], As one would
expect, there are also long exact sequences:

... -^H^X,U;A^)) ^H^(X;A^)) ^H^(U;A(y))
-iH^X^A^)) -^...

and a purity theorem for Y C X a closed subvariety of codimension at in a smooth variety:
\0 if p < 2dH^(X,X-Y;A(y))

i H^-^Y; A{q - d)) if Y is smooth.

3.5.2. If X is a connected compact complex manifold, let C,(X, A(y)) be the com-
plex of differentiable singular chains with values in A{q); there is a natural map of com-
plexes C,(X, A(y)) -^^'(X) in which we assign degree 2d — i to C,(X, A{q)) {d = dim X).
If F- ^*(X) is the Hodge filtration,

F^^X)^ © ^'(X),
i^P

i + 3 = n
let

u : C,(X, A{q)) C F0 ̂ (X) -> ̂ *(X)

be the difference of the two natural maps. Then one sees easily that
H^X,A(^))^W(X,G^)[-1]),

in which C*{u) is the mapping cone ofu. I f Y C X i s a smooth subvariety of codimension n,
the map j\: H^(Y, A{q)) -> H^+2n(X, A{q + n)) is the map induced by the natural
maps j\: G,(Y, A{q)) -> G,(X, A{q)) and j\: ̂ .(Y) -> ̂ (X) [2n].

More generally, let X be smooth and compact, let Y C X be a closed analytic
subspace ofX, and let U be the smooth locus ofY. Let ^y(X) be the subcomplex of ^(X)
consisting of currents supported in Y. Let 9 e^'^X) be a current which is repre-
sented by a form ^ on U which is L1 on Y in the sense that it is L1 as a form on some
resolution of singularities of Y. If 9 satisfies the following conditions: (i) ^y == [a] for
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8^ = a a form lying in the {p — n)-th stage, for n == codimx(Y), of the Hodge filtration
on the complex of forms with logarithmic poles on a normal crossings compactification
of the smooth locus U C Y; and (ii) 88^ = 0, then 9 defines a class in the Deligne coho-
mology of U, hence in H^'^X, X — Y; R(j^)) by the isomorphisms at the end
of 3.5.1. Its image in the Deligne cohomology ofX can be represented by the current 9.

3.5.3. Two additional pieces of information that we shall need are:
1) If X is compact and smooth

H^-^R^)) ^ IP-^-^X.R^- 1)).

This follows from the exact sequence (3.5.1.1).
2) If X is smooth but noncompact, and X C X with X smooth and compact,

and X — X = Y is a normal crossing divisor on X, then ([Be I], 1.5.2)

H^(X, R(l)) ^ { 9 0 F(X, ^x/B(1)) I ̂  has logarithmic poles on Y }.

3.5.4. In [Be I], if Q^C A, Beilinson defines Ghern characters, for p, i ̂  0 and
YCX:

ch,: K?(X) -> Hl-^X, X - Y; A(z)).

In particular, for p == 1 there are maps

Ki(X) -^Hi-^R^)) ^ H-^-^X.R^ 1)).

Using the Brown-Gersten-Quillen spectral sequence and the Riemann-Roch theorem
one can show ([She], [So]) that there is a canonical isomorphism

Ki(X)^ ©CH^-^X),.
P^O

Composing this isomorphism with the Chern character, we get, for each p ^ 1, a map
induced by chy,

^GIP^-^X) -^IP-^-^X.R^ - 1)).

Theorem. — Let X be a smooth projective variety over C. Then if

p^CH^-^X) -^IP-^-^X.R^- 1))

is the map constructed in 3.3.5, py === — 2r^.

Proof. — Let W be a reduced closed subscheme of codimension p — 1 in X, and
let Wi, . . . , W^ be its irreducible components. Suppose/^ e^W^)* for i = 1, ..., k are
such that Sdiv(/,) = 0 in Z^X), so S {/,}=== 9 represents a class in GH^-^X).

Since 9 is supported on W, 9 determines a class in GIF'^W). IfW° is the non-singular
locus of W — div(/), then, under the restriction map (W? = W° n W,)

GH^W) -.GH^W0) ^ ®H°(W?,^o),
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y maps to © [f^}. We have a commutative diagram

GH^-^X), -. K,(X)<, —————————. HIT^R^))

t t f
GH^W), —> K^X)^——————> H^-^X-WsR^))

K^X^ —^ H^-^X - (W - W°), X - W°; R(/>))

H°(W°,^), -^ K,(Wo)a —————————> HWR^)).

The isomorphisms between Deligne cohomology groups follow from purity for Deligne
cohomology, while the isomorphism K^X) s: K.i(W°) follows from Quillen's localization

n

and devissage theorems ([Q,] §7). Now consider the current [log | <p |] = S ^a.Pog I/a |] '•>
by the remarks at the end of 3.5.2, [log | y j] defines a class in H^-^X, X — W; R(/»)).
Under the isomorphism

H^-^X, X - W; R(/>)) ^ ® H^W.0, R(l)),

[log | y |] corresponds to ®,[log |/, []. Note that [log |/, |] e F(W?, (Pw?/R(l)) satisfies

^[log |/< |] = [^] . By [Bel] § 2.3, ch^: K^(W?)-^H^W?, R(l)) sends {/,}to

PQg I/* |]» while by the Riemann Roch theorem (ibid.) we have a commutative diagram:

K,(X) ————> H^-\X,R(p))

I I
K^(X) -^ H^-^X, X - W; R(/>))

Ki(W°) ——ch—^ H^(W°;R(1))

Hence ch,(y) = [log | <p |]. Finally p(cp) = - S^Jlog [/, |2] = - 2r^(y).

3.6. Flat-pullback and pushforward

3.6.1. Theorem. — Let f: X —Y be a morphism between arithmetic varieties over an
arithmetic ring A == (A, S, F^). Writing F for the fraction field of A, suppose thai f induces a
smooth map Xp -> Yp between the generic fibres ofX. and Y. T^n:

(i) If f is flat, for all p > 0, there is a natural homomorphism
/*: CH'(Y) -> CH^CX).
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(ii) If f is proper, and X and Y are equidimensional, there is a map
/^CH^X) ^CKP-^Y)

for d = dim X — dim Y.
Iff9' X -> Y, g : Y ->• Z are two maps inducing smooth maps between generic fibres, then

f * g * = {§fY an^ (,?/)* === ^*/ when either composition makes sense.

Proof. — First suppose that/is flat. I fZ== S^[ZJ e Z^Y), then/* Z = S^[/-1 ZJ
(see [Fu] 1.7) is a codimension p cycle on X. Since/: Xp —^Yp is smooth, so also is

/ o o : X ^ - > Y ^ ; hence for any current Te^'^Y), /; T may be defined by
f^ ^Xy) = T(/oo,9) for 9 any compactly supported form on X^, i.e. as the adjoint
of the "integration over the fibre95 map /„,: A^(XJ -> A^-^-^YJ. If Z C Yp
is an integral subscheme, we have a Cartesian square

/-i(Z) —> Xp

^ [fy ^

Z ———. Y,

in which/^ is a smooth map. If 9 is a compactly supported G00 form on Xoo,

/oo*(?) |z =/Z*(y /-1(Z))?

hence the current of integration over f~l{Z), S/^zp is /* ^z? the pull-back of the
current of integration over Z. Since integration over the fibre commutes with 8 and ^3
hence with dd\ f^: ̂ ^(YJ -> ^^(X^) commutes with rf^. Now suppose that
(Z^eZTOThen

dd^g^f^d^g
=/^((o(Z^)-8^)
=/^ (o(Z^) -/^ 8^
=/<; (o(Z,^) -8,^.

Hence /; g is a Green current for /* Z, and we can define /"(Z, g) == (/lt Z,/^ ,g). If
z : W -̂  YOQ and 9 is an L1 form on W and ^ 9 the associated current on Y^, then wri-
ting ̂ (9) for the pullback of 9 to/'^W) C X^, we have by the Fubini theorem for
L1 functions:

/o^y) =^-I(W)»J^(<P).
Hence, if g eA(W)* is a rational function on a codimension p — 1 subvariety of X,

/* divQ?) == (/* div(^), /* ̂ .[- log | g |2])

= (div(/*(^)), i/-i<w,.[- log \fi g |2])
=div(/'{^}).
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Therefore/* : CH^Y) -> CH^X) is well defined; compatibility with composition may
be checked by the reader. Now suppose that X and Y are equidimensional and that/
is proper of relative dimension d. Then

/rZ^X)-^-^)

is well defined, see [Fu] 1.4. If Z is a codimension p integral subscheme of X,

/.([Z]) = ̂ L/(Z)]
[k{Z) : A(/(Z))] if this is finite,

^z ===

0 otherwise.

Now observe that if 9 eA^-^-^YJ (for n = dimXJ,

/A^-J,/*?-^/^!^))
deg(Z//(Z))J^<p if Z-^/(Z) finite
0 if dim/(Z) < n — p, since then 9 | ̂  =. 0.

Hence/ on cycles is compatible with/ on currents. Now set /(Z,^) = (/Z,/^).
Then

^c/^+/8z=/<o(Z,^.

Since/^ is smooth, / <o(Z,^) is G00, so/(Z,^) eZ^-^Y). Finally, if hek[Wy is a
rational function on a codimension {p — 1) integral subscheme of X, we must show
that/ div{h) is itself the arithmetic divisor of a rational function, or is zero.

If/^ ==y|^:w -^W =/(W) is generically finite, then ([Fu] 1.4)
/ div(^) = div(Nw^i^(A)).

This proves our assertion when W, hence W, does not meet the generic fiber. When
char k{W) = 0, there is a dense open subset U C W such that/^ ^/w^U) -> U is finite
and ^tale. If cp is an L1 function on W, then for y e U, /w*(?) (j0 = ^xef-^v) <P(A<)•
Therefore / log | h \ = log | Nm^^{h)\, and so / div(A) - div(Nm,^^)(A)).

If/w is not finite, then / div(A) = 0 by [Fu] Thm. 1.4, while / log | h [ = 0
by the argument involving dimensions used when defining/ on Z*(X).

4. Cup products and pull-backs

4.1. Chow groups with supports

4.1.1. I fXis aNoetherian scheme and YC X is a closed subset, Z^(X), the group
of codimension p cycles on X with supports in Y is the free Abelian group on the set of
codimension p integral subschemes of X which are contained in Y; i.e., ^ eZ^-(X) if
and only if ^ = S^[ZJ e Z^X) and for all z, Z,C Y. We define CH^(X), the Chow
group of codimension p cycles with supports in Y, to be the quotient of Z^-(X) by the
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subgroup generated by cycles of the form div(/), for/e^W)' with W a codimension
p — 1 integral subscheme of X contained in Y. Observe that there is an exact sequence

CH^(X) -> GIP(X) -^ GH^X - Y) -> 0.

More generally, let 9 be a family of supports on X, i.e. a family of closed subsets of X
such that the union of any two elements of 9 is again an element of 9. Define

Z^(X) = liî  Z^(X)
Y^

and GH^(X) = lii^ GH^(X).
YG^

Note that GH^(X) = GHj^(X).
Finally, observe that if Y C X is a closed subset of codimension p, then

GH^(X) ^ Z^(X)

while if X { p } is the family of all closed subsets of X of codimension at least p then
CH^(X) ^ Z^(X).

By [So] Theorem 4 and [G-S 3] Theorems 8.2 and C, if X is a regular Noetherian
scheme, there is an isomorphism

GHCT^Gr^X^

(Gr^ is the graded group associated to the y-filtration on K-theory with supports, [So]
and [G-S 3]). This isomorphism allows us to define products

CH^(X)^® GH^X)^ -> GH^^(X)^

for all pairs Y, Z of closed subsets of X. If T] e Z^(X) and ^ e Z^(X) are cycles which
intersect properly, then by [G-S 3] Theorem C, their product T) . ̂  under this pairing
is given by Serre's tor-formula for intersection multiplicities ([Fu] 20.4, [Se]).

This product extends to Ghow groups with supports in families of supports. If
9, ^ are two such families, define

9n+={U(Y,nZ,) |Y,E9,Z,e^} .

Taking the direct limit over all Y e 9 and Z e ^ of the product defined above, we obtain
products

GH^X)Q®GHS(X)Q ->GH^(X)Q.

4.1.2. Remark. — If X is of finite type over a field, this product exists for Ghow
groups with integral coefficients; cf. [Fu], [Gi4].

4.2. Cup products on arithmetic varieties

4.2.1. Let A == (A, S, FoJ be an arithmetic ring with fraction field F, and suppose
that X is an arithmetic variety over A. If

fin == { Y C X | Y closed, Y n Xp = 0 },
18
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there are exact sequences

© k(xr ̂  ZTO ̂  z^(Xp) e GH^(X) -> o
a?ex^-1)

{»}nXp=0

and © ^ ̂  Z^Xp) © GH^(X) -> GHP(X) -> 0.
a,ex^-1)

Also observe that ifrQ&) == { Y C X | Y closed, Y n Xp has codimension ^ p }, then there
is a canonical isomorphism

CH^(X)^Z^X^©GH^(X).

Suppose in addition that X is regular and that Xp is quasi-projective. If A: e X^"^
with {^n Xp == 0 and/e^)*, then div(/) n Xp = 0. Therefore [log |/|2] = 0,
and so div(/) = (div(/), 0). Hence there is an exact sequence

© k{xy ̂  z^Xp) © CH^(X) -^ cip(X) -> o,
a?ex^^-1)

i.e. in the definition ofGH^X) we can divide out by rational equivalence in the closed
fibres before taking Green currents into account. (Notice that Z^Xp) makes sense
because Xp is an arithmetic variety over the arithmetic ring F.)

4.2.2. Now suppose that Y and Z are integral subschemes of codimensions p and q
respectively, which intersect properly on Xp (i.e. codim(Y n Z) == codim(Y) + codim(Z)).
Then [Y]. [Z] is not necessarily well defined as a cycle on X since Y and Z may not
intersect properly on the whole of X. However [Y]. [Z] is well defined as a class in
CH^(X)Q, and since Y n Z er(j& + ?), [Y].[Z] defines a class in

(Z^X^CH^X)^.

We can therefore define, if^y and g^ are Green currents for Y and Z respectively,
(4.2.2.1) ([Y],^).([Z]^z)=([Y].[Z],^*^)

e (Z^+^Xp) ©GH^X^Qe^^-^+^-^XB).

Note that if Y and Z intersect properly on the whole of X, not just on Xp, then we can
define
(4.2.2.2) ([Y],^).([ZW = ([Y].[Z],^*^) eZ^(X).

4.2.3. Theorem. — Let A = (A, S, F^) be an arithmetic ring with fraction field F.
Suppose that X is an arithmetic variety over A which is regular and has quasi-projective generic
fibre Xp. Then:

(i) For each pair of non-negative integers {p, q), there is a pairing
(4.2.3.1) CHTO^GH^X) ^CH^X)^

a ® p \-r ajB

which is uniquely determined by the following condition:
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If Y and Z are integral subschemes of X which intersect properly on Xp, z/* g^ and g^ are
Green currents for Y and Z, and if a ("r .̂ (BJ is the class of ([Y],^y) (resp. ([Z],^)),
to ap ^ the class of the element ([Y],^y). ([Z], g^ defined by the formula (4.2.2.1).

(ii) The product (4.2.3.1) makes CH*(X)Q into a commutative, associative ring.
(iii) I f p or q = 1, there is a unique pairing

(4.2.3.2) CIP(X) ® CIP(X) -^CH^+^X)

wA^A ^ given by formula (4.2.2.2) for cycles meeting properly on X. This pairing induces the
pairing (4.2.3.1) taking values in CH^^Q. When a, p eCH^X) <W y eCH^X), q ^ O ,
we have
(4.2.3.3) ay == ya e CH^^X)

^/Zrf

(4.2.3.4) a(py) = P(aY) e CH^^X).

Before proving the theorem, we shall prove three lemmas. We continue using the
same notation.

4.2.4. Lemma. — Let Y, Z and W be integral subschemas o/*X which intersect properly
on Xp and which have codimensions p, q and r respectively. Then, considering Y and Z as a pair
of integral subschemes which intersect properly on Xp, we have

(Y^).(Z,^)==(Z,^).(Y,^).

Furthermore, ifX.y is projective, and ifgy^gz and g^ are Green currents for Y, Z and W respec-
tively,

(4.2.4.1) ((Y, ̂ ) • (Z, ^z)) • (W, ̂ ) = (Y, ̂ ). ((Z, ̂ ). (W, ̂ ))

in (Z'(Xp) ® GH^(X))Q®^-1- '-^X). (Here s =p + q + r.)

Proof. — By [G-S 3] 1.4 and 8.3, we have
([Y].[Z]).[W]=[Y].([Z].[W])

and [Y].[Z]=[Z].[Y]

in (Z*(X,)®GH^(X))Q, while by 2.2.9 and 2.2.14,

Sv * Sz = gz * gv
in ^(X), while, if Xp is projective,

C?Y * gz) *gw=gv* {gz * gw)-

4.2.5. Before stating the next lemma, we must examine the properties of
rational equivalence more closely. If X is a scheme, let us write R^,(X) for the
group (B K,,_.(^)). For i = p, we get R^(X) = Z^X), while for i =p - 1, we

a e x^
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get R^'^X) = © k{xy; let us call the elements of the latter group K-^-chains,
a.gX^-1)

and let us write a typical K^-chain as/= ^[fw] ^^fw e^(W)* as W runs through a
finite set of integral codimension {p — 1) closed subschemes of X. For each p ^ 1, we
define a homomorphism

divrR^-^X) -> Z^X)

S[/w]^Sdiv(^)

and, if X is arithmetic,

diviR^-^X) -^Z^X)

S[^]^(Sdiv(^),-log[/|2).

Note that, to simplify notation, we have written log |y[2 for the current S^ log [j^ [2.
By the support of a K.i-chain/= S[/^] we mean the Zariski closed subset ofX which is
the union of all W for which f^ + 1. If/e R^-^X) is a K^-chain and S == { Z^ .. . Z^ }
is a collection of integral closed subschemes of X, we say thaty= S[^] meets 3£
properly if for all Z e 3£\ (i) each W for which ̂  4= 1 meets Z properly, and (ii) div(^)
meets Z properly for all W. We say that f meets 3S almost properly if condition (ii) alone
is satisfied; note that this condition is strictly stronger than requiring that div(y) meet 3£
properly. Recall that the excess of a cycle Y = S^[YJ with respect to 3£ = { Z^ . .. Z^ }
is the supremum, over all i and allj, of the excess ofY^ with respect to Z^., which is itself
the maximum ofcodim(Y^) + codim(Z^) — codim(T) as T runs through the irreducible
components ofY^ n Zj. We define the excess e{f) e N off, with respect to S ' , to be the
supremum, over all W for which f^ =(= 1, of the excess of div(^r) with respect to 3S\
thus e{f) == 0 if and only ify meets 2£ almost properly. Suppose that W and Z are
integral closed subschemes of X, of codimensions p and q respectively; let us write
W n Z == S U T with S and T closed, S of codimension p + y? and T of codimension
< p + y. If an element ye^(W)*, viewed as a K^-chain, meets Z almost properly, then
div(y) n T == 0; otherwise div(y) n Z would have components with excess dimension.
It follows that, since div(y) n T = 0,f restricted to T is a global unit (on T).

We now want to study products of cycles and of K^-chains on a regular scheme X.
If W is a closed integral subscheme of codimension p — 1 in X, ye^(W)*, and
Z is a codimension q algebraic cycle meeting both W and div(y) properly then
we can define a Ki-chain [^j. Z as follows. Since W and Z meet properly, we have a

k

cycle [W].Z = S ^[SJ; since div(y) also meets Z properly, f is a unit at the generic

point of each S,, so we have rational functions y|g. e^(S,)*, and then we define

[/LEZ^Sn.t/I^SL/'1.^].
This definition extends by linearity to give a product f. Z whenever f is a K^-cham
meeting an algebraic cycle Z properly.



ARITHMETIC INTERSECTION THEORY 141

Suppose now thatyeA(W)* with div(jf) meeting Z properly. Then, as above,
W n | Z | = S u T with S of codimension p + q — 1 and div(/) n T = 0. As
in 2.1.2 we can write [W].[Z] = S^[SJ 4- t, the S, being the irreducible compo-
nents of S, and t being a rational equivalence class supported on T. Unfortunately,
unless T is a variety over a field, t is defined only as a class in GH^^^X),^ rather than
in CH^-^X). Since/IT is a unit, we have a class [/] .t e GIP+^+^-^X)^ (or
in GHP+qJV+q~l(X.) if X is a variety over a field). Finally we define

[/].[Z]=^[/|^+[/U

while this is not a well defined Ki-cham, it is well defined as an element of
R^""1/^]^"2) (®Q, if X is not a variety over a field), i.e. up to the image of
©a^ex^"^ Kg^^)) -> ®a.^x^-1) ^W* For our purposes, this is sufficient since, by 3.3.5,
both div and div vanish on rf(R^~2). Having defined /.Z for fek(WY, we extend
to general f meeting Z almost properly by linearity.

More generally, if g : Y -> X is a map of schemes then g(Y) is a finite union of
locally closed subsets (<( strata ") Z,, i == 1, . .., N, such that, for i == 1, . .., N, the
fibres of^ have the same dimension at all points of Z^. If/e R^'^X) is a K^-chain on X
which meets the Zariski closure of each Z, almost properly, then by a similar method
to that used above, we can define a pull-back Ki-chain g^f) e R^-^Y^R^-^Y))
(® Q^ if X is not a variety over a field).

Lemma. — If f is a codimension (p — 1) K^-chain on X, aW Z is a codimension q cycle
which meets f almost properly, then:

1) We have an equality of cycles (in Z^^X)^ ifX. is not a variety over afield):

div(/.Z) =div(/).Z.

2) IfX. is an arithmetic variety, we have an equality of currents in QV+q~11p+a~l{'K^):

(4.2.5.1) logl/pAS^logl/.Z^.

More generally, if g : Y -> X is a morphism, and f meets each stratum of g(Y) almost properly,
we have

1') div(^(./))=^(div(/)),
2') log | g\f^=g' log |/|2.

Proof. — Since the proofs of 1') and 2') are similar to those of 1) and 2), we only
give the proof for 1) and 2). Without loss of generality, /= [/] for/e^(W)*, and
W C X an integral subscheme. 1) Choose fek{X.)* such that f\^=f and div(/)
meets Z properly; then div(/.Z) = div(/). ([W]. [Z]) by [Fu] Chapter 2, hence the
equality follows from the associativity of intersection products. 2) Since — log |y|2 is
a Green current for div(/), log |/|2 A 8^ = log |/|2 * g^ for any choice of ^- By the
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commutativity of the •-product, the left hand side of equation 4.2.5.1 can be written
l°g \f\2^ ^z — ^(/)A <?z- Choosing/as in part 1) above we have, by definition, that

/.[Z]=/[W][Z]==/(.+^)

for [W]. [Z] = S^[SJ + t == ^ + t as above. Hence
log I/. Z p = log 1/pA (8,+8<),

which, by Theorem 2.2.1, is equal to

l°g I/I2 A (Oz A ̂  - 8^^ A ̂  = log I/? A ̂  ~ 8,̂  A ̂

= log |/|2A 8^

4.2.6. Let us temporarily fix a field F of characteristic zero. If LCP" == P**
is a linear subspace, and Z C P" is a subvariety for which L n Z = 0, then there is
a subvariety C^(Z) C P", called the cone over Z with vertex L, one definition of which
may be found in [R]. A more geometric formulation of the definition is to say
that GI/Z) = ^(^(Z)), T T ^ r P ^ — L - ^ P p being the projection map, and r + 1
being the codimension ofL in P\ As is well known, if dim (Z) < r, then for L belonging
to a dense Zariski open set in the Grassmannian of all (n — r — 1)-planes in P71, the map
Z->7rJZ) is birational, and hence there is a canonical inclusion A(Z) C A(C^(Z)).
Therefore, if/e R^^) and p ^ n — r + 1, then for the generic L we have a well
defined Ki-chain C^(/) e R^t^^^P^. It follows directly from the definition of a
cone that div(G^(/)) = C^(div(/)). Also, if/ is supported on a subvariety XCP"
and L n X = 0, then C^{f) meets X properly.

Lemma (Moving lemma for ^-chains). — Let X be a smooth quasi-projective variety over
an infinite field F. Suppose thatfe R^-^X) is a K^chain such that div(/) meets a finite col-
lection 3£ == {Zi, . . ., Z^ } of subvarieties of X properly. Then there exists a K-^chain g, such
that

(i) divQO = div(/),
(n) g -f represents 0 in GIP^-^X),

(iii) g meets 3£ almost properly.

Proof. — Embed X in P\ If the dimension ofX is r, applying the main lemma of [R],
we can find a codimension r + 1 linear space L C P" such that L n X == 0 and

(i) TT^ is generically finite on the support of/so that C^(/) is defined;
(ii) if e = excess with respect to ^T, ^(G^(/).X —/) ^ Max(<?(/) — 1, 0);

(iii) C^(div(/)) == div(G^(/)) meets 3£ properly.

Therefore, as in op. cit., we can find linear subspaces l*i, . . . , Lg, such that

/^(-ir^^.x+^i)^



ARITHMETIC INTERSECTION THEORY 143

with/,, meeting 3£ almost properly. We can find elements g, e Aut(P71) such that g, C!^(/)
meets G and 3£ properly. Joining each g, to the identity in Au^P^) by a rational curve,
we obtain, just as in the theorem of section 3 of op. cit., a family/ of Ki-chains on X,
parameterized by t e P1, such that

(i) /o =/;
(ii) /oo meets 3K almost properly;

(iii) div(/), for all but a finite number of values of/, meets 3£ properly.

The family {/ } forms a Ki-chain/== S [fy] on X X P1, with each V flat over P1

^ v
and/meeting div(^) properly. Since each V is flat over P1 and meets div(^) properly,
we have an element

SU/w}^ © K,^).
w a;£(XxP1)^-1)

Under the differential

d: © K^k(x))-^ © KiTO),
asGtXxP1)^-1) a;e(XxP1)^

this element maps to

^(2{ t,f^ }) = div(f)./- { t} div(/)
= / o X { 0 } - / » x { o > } - { Q d i v ( / ) .

_ /^/ _

By (iii) above, for each Z e <2T, the K^-chain { / } div(/) meets Z X P1 almost properly.
Hence, i f ^ : X x P l - > X i s t h e projection, A({^}d iv(/)) (A is defined as in [Gi 1]
and commutes with d) meets Z almost properly and

WSU/w})) =f- (/. +A({^}div(/))).w

Therefore g =/oo + A({ Qdiv(/)) satisfies the conditions of the lemma.

Remarks. — 1) I f / :X->Yis a morphism between quasi-projective nonsingular
varieties over a field, let R^^X)^ denote the group ofKi-chains h = S [h^] for which,

w
for all W, /^(div^)) has codimension at least {p — 1). Then taking 4.2.5 and
lemma 4.2.6 together, we see that there is a well defined map

/*: prw^Rrw ^Rr^x^RrTO.
2) This lemma and its proof are closely related to Corollary 2.5 of [Bl 3].

4.2.7. Proof of Theorem 4.2.3. — Suppose that X is a nonsingular arithmetic
variety over A, with quasi-projective generic fibre Xp. If a eCH^X), (3 eCH^X),
then by the moving lemma for cycles (Section 3, Theorem, [R]), applied to Xp, we
can represent a and (B by cycles (Y.^y) ^d (Z, gz) (respectively), which meet
properly in the generic fibre Xp. We want to set a. (B equal to the class represented by
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(Y? gy) • (Z, gz) '9 therefore we must show that this class is independent of the represen-
tatives of a and (3 chosen. Using the moving lemma again, together with the commuta-
tivity of the product (lemma 4.2.4), it suffices to show that if (Y', g'-y) is another repre-
sentative of a, such that Y' meets Z properly in Xp, then

(Y,^).(Z,^) - (Y',^) (Z,^) eR^(X)Q.

By assumption, (Y, ̂ ) - (Y', <?y) == div(/) for some Ki-chain/= S[/^] e R^W
While f itself may not meet Z almost properly in Xp, we know by Lemma 4.2.6
that there exists an element y e R^'^Xp) C R^-^X) such that, if h =/+ d^, h
meets Z almost properly in Xp. Since d i v o ^ = 0 , we see that div(A) = div(V),
while Theorem 3.3.5 tells us that log | h |2 == log |/[2 e Q9-1- ̂ (X) and hence
div(A) == div(/). Now by Lemma 4.2.5

div(A.Z) = (div(A) .Z, - log | h |2 A S^)

=dIv(A).(Z,^)

=div(/).(Z,^).

This completes the proof of (i). To prove (ii), first observe that, by Lemma 4.2.4, the
product is commutative in general and associative when Xp is projective, and has (X, 0)
as unit. To check associativity when Xp is quasi-projective, observe that by 2.1.3 we
can explicitly compute the change in the cup product resulting from a change in Green
currents, hence given three classes a, (B, and y inCH(X), we may check the associativity
of the product a(By by replacing the three classes by three classes having the same image
in the ordinary Chow groups ofX; i.e. we may make arbitrary choices of Green currents
and we can change algebraic cycles by rational equivalences. Using resolution of singu-
larities on the generic fibre we can construct a regular scheme X, containing X as an
open subscheme, such that Xy is projective. Let Y, Z, W be three irreducible cycles on X
meeting properly on Xp. Choose Green currents ^y, g^ g-^ for their closure in Xp,
with restriction ^y, g^, g^ to Xp. The product of the three classes (Y,^y), (Z,^),
(W,^) in CH(X)Q is associative, hence the product of their restrictions to X is too.

Turning to (iii), we first remark that if D is a divisor on X, then given any finite
set of points {j/i, . . .,j^}C X, D is rationally equivalent to a divisor D' such that for
all i, x^ ^ \ D' | ([ D' | = the support of D'); this is because any regular semi-local ring
is a unique factorization domain. Hence given any finite set { Y^, ..., Y^ } ofsubschemes
of X, D is a rationally equivalent to a divisor D' which meets all the Y^ properly, i.e. so
that Y, $ D\ Hence given a eGH^X) and (3 e GH^X) we can choose representatives
a = (D, g^) and (B = S (Y^, g^) such that Y, is integral for all i and D meets Y^ properly

for all z, so we can define

a . (B=(SD.Y, ,S^*&).
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If DI and Dg are two rationally equivalent divisors meeting a codimension q
subscheme Y C X properly, then Di — Dg == div(/) and /| Y is well defined, hence
by Lemma 4.2.5

div(/).(Y,^)=div(/|^)

for any choice of g^, hence a.(B is independent of the choice of representative of a. If
W is an integral subscheme of codimension q — l o f X and^ e^(W)11', then i f j B = div(^),
we can choose a representative (D, g^) for a e CH^X) such that D meets W and div(^)
properly. Then by Lemma 4.2.5 (D,^p).di^) represents zero in CH^^X). There-
fore CH^X) ^CH^X) -^cir^X) is well defined. Similarly there is a well defined
product CH^X^CH^X) -^GFP^X).

To prove (4.2.3.4) suppose that oc=(D,^), (B==(E ,^ ) and y^Z,^)-
Since Gartier divisors can be moved in their rational equivalence class until they meet
any cycle properly, we can assume that D, E and Z meet properly. Then, when Xp is
projective,

a(PY)=([D].([E].[Z]),^*(^*^))

=([D].([E].[Z]),^*(^*^))

by the associativity and commutativity of the *-product. Since the intersection pro-
duct for cycles which meet properly is also associative and commutative ([Se] V) we
obtain

a(PY) - ([E] . ([D] . [Z]), ̂  * (^ * g^)) = (B(OCY).

The general case of (4.2.3.4) follows as in the proof of (ii). The proof of (4.2.3.3),
which is similar, is left to the reader.

Remark. — In [G-S 4], Theorem 7.3.4, the group C]-P(X)Q is shown to be isomor-
phic to the weighty part K^X)^ of the Grothendieck group &o(^-) ofHermitian vector
bundles on X. This identification uses 4.2.3 (iii) (to define characteristic classes) but
not 4.2.3 (i). Since IS^X)^ has a graded ring structure coming from the tensor product
ofHermitian vector bundles, this gives another proof of 4.2.3 (i) and 4.2.3 (ii).

4.2.9. Theorem. — Let X be as in Theorem 4.2.3, then with respect to the ring structure
constructed above, the maps

^ ^(X^-^GH^X^

and o) :GH'(X)Q ->A(Xa) == © A^Xp)
p^o

defined in 3.3.4 are both ring homomorphisms. In addition, the product 4.2.3.2 is compatible
with ̂  and <o.

19
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Proof. — That ^ is a ring homomorphism is essentially a tautology, for i fa= (Y, g^)
and (3 == (Z,^) then a .(B = ([Y]. [Z], ^y * gz) with [Y].[Z] defined using the inter-
section product GH^(X) ® GHj;(X) -.CH^^^Q- Turning to <o, observe that

<o(a.P)=o)(([Y].[Z],^^z))
= rf^Y * gz) - S^.tz]

= OY A ^z by Theorem 2.1.4
== <o(a) A co((B).

That the product CH^X) (^CH^X) -^CH^^X) of (4.2.3.2) is compatible with <o
follows from the discussion above, since A(Xg) is a Q^-vector space. Compatibility with ^
is again implicit in the construction of the product. An immediate consequence of the
theorem is

Corollary. — (i) CH*(X)o^ == Ker(co) is an ideal ^CH(X)Q.
(ii) (Ker^)Q = (A(X^/Image (p))^ is an ideal inCH(X.)^

4.2.10. If X is projective we can in fact do better than Corollary 4.2.9; we
consider Ker((o) first, and recall from 3.3.5 that GH*(X)o is the subgroup of GH*(X)
consisting of cycles homologically equivalent to zero in Xoo, so that ^ induces a surjective
map fromCH'(X)o to CH*(X)o.

Theorem. — Let X be as in Theorem 4.2.3 and suppose also that the generic fibre Xp is
projective. Then ^CH*(X)Q module structure on the ideal CH*(X)^Q is induced by a GH*(X)o
module structure, i.e., we have a factorization

cm^x^cH^x) —> cip-^x^Q
i^ /

CHTO^GH^X)

Proof. — It suffices to observe for (Y.^y) eCH^X^ and (Z,^z) eCH^X),
that gy * g^ = gy A §z + <^y A gz == gy A &z is independent of g^.

Corollary. — If X has projective generic fibre, the product of Theorem 4.2.3, restricted
to CH*(X)o, factors through GH*(X)o, i.e. we have a well defined product:

CH^X^GH^X^ -^GIP^X^.

Proof. — This follows from the fact that the product of 4.2.3 is commutative.

4.2.11. Turning to Ker(^)Q, observe that its CH*(X)Q module structure is induced
by a CH^X)^ module structure on A(Xa); if aeCH^X) and OeA^Xa),
a. 6 == co(a) A 6. Note that Ker(^) is not a square zero ideal, but rather its product is
induced by the non-unitary associative ring structure on A(Xg) defined by the product
a.p = (dd0 a) A p. Note that this product is both commutative and well defined because

dd6 y. A (B — a A dd0 P = (i/27r) (3(Ba A (B) + 8(a A 3(3)).
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However, ifXp is projective and we look at the subgroups (IP' 3)(XB)/Image(p)) C Ker(^),
we have:

Corollary. — The quotient © (H2>'p(XR)/Image(p))Q is a square zero ideal in
—•̂ •̂  p^oCIT(X)Q.

Proof. — The group in question is the intersection of the ideals Ker(^) and Ker((o),
and hence is an ideal; the vanishing of the product follows immediately from Corol-
lary 4.2.10.

Remark. — Let H^XB)-^ be the subring of © HP' ̂ X^) consisting of algebraicp^o
cohomology classes; i.e. it is the image of the cycle class map GH*(X) -^^'"(Xa).
Then the CH*(X)Q module structure on © ^^(X^llm^)) is induced by an

3?^ 0

^*(^R)aig module structure.

4.3. Intersection numbers

4.3.1. Let TT : X -> S be a proper map between nonsingular arithmetic varieties
over an arithmetic ring A such that the map TT : Xp —»- Sp (F is the fraction field of A)
on generic fibres is smooth. If d = dim X — dim S and p + q = d + I? then we can
construct a pairing
(4.3.1) < , ^CH^X^CH^X) -^CH^Q

by composing the product (4.2.3.1) with the direct image map

T^CH^TOQ^CH^Q.

In particular, if X is a projective nonsingular arithmetic variety over Z, of dimen-
sion d + 1 (so dim XQ = d), there is a pairing

Cm^X^CH^X) -^R

since CHl(Spec(Z)) ^ R by 3.4.3. However if we have an arithmetic variety over a
more general base ring, for example the ring of integers in a number field, this construc-
tion does not provide the maximum amount of information possible, since it neglects
torsion. Note however that the pairing above is enough to recover the intersection pairing
ofArakelov ([Ar 1]) as well as its generalization to higher dimensions; see 5.1.4 below,
[Be 1] and [G-S 1].

4.3.2. Theorem. — Let n: X -> S be a proper map between equidimensional nonsingular
arithmetic varieties over an arithmetic ring A such that the map n: Xp ->- Sp on generic fibres is
smooth. If d == dim X — dim S and p + q == d + 1, there is a bi-additive pairing

< , ̂ CH^X) x CH^X) -^CH^S)

which induces the pairing (4.3.1).
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Proof. — If a eCIP(X) and (B eCH^X), we can use the moving lemma to choose
representatives (Y, gy) and (Z, g^) for a and (B, such that Y and Z meet properly in the
generic fibre Xy. Let | Y | and | Z | be the supports in X of Y and Z respectively. Then
T = T T ( | Y | n | Z [ ) C S i s a closed subset of codimension ^ 1 in S. Since we want < , >
to be bi-additive, to define <(Y, g^), (Z, ̂ )> [t is enough to consider the case in which Y
and Z are < ( prime95 cycles i.e. integral closed subschemes of X. The coherent
sheaves 6y and 0^ determine classes [fiy] e K^(X) and [^] eK^(X), and taking their
cup product we obtain a class [0^\ u \Q^ e K^^X) ^ Ko(Y n Z)$ see [G-S 3]
Chapter 1 for the definition of K.o with supports and the associated cup products. Since
TT : X -> S is proper, it induces a proper map Y n Z -> T and hence a direct image
map TT, : K^^X) ^ Ko(Y n Z) ^ Ko(T) ^ K^(S). Therefore we have a class
^([^y] u [^z]) in ^(S). To pass from this class to a cycle, we need:

4.3.3. Lemma. — Let T be a closed subset, of codimension greater than or equal to n, of
a Noetherian regular scheme S. Then there is a natural map ^: K^(S) ->Z^(S), which, if
WC T is an integral subscheme of codimension n in S, sends \0^\ to [W].

Proof. — Let Mrr(S) be the category of coherent sheaves of ^g modules supported
on T. For each point / e S^ n T, the functor which sends ^ to its stalk ̂  at t is an
exact functor from Mr(S) to the category of ffg^ modules of finite length. But for any
local ring R, KQ of the category of R modules of finite length is isomorphic to Z, the
isomorphism being given by the map sending [M] to the length ^(M) of M. Hence we
have a map

K^(S) -> Z?(S) ^ © Z
( CS^nT

^^©W).

Returning to the proof of the theorem, we can now define

<(Y,^), (Z,^)> = (%(7r,([fly U [^])).^Y*&))

and having defined the intersection pairing for prime cycles Y and Z, we can extend
to arbitrary cycles by bi-additivity. We must now prove that < a, JB > is independent of
the choices of representatives of a and p.

4.3.4. Lemma. — Suppose that WC X is an integral subscheme of codimension p — 1,
thatfek(W)* and that ZC X is an integral subscheme of X meeting div(y) properly in the
generic fibre Xp. Then <div(/), (Z,^)> = O/^ ̂  choice of Green current gzfor Z.

k

Proof. — First we must show that ifdiv(/) = S ^[YJ, then S^%(7r,([^.] u [^]))

is a principal divisor. Now/induces a class {/} e K^(W — Y) (Y = Support (div(/)))
such that in the localization sequence

. . . ^ K^(W) -> K,(W - Y) ̂  Ko(Y) -^ Ko(W) ^ ...
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k
s
(-1

we have 8{f} == ̂  n,[(P^ + X e Ko(Y) ^ K?(X), with X e F^1 K?(X); (recall that

P K^(X) is the filtration by codimension of support, [G-S 3] Chapter 5). Then
k

Si-i8{f} u W = ̂  ».([̂ .] u [^]) + (X u [^])

so ".(S».([̂ ..] ^ [^z])) = ̂ ((^{/}) U [^]) - 7C.(X U [^).

Next, we make two observations.

4.3.5. (I) %(7t.(X u [^])) == 0 in Z^S).

Proof of I. Since Z1(S) is torsion free, it is enough to prove that this equation holds
in Z^S),^; from the exact sequence (Lemma 5.2 of [G-S 3])

F2 K^(S) -^ K?(S) ^ ( © K^(Spec(^,,)) ^ Z^(S)) ^ 0
(SS^nT

we see that it is enough to show that TC,(X U [^]) eF^^S)^ By Proposition 5.5,
ibidem, X u [̂ ] e F^^1 K^^X)^; but TC : X ^ Y is of relative dimension
d=f+q-l, hence TC. F^^1 K?nz(X) C F2 K^(X) and we are done.

4.3.6. (II) The divisor %(w.(3{/} u [^])) is principal.

Proof of II. There is a commutative diagram, induced by exact functors between
categories of coherent and locally free sheaves

K^(W - Y) ® K?(W)

" *
K;(W - Y n Z)

8®Id
Ko(Y)®K?(X)

t "
K,(Y n Z)

K,'(WnZ -TC-^T))

K ^ X - T t - ^ T ) )

..<
K;(S - T)

' \
k(sy div

K^-^T))

( .

K,(T) ^ K^(S)

,̂
Z'(S)
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in which
j iYnZ-^TT-^T),
u: (W n Z - TC-^T)) -^ ((W - Y n Z)),
< : ((W n Z) - TC-^T)) -^X - TC-^T),
o : Spec(^(S)) -^S-T,

are all the obvious inclusions. Hence

%(^{/} n [<Pz])) = div(o* 7t.({/} n [^]))
and in particular it is principal.

We want to compute the rational function v" TC.({/} n [^) more explicitly.
Since the generic point s of S is contained in the generic fibre Sy of S, we shall work
entirely in the generic fibres Xy and S,. /e^(W)* defines a K^-chain [/] which meets
Z almost properly in X,. Following 4.2.5, write Wp 0 Zp = U U V with U of codi-

mension^ + q — 1 in Xp and V n div(/) = 0. If we write [W]. [Z] == S B.[U(] + b,
with Ui, ..., U/ the irreducible components of U, and b a cycle class supported in V,
then (as ibidem) we have an equation of K^-chains on X,:

lf]-W=^[f\^+[f]b

with [/]^6GH^-+'-i(X,). If W n Z H T T - ^ ) ={«„ . . . , ^}uV, (note that
m < / since TC(U() may be a proper subscheme of S, and also that a, ^ V, for all i) then:

^ ".([/] .[Z]) = (n^N^,^.,(/(a,)».)).»-7c.([/] i).

Hence log | .* ̂ ([/]. [Z])|2 == J|«. log | N^,/,,.,(/(a,))|2 - p(^([/] &)).

By Lemma 4.2.5, if g^ is a Green current for Z, then
log I/I2* ̂ z= log |/|2 A 8^

=S^log|/^,|a_p(ry].^

If «, ^Tt"1^) then, by a dimension argument, we see that TC, log |/L. | =0; hence
m

".(log I/I2 * gz) == Ŝ  W, 7T. log |/|u, |2 - TT. ?([/] 6).

Since TC : U, -> S is generically finite for i = 1, ..., m,

". log 1/k I2 - log | N^^,.,(/|^.)|2

(see the proof of 3.6.1), while by the Riemann-Roch theorem for the Beilinson regu-
lator [Be I], [Gi 1])

".P([/].A)= ?(".([/]. b)).
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Hence 7r,(log |/|2 * ̂ ) = log | n^[f]. [Z])|2

=^g\v-^{{f}n[W.

and so 7r,(div(/) .(Z.^g)) == div(^ 7r,({/)n [^])). Finally, to show that < , > pre-
serves rational equivalence, we use the moving lemma for K^-chains (4.2.6) following
the same pattern as in 4.2.7.

4.3.8. Remarks and examples. — (i) The proof of this theorem is based on Beilinson3 s
proof that his height pairing is compatible with rational equivalence ([Be 1]). The result
itself generalizes both the height pairing of Beilinson (see (iii) below) and the Arakelov-
Deligne intersection product, which is the case ofd== 1. Note that Arakelov considered
only admissible Green currents (5.1 below) and Y equal to the spectrum of a ring of
integers; the extension to arbitrary Green currents for divisors and arbitrary Y is in
Deligne's paper [De2]. However Deligne's construction gives more than just the inter-
section pairing at the level ofCH*, for to every pair of metrized line bundles on X, he
associates a metrized line bundle on Y, not just an isomorphism class of such line bundles.
In the situation of Theorem (4.3.2) above, one can perform a related construction.
To every (Y.^y) e Z^X) and (Z, g^) e Z^X) which intersect properly on Xp, with
p 4- q === d + I? consider the line bundle, unique up to canonical isomorphism,
^ == de^RTr^Y^x^z)); see P^^L [De<^] for details on the functor det. Since
T = TI;(Y n Z) 4= S, the line bundle oSf has a canonical nonvanishing section a on S — T.
Then it is not difficult to show that there is a unique C00 metric || || on oS? such that
— log |[ CT |[2 == Tr^y * ̂ z). Then the following equality holds in Z^X)

(div(a), - log || a ||2) = (%(^([^] U [^])), n^ » ̂ )).

(ii) In the case when Y == Spec(<Pp) for Oy the ring of integers in a number field,
so that X is a nonsingular projective arithmetic variety of dimension d + 1, one obtains
the pairing, described in [Gi 3]

CH^X) ®ciF(X) -^P\J(F)/Up

(J(F) is the idele group ofF, Uy CJ(F) the maximal compact subgroup).
(iii) Following the method of 4.2.10 we obtain, in the situation of the theorem,

a pairing, for p + q = d + 1,
< , ^GHTOo^GHTOo-^CH^Y).

In particular, if X is a nonsingular projective arithmetic variety over Z, one obtains a
pairing, for p + q == dim(XQ) + 1,

< , >GHy(X)o®GH f f(X)o->R.

This is the Beilinson height pairing ([Be I], [Be 2]), which is, presumably, the same as
the height pairing defined by Bloch ([Bl 1]), and which leads to a generalization of the
Neron-Tate height pairing.
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(iv) One can give a more explicit formula for the cycle ^(^([^y] u [^z])); it
is equal to S%p[D], the sum being over all prime divisors on S, with

^ = S. (- ir^^R1 TT, r<-(^ ^)),),
rf being the generic point ofD. This is because the cup product K^(X) ® K^(X), for X
regular, sends [̂ ] ® [^] to 2 (- l)'[^r^(^, ̂ )]. (See [G-S 3]).

S ̂  0
(v) In the case Y = Spec(Z), we can simplify the expression for the intersection

pairing even further. Recall that CHl(Spec(Z)) = R, the isomorphism being given by

(s "pW, g) •-» S »„ log/> + , g.
9 2.

Then if a = {-Y,g^ eC:EP(X), (3 = (Z, ̂ ) eCH^X), with Y and Z prime cycles
intersecting properly, i.e. not at all, on Xg, we have:

< a , p > = < Y , Z > / + l f ^»^
A Jx(0

with < Y, Z > = 2 (- l)^^ log ff H'(X, STorf^^, ̂ )).^ ^ ̂  o
Here, if A is a finite set, $ A is the cardinality of A.

(vi) With a little bit more work, one could show, if^, . . . , p ^ are non-negative
integers satisfying pi + ... + p^ = d + I, that there is a Ai-fold product:

<, ... ,> ̂ ^(X) ® ... ®CH^(X) -^CH^S).

4.3.9. Theorem. — Let TC^ : X -' S, TCg : Y -> S ̂  a /»<nr of maps satisfying the condi-
tions of Theorem 4.3.2, and suppose that f: X -. Y M a //a< »M/>, wifA ̂  == ̂ f, such that
the induced map Xp -> Yp M areoofA. If e = dim X — dim Y, rf = dim Y — dim S,
a e CH^Y), p eCH^X) a»rf p + q = a + e + 1, ^CT

^a.i^^a./.^eCH^S).

Proo/. — Suppose that a = (Z, ,?z) and p = (W, ̂ ) with Z and W prime cycles
such that/(W) and Z meet properly on Yj,. Then [̂ ] =/*[(Pz] since/is flat, and

(4.3.9.1) </* a, p > = (^(^./.(/'[^ u [^])), ̂ /.(/*^ » ̂ ))

= (^(^.([^z] ^/.[^w]))^2./.(/*^^w))

by the projection formula for K-theory. Since /: X^ -^ Y^ is smooth, it is straight-
forward to show, using the Fubini theorem, that /.(/• S^ A ^y) = ̂ A/.^ and that
/*(/* ̂ z A "w) = & A/, "w; hence /.(/* ̂  * ̂ y) == ̂  */• ̂ . Combined with the
equality above, 4.3.9.1, this gives

</* ̂  P > = < a,/, p >
as desired.
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4.4. Pull-backs

4.4.1. So far we have only discussed pull-backs for flat maps^: X ->Y between
arithmetic varieties. We turn now to arbitrary morphismsy between arithmetic varieties
which are regular and quasi-projective over an arithmetic ring A (which we fix for the
rest of the discussion). Any such morphism can be factored as the composition of a closed
immersion i: X -> P^, for some n ̂  0, and the projection map n : P^ -» Y. Since n is
smooth, a pull-back map TC* : CH*(Y) -^CH*(P^) has already been defined. Since P^
is regular, i is a regular immersion, so we shall now discuss pull-back maps for regular
immersions.

Let V^ be the category of regular schemes which are flat and of finite type over
a fixed excellent regular Noetherian domain A.

Theorem. — Let f: X ->Y be a closed immersion between schemes in V^; note that/is
necessarily regular. If TOY is a closed subset, there is a map

r: GHOT -> GH^(X)
such that:

(i) If y. e Z^(Y) is an algebraic cycle supported on T which meets X properly, then z*(a) is
given by Serre^s multiplicity formula ([Fu] 20.4 and [Se] V).

(ii) Ifg : Y —> Z is another regular closed immersion with Z e V^, and S C Z is a closed
subset, then

F S " = C?/)*: GH^(Z) -> CH^(X).
(iii) Suppose that g: Y -> W is aflat map with W e V^, so that if S C W is a closed

subset, g*: CH^(W) -> GH î(g,(Y) is defined as in 3.6.1. Then if either h=g.f is flat
or g is smooth and h is a regular closed immersion,

h- =rg': GH^W) -^ CH ,̂(X).

(iv) Suppose that g : W —• Y is flat with W e V^ and form the Cartesian square:

W X y X -̂  X

^1 I'
W ———> Ycr

Observe that g'is flat and thatf is a regular immersion', suppose that the fibre product W Xy X
is in V^. Then ifS= i/-l/-l(T), r/* =7' ̂  : GH^(Y) -> GH1(W Xy X).

(v) Suppose that D ̂  <z Cartier divisor on Y, ̂  support [ D | o/* zî A ̂ ^ 6o^A T and X
properly. Then if a e CH^(Y),

/'([DLa)^/^)]./^

w CH^inxni^)- Heref^D) is the pull-back divisor in the sense of [EGA] IV 21 .4 while
the intersection product between cycles and divisors is that of [Fu] 2.1 and 2.2.

20
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(vi) The mapr : CH^(Y) -> CH^(X) induces the same map CH^Y)^ -> CH?(X)Q
as that induced by the isomorphism GH^X)^ ̂  Gr^K^(X)Q discussed in [G-S 3] Gh. 5.

Proof. — Let us start by observing that any scheme in V^ is the disjoint union of
its irreducible components. Therefore, since CH* turns finite disjoint unions into direct
sums, it is enough to prove the theorem for X and Y irreducible. Since a scheme in V^
is of finite type over a universally catenary ring, all schemes in V^ are themselves cate-
nary. Let a === dim(X/S) and b == dim(Y/S) for S = Spec A, be the relative dimensions
of X and Y over S in the sense of [Fu] 20.1. Then since X and Y are flat over
A, GH?(Y) ^ GH,_,(T/S) and CH^(X) ^ GH,_J(T n X)/S); here CH,(Z/S)
denotes the Chow groups of Z graded by relative dimension over S rather than by codi-
mension (in [Fu] 20.1, Fulton uses the notation A^(Z/S) for these groups). Therefore
if d = b — a, it suffices to construct a map /*: GH^T/S) -> GH^((T n X)/S)
satisfying properties (i)-(vi). As discussed ibidem, the results of [Fu] § 2-§ 6 and § 7.1,
which are stated for varieties over a field, carry through without change to varieties
over A. In this form, the theorem is the conjunction of several results of op. cit. Specifically,
(i) is example 7.1.2, (ii) is Theorem 6.5, (iii) is Proposition 6.5, (iv) is Theorem 6.2 b)
and (v) is theorems 6-1 c) and 6.4. Finally, to prove (vi) we observe that the Gysin
map/* constructed in [Fu] is completely determined by two operations on Ghow groups:
pull-backs via flat maps and pull-backs via codimension one regular immersions. For
both types of maps it is straightforward to check that the pull-backs defined in [Fu]
agree with the pull-back on GH*(X)Q defined in [G-S 3] using K-theory.

4.4.2. We must also understand how the map/* defined in 4.4.1 behaves with
respect to rational equivalence; to do this we will define a pull-back map on K^-chains.
If <p e R^-^Y) is a K^-chain, and we write Z = Support), T = Support(div(cp)) and
U == Z — T, then 9 determines, and is determined by, the class { 9} e CH^'-1'W(Y — T);
furthermore, the image o f { < p } under the boundary map 8 : GH%-1' ̂ Y - T) -> GH^(Y)
is the class of div(<p). Here 8 is the boundary map induced by the exact sequence of
complexes:

0 -> R:(Y)^ -> R:(Y)z -> R:(Y - T)^ ̂  0,

in which we use the notation, for VC W,

R:(W)v = kernel(R:(W) ̂  R:(W - V)),

and CH^'(W) = H^R^W^). In [Gi 1] § 8 Gysin maps on the CH^ were associated
to regular immersions; we shall review the construction here for the case of a closed
immersion/: X -^ Y in V^. We use, with some modifications, the deformation to the
normal cone technique developed by Baum, Fulton and Macpherson [B-F-M] and
Verdier [V]$ see [Fu] Gh. 5-8. Let A\ == SpecA^], A^ = T X^A\; and let M be
A^ blown up along X x { 0 } C Y x A A l A = = A l Y . I f ^ : ^ ^ : - > A l A i s t h e projection map,
p " 1 ^ ) is the union of two divisors, P(Nx(Y) © 1), which is the projective completion of the
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normal bundle to X in Y, and Y, which is Y blown up along X. We define M = M - Y;
then as in [Fu] Ch. 5, one sees that:

(i) the projection map p : M -> A\ is flat,
(ii) Mo =p-\{0}) ^ Nx(Y), the normal bundle of X in Y,

(iii) M - M o ^ Y x G ^ ^ Y X A Spec(A[f, r1]),
(iv) /: X -^ Y induces a map f: X X A1 -> M, such that for t = 0,

X X { 0 } -> MQ = Nx(Y)

is the zero section, while for t + 0, X X G^ -> Y x €„, is the map induced by base
change from /: X -^Y. Observe that t is a unit on M — M,,, so that it defines a
class { t } in H°(M - Mo, K^y) = ^) = A^M - M<)) in the notation of [Gi 1] § 8.
For the construction of/* {9}, it will initially be convenient to consider also the
deformation to the normal cone construction for the inclusion of X — (X n T) into
Y — T. Let us write /': X' -> Y' for this, and M' for the corresponding scheme
flat over A\; since p ' : Y' X G^ = M' - Mg -> Y' is flat, there is a pull-back map
/>'•: R;(Y') ^ R:(Y' x GJ and hence a map

r : GHS-^Y') -^ CH^;(M' - Mo).

Associated to the short exact sequence

R;(M») [1] -^R:_t(M') ^R:^(M' - M,)

we have a long exact sequence

GH^'(M,) -^GH^^M') -CH^^M- - M,)

^CH^M,)-^...

Here U is the Zariski closure of U X G^ in M' and V = U n M^ = Cunx'W
is the normal cone of U n X' in U (cf. [Fu] 4.2 and 5.2 and [Ha] Cor. "7.15).
Next, recall from [Gi I], pp. 276-277, that there is a product, for any NoetherianA ^ ̂ .A.1-,

scheme S

R«,S®K»(^)^R»+n,s[-»]

where R^g is the complex of sheaves U i-> R^(U) on S. Hence there are products

H°(M' - Mo, K^J = %) ® CH;-7A,» -> GH^+^M' - M,).

Putting the boundary map and the product together, we get a map (since
VC TC'^X' n U), where TC : My -> X' is the projection)

(T. : CH^W ^GH^-'W) ->GH;-7^(M<>)

{ y } i - ^ ( { f } * { < p } ) .
Finally, we observe that

^ : CH^V(X') ^ GH^,»,^(M<,)
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is an isomorphism ([Gil] Theorem 8.3). Composing this with the map CT( above,
we get a map

/* = (O-1 ̂  : CHr^W -^ CH^W.

Theorem. — Suppose that f\ 'K ->y is a closed immersion, which is necessarily regular,
in VA. If^ e R^TW ^ a K^chain with support Z, j^o^ (div(cp)) == T <W U = Z — T,
then:

(i) ^(/'{y}) =/*(^{?}) ^CHI^(X)
wA^ a zj the boundary map GH^^A - G) -> GH%(A) /or G C B C A .

(ii) If ̂  meets X almost properly, i.e. 9 == S [^/^^w e ̂ (w)111 ̂ A W n X == S u T,
W ti!7^ X meeting properly at the generic points of S, g^ regular at the generic points of S, and
div(^) n T empty, then

rigw] == s ̂ kw is,] + s^^p
andf*{^) == S^/*^]. A^r^ ^ ^ the intersection multiplicity of Z and W ̂  ̂  generic point
of the irreducible component S, of S, ̂  Tj is the cycle class on the connected component T, of T
representing the component of /*[W] in CH^r^X) C CH^^X), <^ ̂  product g^ ̂  ^
defined since g^ is a regular function on T,.

Before proving the theorem we need:

Lemma. — Let S be a Noetherian scheme, A and B ̂ foW subsets ofS and write C = A n B.
Let DC S be any closed subset. Then the square

GH^_^,B)(S-(AUB)) -^> CH^o)nD(S-A)

I8 I84, 4.

CH^;l_o,(S - B) ———8———> GH^{S)

(where the ffs are the boundary maps in the appropriate long exact sequences) commutes up to a
factor — 1.

Proof. — We have a diagram of complexes with exact rows and columns:

R;(S)cnD ———————> R?(S)AnD —————> R;(S - B)^_cnD

i [ ^ [

^WBUD ————————^ ^WD ———————> RK^ ~ ^)Dn(S-B)

i [ _ i
RK^)(B-C)nD ——> R-K^ — A)Dn(s-A) ——> ^(S)D-Dn(AuB)

Using this the lemma follows from a straightforward diagram chase.
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Proofoftheorem. — In the lemma, set S = M, D = the Zariski closure of Z x G
in M, A = the Zariski closure of T x G^ in M, B = M(.. Hence G = G,^x(T) and
is contained in D n M,, = G^(Z). We have a diagram:

CH^-i.»(Y') ———s-———> GH^(Y)

^ 1 I"*
GH;--̂ ,»(Y' x G,) —^ GH^,(Y x GJ

{'}*'\1 2 j{(}.o

CH^-^Y' x GJ -L> CH^(Y x GJ

-1 3 ^

CH^»(Mo) ———9——^ CH^,(M<,)

In this diagram, square 1 commutes because p is flat ([Gi 1] proof of Theorem 8.3).
It can be checked at the level of complexes that square 2 anti-commutes, while square 3
anti-commutes by the lemma. It follows that if <p e CH^-:l•"(Y') then

^<(y) = ^(3<p) 6 CH^n,^,(Mo),

proving (i). Turning to (ii), suppose y = [̂ ] for g^ eA(W)*, and let ^eA(Y)* be a
rational function which is regular jit the generic points of W and X, and such that
g\v = gw- Write D = div(^), so D n W = D. Then 9 = { g } . [W] under the product

H»(Y - D, KM) ® GH^-^Y) ^ CH^-LW - D).

One can see from the construction of/*: GH^_^(Y - D) -^CH^^_^(X n (Y - D))
that if a eH^Y - D, K,(^)) and p e GH^(Y - D), then /-(a.?) =/*(a)/*((3)
where/*(a) is the pull-back on sheaf cohomology induced by the pull-back on K-theory
Hence if X. W = S ii,[S.] + S, T,,

/*Dfw] =r{g}.fW

={i'|x}(S^[SJ+ST,)

-^^[g^+^g.r,

= s ̂ .bw Is,] +S^.T,.

4.4.3. Let A be an arithmetic ring with fraction field F. Let V^ be the category
of regular quasi-projective arithmetic varieties over A. Let/: X -> Y be a map between
varieties in V^. Then/may be factored/= TC.! with t :X-^P^.an immersion and
TC : P^- -^ Y the natural projection, which is smooth and projective. By Theorem 3.6.1
there is a map K" : CH*(Y) -^ CH*(P = P^). If <•: X -^ P is any immersion between
regular quasi-projective varieties over A, it follows [Se] IV Proposition 22 that i is
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necessarily regular. Hence by Theorem 4.4.1 if Z is a codimension p cycle on P which
meets X properly in the generic fibre there is a well defined cycle

z*[Z] e CHUX) ^ Z^) ® CH^(X),

in the notation of 4.2.1, since Supp(Z) n X er(^). Since Zp meets Xy properly, if
g^ is a Green current for Z on Y, then i* g^ is a Green current for z*[Z] by Theorem 2.1.4
and so we can define ^(Z,^) = (^[Z],i*^) e Z^Xp) © GH^(X). Suppose now that
9 eR^'^Pp) is a K^-chain such that div(<p) meets Xp properly. By the moving lemma
for Ki-chains, Lemma 4.2.6, there is a K^-chain ^ such that div(^) == div((p) and
^ meets Xp almost properly. Furthermore, ^ — 9 represents zero in GEP^'^Pp),
hence log | ̂  |2 = log | 9 |2, and therefore div(^) == div(9) e Z^Pp) ® CH^(P). By
Theorem 4.4.2, i f Z = Supp(div(^)), z*(^) is well defined in CIP-^X - (X n Z)).
By Theorem 4.4.2, div(^)) = z* div(^) eGH^(X), while by Lemma 4.2.5, since
^ meets Xp properly, log | i"W\2 == i'" log | ^ ]2, and hence i* div(^) = dh^i^tp)).
Therefore i* induces a map ^^(P) -^CH^X). Composing with n*, we obtain a map
^TC*:CIP(Y) -^CH^X).

Theorem. — Letf: X -> Y be a map in V^, then:

1) 7/'/ ^ factored f== n.i as above, the composition /' == i' TI;' : ciP(Y) -^CH^tX)
does not depend on the particular factorization chosen,

2) Iff: X ->Y is flat and smooth on generic fibres over A, then f agrees with the map
defined in 3.6.1.

3) y g : Y -> Z is another map in V^, then {gfY ==/* ̂  : CTP(Z) -^CiP(Y).
4) 7/'(Z,^) eZ^Y) and f-\Z) has codimpinX then f^{Z,g) == (/*[Z],/*^) ^A

/*[Z] ̂ ^ as in ([Se] V.G.).
5) /* induces a ring homomorphism GFT(Y)Q ->CH*(X)Q with respect to the product

defined in Theorem 4.2.3.
6) TfaeCH^Y) and ? edP(Y) then /*(a.(B) ==/*(a) ./*(?) eCTP^Y).
7) If f is projectile and smooth on generic fibres over A, of relative dimension rf, ̂  /Afl^ <?

mapf^.CH^X) -^CH^-^Y) ^ A/m^ ^ ^3 .6 .1 , fl̂  ^ a eCH^X), p eCH^Y)
we have:

/.WP)-/^)^

•̂̂  equality in cip-^-^Y) zjf^ or q == 1 <z^ CH2?+fl-d(Y)Q in general.

Proof.

Part ( 1 ) . — Given aeGH^Y), since/* == i* n* preserves rational equivalence,
in order to show that/* (a) does not depend on the factorization/ == Tc.i, we may suppose
that a == (Z, g), with/'^Z) n Xp of codimension^. Hence i* ^(Z, g) == (i* 7c*[Z], TT*/* ̂ ).
First observe that g may be represented by an L1 form g ' which is G00 on Xoo — Z^,
and that i* iC g is represented by/* g == z* TT* ̂ , hence/* ̂  is independent of the factoriza-
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tion/== TT.i. By [Fu] Proposition 6.6 <?), cf. the discussion in 4.4.1, the cycle class
/"[Z] e CH^(X) does not depend on the factorization either. Hence/* (a) = (/"[Z],/* g)
is well defined.

Parts ( 2 ) and ( 3 ) . — By a similar argument, parts (2) and (3) follow from [Fu]
Proposition 6.66) and c).

Part ( 4 ) . — Follows from [Fu] 7.1.2.
Before proving parts (5) and (6), we need a lemma.

Lemma. — Letf: X -> Y be a map between smooth projective varieties over C.IfZ and W
are cycles on Y of codimensions m and n respectively which intersect properly on Y and such that
f~l{Z>), f~l(yf) <^Wy~ l(ZnW) have codimensions m, n and m + n respectively^ then
f^Sz * <?w) ==/*(^z) *f*{gw) f^ ^V choices of Green currents.

Proof.— Let y : X -^X X Y be the graph of/, with image F w X . I f ^ : X x Y - > X
and q: X X Y -> Y are the projections, T is a cycle on Y for which coding/"1 T = codim T
and gy is a Green current for T, then q* T meets F properly and

/*(&) =A(8rA?^r).

Note that the lemma is easily checked for a smooth map, and hence we may suppose
that it holds for q. Hence

/*(& * <?w) = AC?r * ?*(&z * 5w) - Sr A ?*(c^ A co^))
^A^r * (?*C?z) * ?'C?w)) - <?r A ^(o)z) A ?* (Ow)
-= A(C?r * ̂  ^z) * ?' ^w -- <?r A ?* o)z A ?* (Ow)
= A(Sr.<,*(Z) A ?* <?w + (<?r * ?^z) A ?* cow - Sr A ?* o)z A ?* (Ow)
= A(8r.,*(Z) A ?* ^w + (^r A ?' <?z) A (f o)w)
-(S/.zA/^w) +(/^ZA/*^)

== (/^z) * (/^w),

by the associativity of the •-product (Theorem 2.2.12), q.e.d.
Given the lemma, in order to prove (5) and (6), it suffices to prove the corres-

ponding statements for cycles. These are straightforward if^is smooth, so we may suppose
that f is a regular immersion. For (5) we must show thaty* defined by deformation to
the normal cone is compatible with the intersection product defined via K-theory. Since
the pull-back map on K-theory preserves products, it is enough to check that/* defined
via deformation to the normal cone agrees] with /* defined via K-theory. This may be
checked directly using the deformation construction, or by means of the uniqueness of
intersection products, as discussed in [Fu] Example 6.1.9. For (6), we observe that
if a eGH^Y) and (B eC][P(Y) with (B = (W,^w). and W meeting Xp properly, then
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we can represent a by (D.^p) with D meeting X, W and X nW properly. By [Fu] 6.4
and 5.2.1 d), ^(D.W) == z*(D).t*(W) in GH^)(X).

Finally for (7), the projection formula, given a eCiP(Y), (B eCH^X) we can
suppose that a = (Z, g^) e Z^Y) and p == (W, g^y) with Z and W meeting properly
in the generic fibre Xp (i.e./* Z and W meet properly); if p = 1 we can suppose that
Z and W meet properly on X. We first check the formula on Green currents; by assump-
tion y: Xp —^Yp is a proper smooth map. Now

W{gz) * gw) =/*(/* gz A »W +/* ^Z A ^w)

=W;?] + «>zA/^w

Here A : W -> Y is the induced map and g^ is a representative of g^ of logarithmic type,
while j^(y (QZ A ̂ ) = ^z^f*gw ^y definition of the direct image of a current. By the
argument of 3.6.1 one sees that h^V g^] == g^ A 8^. Hence/J/' ̂  » g^) = ̂  */^ ̂ .
Next we consider f^{f* Z.W). If Z is a divisor, then working locally we can assume that
Z = div(^) is principal and effective and that W is prime. Then at a generic point ^
ofZ n/(W), the multiplicity of^ in/,(/* Z.W) is

^X.^X.^, ̂ w) -W^Y,^^ ^w)

= the multiplicity of^ in [Z] .,/,[W]. In general, we can appeal to the projection formula
for Gr^ KQ with supports. This follows from the projection formula for K.o together with
the Riemann-Roch theorem for the y-filtration on K.o with supports. This last is proved
by combining the Riemann-Roch theorem for a regular immersion in [So], [G-S 3]
with explicit calculations on P".

4.4.4. Remarks. — One can also construct pull-back maps for arbitrary maps of
regular arithmetic varieties/: X-> Y without the quasi-projective assumption. The
key point is to have a pull-back map for cycles for an arbitrary morphism of finite type
between regular schemes. There are two methods for constructing such maps. The first
is that of [Gi 2]. The second is to reduce to the affine case. Specifically, given/: X — Y,
there is a commutative diagram:

U -^> V
(4.4.4.1) .[ [.

X-^ Y

in which U and V are affine and regular, and p and q are torsors under vector bundles.
Hence if T C Y is a closed set, we have:

<f : CH^(Y) ^ CH^(V), p-: CH^(X) ^ GH^T)(U)

and since / is quasi-projective, we have a map f*: GH^-i^(V) -> GH^-xg-i^U).
Finally, set/* =^*~1/* ?*• The existence of the commutative diagram (4.4.4.1) is a
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generalization, due to Thomason, to arbitrary divisorial schemes ofjouanalou's trick [J],
See Proposition 4.4 of [W],

4.4.5. If /: (A, 2, F^) -> (A', S', F^) is a homomorphism between arithmetic
rings, and TC : X -> Spec (A) is an arithmetic variety over A, let X' = X X gpec(A) Spec (A').
If F and F' are the fraction fields of A and A' respectively note that F C F', and hence
that the map Xp, -> Xp is flat; also note that since 0s and C2' are both isomorphic
to products of finitely many copies of C, the induced map X^, -> Xoo, when restricted
to any component of X^, is an isomorphism onto a component of Xoo. Hence we have
pull-backs maps f*: Z^Xp) —^ Z^Xp,) and, if X has a nonsingular, complete generic
fibre,/* : ̂ (Xp) -> ̂ (Xp), which have the properly that i f Z e Z^Xp) and g^ is a Green
current for Z, then/*^ is a Green current forjf'Z. Assuming that X has a smooth
complete generic fibre, there will be pull-back homomorphisms f^: CH^X) ->• CH*(X'),
in either of the following two situations:

1) If n : X -> Spec (A) is smooth, so X and X' are both regular, and/: A -> A'
is of finite type, so that/^ : X' -> X is quasi-projective. Then /^ is defined by the method
of 4.4.2.

2) If/: A -> A' is flat, for example if A is a Dedekind domain, then/x : X' ->• X is
also flat. Then a pull-back homomorphism /^ : Z^X) -> Z^X') can be defined, for
all p ^ 0, by the method used in [Fu] 1.7, which is compatible with the homo-
morphism /* : .^(Xg) -> ^(Xg), and which therefore induces a homomorphism
/x : CH^X) -> CH^X'). If X' is regular, for example if X is smooth over A, then one
can show that/^ preserves both the product on the Chow groups with supports and the
^-product of Green currents and hence that it preserves the ring structure on CH*(X)Q.

4.4.6. We finish our discussion of pull-backs with a result which will be useful
in [G-S4].

Theorem. — Let X be a nonsingular arithmetic variety with projective generic fibre. Let
a e CH^X X P1); then if t is the parameter on P1 (i.e. t == T/S, T and S being homogeneous
coordinates on P1) and ^ : X = X X { t } -> X X P^/or t == 0, oo, are the two inclusions, then

i,W-W=a(f^W\og\t\2).

{a: A^-11^-1 -^Cip and co : GEP -^A^ are the maps defined in 3.3.4).

Proof. — Note first that by the homotopy property for CH", ^(^(a) — ^(a)) = 0.
By the moving lemma, we may choose a representative (Z, g) for a, for which Z meets
the cycle X X { 0 } — X x { o o } properly in the generic fibre Xp X P1. Then

z:(a)=(z:(Z),z:(^))

= (7Tj[Z].[X X {^}]),^A ^Xx(Ol))

21
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(TT is the projection X X P1 -»X). Now in CHP(X) we have the equation
0 == 7r,(a.div(^))

= 7 r , ( ( Z ^ ) . ( [ X x { 0 } ] - [ X x { a ) } ] , - l o g | ^ p ) )

== ^o^(Z) - ̂  z:o(Z), ^ A (8^0}] - 8[xx(oo}]) - ̂ (a) log | ^ |2))

=^(a)-^(a)-^J^(o(a) log | / | 2 .

4.5. Arithmetic varieties smooth over a Dedekind domain

4.5.1. Theorem. — Let A = (A, S, FoJ ^ ̂  arithmetic ring with A Dedekind. Suppose
that X z'j an arithmetic variety, with projective generic fibre, which is smooth over A. Then the
product structure on CH*(X)Q defined in 4.2.3 is induced by a product structure on CH*(X)
with the property that if (Y, gy) and (Z, g^) are cycles on X which meet properly on Xp then
C^y) ^ {^gz) == (Dn-l^L^y*^) ^ere [Y]. [Z] is the intersection product of [Fu]
20.2. Furthermore, iff". Y -> X is a map of nonsingular arithmetic varieties over A with X smooth
over A, the mapf: CH^X)^ ->CH*(Y)Q o/§ 4.4 ̂  induced by a mapf": CH^X) ->CH*(Y).
jy both X <W Y <2r̂  smooth over A, f* is a ring homomorphism.

Proof. — The only reason for introducing rational coefficients in the construction
of the product on CH* is the lack of a product on the Chow groups with integral coef-
ficients of a general regular scheme. So long as one has available, for a scheme X, products
U : GH^(X) ® GH^(X) -> GH^zW^ which satisfy the usual rules and which coincide
with the usual product on cycles which meet properly, then the construction of 4.2.3
applies with integral rather than rational coefficients. Therefore it will suffice to show,
following [Fu] 20.2 that if X is a scheme smooth over a Dedekind domain A and
Y eZ^X), Z eZ^X), then there is a well defined intersection cycle

Y.Z e GH^(X) ^ GH,_^(Y n Z), for n = dim X.

Since X is smooth over S = Spec (A) so is X X g X, and the diagonal A : X -> X X g X
is a regular codimension n — 1 immersion. First we construct an external product:

x : Z^X) ® ZTO -^Z^+^X XgX)

if Y and Z are prime cycles:
0 if both Y and Z are contained

[Y] ® [Z] i~> in closed fibres
[Y X g Z] otherwise.

This external product is associative; if Y, Z, W are prime cycles on X, then we have
an equality of cycles on X X g X X g X:

0 if any two ofY, Z, W contained
(Y X Z) X W == Y x (Z X W) == in closed fibres

[Y X g Z X s W] otherwise.
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It is also commutative in the sense that if i: X X g X -> X X g X is the switch map,

[Y] x [Z] = ^([Z] x[Y]).

Now we appeal to ([Fu] 6.2) and the discussion in 4.4.1 and 4.4.2.
Ifj : Y -> X is a regular immersion, and Z C X there is a natural map

^:GH^(X)->GH^(Y)

with the property that i f T e Z^X) is a cycle, contained in Z, meeting Y properly, then
j*(T) is the usual inverse image. Furthermore, i f t : W - > Y i s a second regular immersion
such thatj.i: W -> X is a regular immersion, then (j.i)* = i*j* : GH^(X) -> GH^^(X)
([Fu] 6.5). Given Y eZ^X), Z eZ^X), we define

[Y] u [Z] == A-(Y x Z) e GH^(X).

Since z : X Xg X -> X X g X i s an isomorphism, and Az = A, [Y] U [Z] = [Z] U [Y],
Given Y eZ^X), Z eZ^X), W eZ^X), consider the diagram:

Then ([Y] u [Z]) u [W] == A*(A*(Y Xg Z) Xg W)

= A - ( ( A x i r ( Y X s Z XsW))

= A ^ ( Y x , Z X s W )

== [Y] U ([Z] U [W]) by symmetry.

Iff: Y -> X is an arbitrary map of varieties over A, with X smooth over A, thenyfac-
torizes:

Y x ^ X
Px

/
Y —————————^ X

where 1̂  is the graph of/. Since Y is flat over S and Yp is smooth over Spec(F) by
assumption, p^: Y X g X -^ X is flat and smooth over Xp. Since X is smooth over S,
the projection j&y: Y x g X -> Y is smooth and hence Fy is a regular immersion. We
therefore define /* === F^ : GH^(X) -^ CH^(Y). If Y is also smooth over S,
then an argument similar to that for the associativity of the cup product above, shows
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thaty* is a ring homomorphism. To extend this construction to CH*, i.e. including infor-
mation about Green currents one uses the same methods as those of 4.4. It follows
from the compatibility of F^ with Serre's product, [Fu] 20.4, that for cycles Z e Z^X)
such thaty'^Z) has codimension p in Y, the two definitions off* agree.

4.5.2. Let us summarize. The arithmetic Chow groups CI-P(X), p ^ 0 are contra-
variant in the quasi-projective regular arithmetic variety X (4.4.3 and 3.6.1 (i) for
the flat case). They are covariant for generically smooth proper maps (3.6.1 (ii)).
There is a commutative and associative graded product

CH^X) 0 CH^X) —CH^TOQ

(4.2.3 (i)). One may avoid tensoring with Q^when^ ^ 1 (4.2.3 (iii)), when X is smooth
over a Dedekind ring (4.5.1), or when considering intersections numbers (4.3.2).
These notions coincide when they are simultaneously defined. The formulas [fg)* == g*f*^
(/^ -f.g^rW =rWrW and/^a/^p)) =/,(a) iB are true whenever both sides
are defined.

5. Complements

5.1. Chow groups of Arakelov varieties

5.1.1. Fix an arithmetic ring A = (A, S, FoJ. An Arakelov variety X = (X, co)
is a pair consisting of an arithmetic variety X over A, regular with projective generic
fibre, and a Kahler form co on Xoo satisfying F^, co = — co (this is equivalent to requiring
that the corresponding Kahler metric is invariant under F^). Let us write J^^Xg)
for the space of harmonic (with respect to (o) {p, p)-forms a on Xoo satisfying
F^, a = (— l^a. I fY eZ^X), we say that a Green current gy for Y is admissible if
O)(Y, ^y) is harmonic. Let Z^X) C Z^X) be the subgroup consisting of all (Z, g) with
g admissible. Note that if W C X is an integral subscheme of X of codimension p — 1
and fek(W)\ then co(div(/)) = 0 is trivially harmonic. Hence R^X) C Z^X)
(see 3.3.4), and we can define GH^X) as the quotient group. Equivalently,

CIP(X) == (O-^^X^CCHTO.

Let H : A^'^Xg) -^J^^Xa) be the orthogonal projection operator associated to the
Kahler metric on X^. Then H(^a) = H(<9(3) = 0 for any forms a, (B, hence

H:^-i^-i(Xa) ->^v-lfv-l{'K^

is well defined, and may be viewed as a projection onto the subspace

ip-i, ̂ -I(XB) == Ker(AT) C ̂ p-1' P~1(X^.

It follows that an admissible Green current g^ for Z is determined by its harmonic pro-
jection H(^). This leads to:
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Lemma. — Let X = (X, (o) be an Arakelov variety over the arithmetic ring A = (A, S, F^).
Then

z^x) ^ z^x)®.^1'-1-1'-^!,)

^ CH^X).^^:1""1™
R^X)

where R^X) 2: R^X) w the subgroup generated by classes of the form:

div(/)==div(/)®(-Hi.log|/|2)

for fek(yf)*, i : W ->• X an integral codimension p — 1 subscheme.

Proof. — The map

Z^X) -^Z^X)®.^-1-1'-^!!)

(Z,,?) ^Z®(H(^))

is an isomorphism by the remarks preceding the lemma. The identification of Rp(X)
as the subgroup Rp(X) of Z''(X) ® Jf-1-I'-1(X)B is obvious.

5.1.2. Theorem. — Let X = (X, co) be as above. Then there is an exact sequence

CH^'^-^X) -^ H^-^-^XB) -a- GH^X) -^ GH^X) —> 0.

Proof. — We have a commutative diagram, in which the top row is exact by 3.3.5:

GH^^-^X) -^ ^-^"-^XR) -"-> CH."^) -^-> CIP(X) —> 0

II t t II
GHi)•l'-l(X) —> a-^CH^X)) —> GH^X) —> CH^X) —> 0.

The bottom row of the diagram is exact by construction; it suffices to show that

a-^CH^X)) ^ H1'-1•1'-1(XB).

' A s remarked above, GH*'(X) = w-1^1'11'^)); now
co.a = aa6: A"-1-"-^Xa)-> A"-"(Xg),

therefore a-^GH^X)) = (aa")-1^1'- "(Xi,)).

But if g e AP~1'V~1(X.^), dd" g is harmonic if and only if it is zero, therefore
a-^CH^X)) = Ker(a^) = H1'-1-1'-^)

as desired.
Note that GH*(X) is a direct summand of CH*(X) with projection:

CH*(X) -> GH*(X)
(Z,5)^Z®(H(5)).
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5.1.3. Remarks. — (i) Since we are using dd0 rather than l/(7n) 88 our normaliza-
tion in div is slightly different from that of [G-S 1].

(ii) If X = (X, co) is an arithmetic surface over the ring of integers in a number
field F, then CH^X) is the group introduced by Arakelov in [Ar I], In codimension two,
the exact sequence 5.1.2 reads

;̂ -^ R^ ̂  4. GH^X) -i GH^X) -> 0

where p is the classical regulator multiplied by — 2 (see 3.4.3), and GH^X) is known
to be finite [B12].

(iii) If X == Spec(^p), (P-p the ring of integers in a number field F, then X(C) is
zero dimensional, hence all forms are harmonic and CH*(X) = GH*(X).

(iv) One may view X = (X, <o) as a relative compactification of X over
Spec(^p) (== Spec^p) U { the places at oo }), <o corresponding to the choice of an integral
model at oo, i.e. over the archimedean places ofF; ^s>~llp~l{'X.^) may then be inter-
preted as the Chow group of codimension p cycles on X supported in the closed fibre
at oo. See [De 2] for a detailed discussion of this analogy in the 2 dimensional case.

5.1.4. If X = (X, co) is an equidimensional projective nonsingular Arakelov
variety over Z, then the intersection pairing of 4.3.2, restricted to GH*(X), gives pairings,
or all pairs {p, q) of nonnegative integers such that p + q == dim X,

CH^X^CHTO ->R.

Using the description of GH*(X) given in Lemma 5.1.1, we can see, as follows, that
this pairing coincides with the pairing defined in [G-S 1]. If o^ e CIP(X), a^ e CIP(X),
then we can write o^ == Z^©^ eZ^X), Z^ being an algebraic cycle and ^ a harmonic
form. Recall that if g^ is the antiharmonic (i.e. with harmonic projection zero) Green
current for Z, whose associated closed form is harmonic, then a, corresponds to
(Z,, g^ + A,) e Z^(X). By the moving lemma, we can choose Z^ and Zg so that they do
not intersect in the generic fibre Xp, and hence so that Zi(C) and Zg(C) do not intersect
in XQO = X(C). By the isomorphism of Lemma 5.1.1, and 3.4.3, we see that

< ai, a2 > = <(Zi, g^ + Ai), (Zi, g^ + Aa)>

Z2>/+^ f (^i+Ai)*(^+^)
^ ^X(C)

=<Zi,Z2>,+, (^
^ ^X(C)

=<Zl,Z,>,+lf (^i+^A^+^f H(8^)A(^+^
^ JX(C) ^ JX(C)

=<Zi,Za>,+1 f h^S^+1 f H(8^)A^
4 JX(C) -4 */X(C) ,

+ l f ^lASz,.
z- JX(C)

Following the discussion in 4.3.8,
< z,, z, >, = s (- i)14- log ̂ (x, r<^(^, ̂ )))^» /
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if Z^, Zg are prime cycles, and for general pairs of cycles (Z^, Z^) meeting properly
in Xp, we can extend this formula using the bi-additivity of < , >. Let us make the fol-
lowing definitions:

<Z„A,>==a„Z.>= l f H ( Z . ) A ^ - f h,=U S,.AA,,
- •'X(C) ^Jz,(C) •< Jx(C)

and <Z„Z,>,= l f i ^ A ^ — — f ^;
^ •/X(C) ^•/Zi(C)

note that by Stokes' theorem < Z^ Zg > = < Z^ Z^ >. Again, because of our use of

A/0 rather than — BB, these formulae differ from those of [G-S 1] by a factor of 2; apart

from this factor, we then obtain the same formula that appears in op. cit.,

< ai, Gog > = < Zi, Z^ >, + < Zi, Z^ >„ + < Zi, ̂  > + < Ai, Z^ >.

5.1.5. In general CH*(X)Q cannot be a subring ofGH*(X)Q, since that would
require that c^GH^X)) = g^^(X^) be a subring of A(Xa), which is not true

in general. However if X^ is a complex symmetric space (for example if it is a Grass-
mannian, or product of Grassmannians) or an abelian variety, then the harmonic forms
with respect Jx) an invariant Kahler metric on X^ will be a subring of A(XR) ; for such
an X, GH*(X)Q will be ring, and if the base ring is a Dedekind domain, GH*(X) will
be a ring. See [G-S 4] for further details on the structure of GH^X) for X a product
of Grassmannians.

Suppose now that (X, co) and (X, (*/) are two different Arakelov compactifications
of the same nonsingular arithmetic variety X, which is projective over Z. We wish to
compare the intersection pairing on GH*(X, co) to that on CH*(X, co'), in a fashion
similar that of section 5 of Arakelov's paper [Ar 1]. In order to do this we shall need
the following

1̂  Lemma. — Let X be an (n — 1) -dimensional, compact Kahler manifolds/or 0 ̂  p < n — 1,
let A e A^' ̂ (X) be an exact form, and let ̂  ..., co^ be closed {n — p,n — p) forms representing
a tssis ̂  . . . , ̂  of H"-^ n-p(X; C). Then there exists a unique form

9 e A^-^ ̂ (X) = A9-1- ̂ (^/(Im 8 + Im 3),

-CTfi* that:

(i) ^9= a;

(ii) f 9 A co, = 0/or /̂ i == 1, . . ., k.v x.

Proo/*. — From Theorem 1.2.1 we know that a solution of dd° u == a
exists and that any two solutions, in A'P~1'V~1{X.) differ by an element of
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]-p-i,p-i^C) (C A^'^^'^X)). Picking one solution, UQ say, we obtain numbers
ai == Jx^° A (ot3 for l = 1? • • ' ) k ' If c^ ^ = 1, .. ., ^, is the basis of HP-1' ̂ (X, C)
Poincar^ dual to co,, z = 1, .. ., k, then 9 == UQ — S ̂  <o,* is the (necessarily unique)
solution to (i) and (ii). t'"1

If A: e H^X^)), let us write ^[x) and co'(^) respectively, for the forms representing x
which are harmonic with respect to <o and co', respectively; while if Y is an algebraic
cycle, co(Y) and o'(Y) are the corresponding forms representing the fundamental class
of Y. Observing that if dim(X) = n, and ^, . .., ̂  is a basis of H^-^ ̂ -^(C), C),
for 0 ̂  p ^ n — 1, then, by the lemma, given an algebraic cycle Y e Z^X), there exists
a unique 9y e^~1'^'^Xg) such that:

(i) ^(pY-^Y)-^);

(ii) Lo 9YA ̂ ^ + 0)/^) - 0 for z = 1, . . ., ^.

5.1.6. Lemma. — With the notation above, we have, ifY e Z^X) aW Z eZ^^X):

(i) LO^Y'^ ((0^ + (0/^)) = ° ̂ r ^ A; eH^-^^-^X^), C);
(ii) <py, + 9y, = 9y,+Y. ^ Y^, Y, e Z^(X);

(iii) 9y == 0, ?/' Y ^ rationally equivalent to zero;

^Lo^^^-J^o^w^^
(v) 5y * ?z == ^(Y) ^ ^z if SY ls a Green current/or Y, which is admissible with respect to o;

(vi) <PY * cpz == ?Y A (^z — ^z)-

Proo/. — (i) Let {x^ . . ., ^) be the basis of IP-^ w-y(X(C), C) chosen in 5 . 1 . 5 ;
k

then, if A: == S ̂  ̂ ,

9yA ((0(A:) + ̂ W) == S ^ 9yA (CO(A:,) + ̂ '(^))
•/X(C) ia"1 JX(C)

==0.

(ii) This is obvious.
(iii) More generally, by the uniqueness ofcpy, ifY is homologically equivalent to

zero, so that <o(Y) == o/(Y) === 0, then (py = 0.
(iv) By (i) above,

f (pyA (co(Z) + co'(Z)) = 0
JX(G)

therefore 9YA ^(^ = — ?YA ^'(^
Jx(C) •/X(C)
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and so 2 f yyA o(Z) == f y^A (o>(Z) - <o'(Z))
</X(C) JX(C)

= 9y A tiyc 9z
•/X(C)

which by Stokes5 theorem

= dd6 9y A 9z
«/X(C)

= 2 <»>(Y) A 9^, by symmetry.
Jx(0

(v) and (vi) follow immediately from the definition of the *-product, together
with its commutativity.

We can now compare the two intersection pairings.

Theorem. — For all p, 0 ̂  p < n, consider the map
6 : Z^(X) -> ZTO, 6(Y, ̂ ) = (Y, ̂  - (pY).

Then 6 induces an automorphism o/'GEP(X) /or 0 ̂  ̂  ̂  n such that:
(i) 6 restricts to an isomorphism CIP(X, <o) -^ GHJ)(X, co') $

(ii) if a e GIP(X, co) ^^ p e CIP-^X, co) ^^ < 6(a), 6((3)> == < a, p >.

Proof. — The fact that 6 is a group homomorphism, and respects rational equiva-
lence, follows from (ii) and (iii) of the lemma. It is an automorphism since it has an
inverse, O-^Y,^) = (Y,^ + Py). If (Y^y) e GIP(X, <o), then ^c^ + Sy == ^(Y);
therefore dd^gy - 9^) + Sy = <^(Y), i.e. (Y, ̂  - 9^) e GH^X, co'), from which we
deduce (i). Turning to (ii), it is sufficient to show that i foc= (Y, ^y) and p = (Z, ̂  then

{gv - 9y) * {gz - 9z) = f ^Y * ̂ z.
•/X(C) JX(C)

or equivalently,

(^Y * ?Z + (Py * <?z — ?Y * ?z) = 0.
«/X(C)

By (v) and (vi) of the lemma, we may rewrite this integral as:

f co(Y) A 9^ + 9yA <o(Z) + 9yA (co'(Z) - <o(Z))
•/X(C)

= f (O(Y)A 9z+ 9yA <o'(Z)
^X(C)

which, by part (iv) of the lemma, equals

f 9yA (6)(Z) +CO'(Z))
•/X(C)

which is zero by part (i) of the lemma.

22
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5.1.7. We can also express the isomorphism 6 by means of the description of
GH*(X) given in Lemma 5.1.5, obtaining the version of Theorem 5 .1 .6 stated in [Gi 3].

Theorem. — Let X, <o and o/ be as above, and let H and H' be the harmonic projection
operators corresponding to o> andu\ Then, for 0 < p ̂  - 1, the map Q: GH^X, <o) -> CH^X, u')
of Theorem 5.1.6, may be written '

6(Z ® a) = Z ® (H'(a) + ^ H'(H(^) - g^;

here Z eZ^X), a ejf2'-1. "-^Xn) M towowc w^ re^rf to <o, and g^ (respectively g'^)
is the Green current/or Z which is anti-harmonic with respect to w (respectively u'}.

Proof. — Since

Z®a=(Z,^+a) eZ^X),

6(Z®a) = Z© (H'(^ + a - <p^)) = Z © (H'(a) + H'(^) - ?(9^)).

Therefore we must show that H'(y,) = ^ H'(^ + H'(^)), which is equivalent to showing

that, if x^, ..., x^ is a basis of H'1-11' "-''(X^), C),

(5.1.7.1) J^ ̂  A (o'(^) = ^ J^ (^ A co'^) + ̂  A (o(^)).

To do this, consider Y == ¥z + ,?z - i?z. which is an element of

A»'-^-i(x^) c ̂ '-1. »-i(Xn);

the dd" operator maps y to zero, hence it lies in the subspace H1'-1- "-'(Xg) of
Av~l' ""^H)- Therefore, ifp is a closed form in A"-"- »-"(X(C)), the integral f f/, B
depends only on the cohomology class of p. Hence, for (' = 1, ... k

L<=>Y A wl{xi) = ̂  f Y A {u>{xl) +<0^))'•'^(C) 4 »/X(C)

and using the conditions characterizing cp^, ̂  and ̂ , we deduce that

L92' "'̂  --L^2' "'^= ̂ L^2' "^ -& A "/(^)-
Upon simplifying this equation, we obtain equation 5.1.7.1 as desired.

5.2. Correspondences

5.2.1. Once one has constructed pull-back and push-forward maps for the arith-
metic Chow groups, one can ask whether these maps form part of a theory of correspon-
dences. (For a discussion of correspondences and Grothendieck's theory of motives,
see [Kl].) However it seems too restrictive to consider only those correspondences between
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arithmetic varieties X and Y (over some base A) which arise from classes in CH*(X X ̂  Y);
for example, the identity on GH*(X) is not represented by such a class. Define a corres-
pondence from X to Y, to be a pair (r, y) consisting of an algebraic cycle F on X X ^ Y
and a current y e ^((X X^Y)^ such that, if ^=^4-^^ the operator
a ̂ Y^S^) A ^r) "^aps G00 forms on X to G00 forms on Y. Here p^ and j&y are th^
natural projections from X x Y to X and Y, respectively. Notice that this definition is
not symmetric in X and Y.

Lemma. — If X and Y are regular projective arithmetic varieties over an arithmetic ring A,
a cycle T on X x^ Y defines a natural map x ̂  F^x) from CH^X) to GH^(Y)Q for any
pair of closed sets T C X, S C Y such that | F | n^^T) C^y^S).

Proo/: — Suppose Y C P^, and consider the diagram
i

X x A P71 ——— X x A Y
px py

X Y

Since P^ is smooth over A, X x ̂  P" is regular, hence if x e GH^(X) and
r eGHfn(x X ^ Y ) ^ GHfn(X x^P")

there is a product class ̂ WuFin CHfnn^i(T)(X X^P^Q ^ GHfr|n^T)(X X ^ Y ) Q ,
which is mapped byj&y* mto CH^(Y)Q.

Note that if F intersects p^W properly for every cycle Z on X, then I\ takes
values in GH^(Y)$ i.e. we need not tensor with Q .̂

Theorem. — Let X and Y be regular projective arithmetic varieties over A; as usual we write F
for the fraction field of A. If F = (F, y) ^ ^ correspondence from X ^0 Y, ^r^ ^ a m<zj&

r,:GH*(X) ^CH*(Y)Q

^cA fA^, whenever {Z, g) eZ^X) u ̂  arithmetic cycle for which p^{Z) meets F properly
in (Xx^Y)^,

r,(Z,^) = (r ,(Z),^(8rA^^+YA^^z)).

Proo/: — If (Z,,?) e Z*(X) is a cycle such that^(Z) meets F properly in (X X ̂  Y)p
then we define I\(Z, g) using the formula above, noting that I\(Z) is defined using the
lemma. Given a general (Z, g), since Xp is a nonsingular projective variety, Z is rationally
equivalent, in X, to a cycle Z', such that^x(Z') meets F properly in Xp. Using the same
argument as in Section 4.2 one shows that the rational equivalence class of I\(Z,^) is
independent of the choice of Z' and hence also of the rational equivalence class of (Z, g).

Note that if F meets P^(Z) properly in X Xx Y, not just in the generic fibre, for
all Z, then I\ takes values in CH*(X).
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5.2.2. Examples. — (i) Iff: X -> Y is a morphism for whichjF: Xp —^Yp is smooth,
then/»:CH'(X) ->CH*(Y) is induced by the correspondence (F, Sp), where F is the
graph of/.

(ii) For any f,f*: CH*(Y) -> CH*(X)Q is induced by the transpose of the corres-
pondence of (i).

(iii) If X is a compact complex manifold equipped with a Kahler form co, then
p\ c>) 4- Pi ̂  is a Kahler form on X X X. If a and (B are harmonic forms on X, then
^(a) A ^(P) is harmonic on X X X, and every harmonic form on X X X is a sum of
such forms. Suppose that X is a nonsingular, projective arithmetic variety over A, and
that <o is a Kahler form on X^ such that F^ co == — co. Then if A C X X ^ X is the
diagonal, let ^(co) be the unique Green current for A which is antiharmonic with respect
to p\ co -}- p^ Q) and such that ^(A,^^)) is harmonic. Then, writing A(<o) for (A,^(co)),
one may easily check that A(co)^ is the projection operator from CI-T(X) onto GH*(X)
discussed in 5.1.2. One can also show that if Z is a cycle on X, then ^i*(^((o) A p\ S^)
is the antiharmonic admissible Green current for Z.

(iv) It is also true that if co and co' are two Kahler forms on X^, then the automor-
phism 6 of CH*(X) defined in Theorem 5.1.6 is induced by a correspondence. For every
p, 0^ p ^ n, letj, andj^* be dual bases ofHP'^X^), C) and H71-1-^ ̂ -'-^X^), C),
and ^ as in 5.1.5. Define <p^ in A^"1' ^^^Xg) by the two conditions

^q^co^) -o/(A)

and Jxw9^ ̂ ^ + <0'^ = °
for i == 1, . . ., k. Then one can check that 6 is induced by the identity minus the sum
of^(9,)A^(co(^)), for all i and p.

(v) We shall not discuss composition of correspondences, though we believe that
composition is well defined and associative.
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