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AN EXTENSION OF THE THEORY
OF FREDHOLM DETERMINANTS

by DAVID RUELLE

Abstract. — Analytic functions are introduced, which are analogous to the Fredholm determinant, but may have

only finite radius of convergence. These functions are associated with operators of the form [ [L(du) .^o, where

-S?(o0(^) = cp <o M. 0(^(o x), 0 belongs to a space of Holder or C^" functions, <p^ is Holder or €7, and ij/o is a
contraction or a C7' contraction. The results obtained extend earlier results by Haydn, Pollicott, Tangerman and
the author on zeta functions of expanding maps.

1. Assumptions and statement of results

The theory of Fredholm determinants (see for instance [10]) has been extended
by Grothendieck [5] and applies to linear operators ^T in certain suitable classes. One
associates with jf an entire analytic function d^-y called the Fredholm determinant,
such that (i-^)-^^)/^)
where ̂  is an entire analytic operator-valued function. In what follows we shall obtain
results of the same type. The radius of convergence of the (< determinant9? will possibly
be finite rather than infinite, but larger than the inverse of the spectral radius of Jf.

The type of extension that we shall obtain concerns operators jf with a kernel
K.(^,j/) which is allowed to have S-singularities of the type <p(.y) 8(j/ — ^M)? where (p
and (p have certain smoothness properties and ^ is a contraction. Operators of this sort
arise in the theory of an expanding map f (or more generally of hyperbolic dynamical
systems), and the Fredholm determinants are then related (as we shall see) to dynamical
zeta functions which count the periodic points off, with certain weights. It is desirable
to understand the analytic properties of the zeta function and Fredholm determinants
because they are closely related to the ergodic properties of the dynamical system defined
by/(see [13]). The hyperbolic case of contracting or expanding maps considered here
is that for which the most detailed results are known, but extensions to nonhyperbolic
situations are possible, as the work of Baladi and Keller [1] on one-dimensional systems
indicates.
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Let a>0, 0 < 6 < 1, and let X be a compact metric space. We denote by
G" = C^X) the Banach space of (uniformly) a-Holder functions X —> C with the usual
norm. We assume that V C X, ^ : V ->- X and <p e G" are given such that ^ is a contraction:

d^x, ̂ ) < 6 d{x,y)

and <p has its support in V. A bounded linear operator S' on G" is then defined by
<p(A-).<D(^) ifxeV,

^^= 0 if^V:

The operators JT which will interest us are integrals of operators of the form oSf:

(1.1) jf=J^co)^

where JSf^ is defined with V^, ̂ , 9^ as above, and where pi is a finite positive measure
(which we may take to be a probability measure). The following will be standing
assumptions:

(i) J^(o)|J9j |<<X)

where 11 11 is the norm in G" $
(ii) There is 8 > 0 such that, for all co, V^ contains the 8-neighborhood of the sup-

port of 9^;
(iii) (*)^V^,^ ,<p^ are measurable. (Using (ii), and possibly changing 8, we

may assume that there are only finitely many different V^'s, and that they are compact
subsets of X. We may take as measurability condition the assumption that co \-> V^,
(co, x) ̂  ̂ M, ?(o(^) are Borel functions.)

We write

(1.2) ^=J^(0,) . . . ̂ (Oj 9cJ^)) ̂ ./^(^)) • . • ?c^ . . . ̂ (^)),

where the integral extends to values of Oi, . . ., G)^ such that 4'coi ^cog • • • ^"m ^as a

fixed point, which is then necessarily unique, and which we denote by ^(co). A zeta function
is then defined through the following formal power series

00 yW

(1.3) ^)=exp S -^.
m=l 1U

1 . 1 . Theorem. — Let \ JT | denote the operator obtained when <p^ is replaced by \ 9^ [ in
the definition o/^T, and let f be the spectral radius* of \ JT [. The spectral radius of^ is then
< ^p, and the part of the spectrum of JT contained in {\: \ X | > 601 e^} consists of isolated eigen-
values of finite multiplicities. Furthermore, 1/^(^) converges in

(1.4) { z : \ z\^ev< 1}

* The proof (section 2.5) shows that e^ is also the spectral radius of [ Jf | taken with respect to the (< uniform "
norm 1 1 |[ .
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and its zeros in this domain are precisely the inverses of the eigenvalues o/*JT, with the same multi-
plicities. We may thus write

(i-^fr^^)^)
where ̂  is a holomorphic operator-valued function in (1.4).

The proof of this theorem is given in Section 2.

1.2. Remarks. — a) We see that 1/^(-2') plays the role of a Fredholm determinant.
However, ^z) depends on the decomposition (1.1) and not just on the operator jf.
We shall obtain a " true " determinant in the differentiable case below.

b) Let E be a finite-dimensional a-Holder vector bundle over X (i.e., E is trivia-
lized by a finite atlas, and the transition between charts uses matrix-valued a-Holder
functions). We assume that cp^ : E -> E is an adjoint vector bundle map over ^ for
every co (i.e., <p^(A:): E(^^ x) ->E(^)). We can then define the operator Jf as before; it
now acts on the Banach space G^g of a-Holder sections of E. We also define

^m -J^^l) • • • i^m) ̂ .J )̂) ̂ -i^^)) • • • ^1(^2 • • • ^^((0))

where Tr is the trace on E(^(co)).
Let | <p^(^) | be the norm of (p^M for some metric on E, and | jf [ the operator

on G" obtained by the replacement of cp^ by [ 9^ | in the definition of jf. Finally, let f
be the spectral radius of | jf [. It is easily seen from the proofs that, with these new
definitions, Theorem 1.1 remains true. [For a sharper result, let | Jf^ be obtained by
the replacement of 9^ . .. <p^ by | 9^ .. . 9^ J in jf^, and take

P=lim-^log| | 1^1 [I.]
772

Theorem 1.3 below can similarly be extended to differentiable vector bundles. In
particular, this permits the treatment of the operators ^r({) corresponding to Jf but
acting on /-forms; see Corollary 1.5.

c ) Let r = (r, a) with integer r^ 0 and 0< a< 1. We denote by G1' = G^X)
the Banach space (with the usual norm) of functions X -> C which have continuous
derivatives up to order r, the r-th derivative being uniformly a-Holder. We shall write
r ^ 1 if r ^ 1, and | r \ == r + a.

1.3. Theorem. — Let X be a smooth compact Riemann manifold. We make the
same assumptions as in Theorem 1 . 1 , but with <p^, ^ of class C1', r>.l. We require that

|{ji(A*)) |[ <p^ [ [ < oo, where \\.\\ is now the C7 norm, and let jf act on G^ With these assumptions,

the part of the spectrum of CC contained in { X : [ X | > 6^ ̂ p } consists of isolated eigenvalues of
finite multiplicities.

23
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Define trjT" by
trjT- == J(I(AO,) ... ^coj (det(l - D,̂  ̂  ... ̂ J)-1

PoJ^)) 9o î(+o^ x^) • - - <Poi(̂  • • • k^ ̂ ((0))

(where Dy ^ denotes the derivative of ̂  at the fixed point x), and write

d{z) ==exp- S ^trjT".
w=l W

TA^, d[z) converges in
(1.5) {^He1 '- '^ 1}

and its zeros there are precisely the inverses of the eigenvalues of JT, with the same multiplicities.
We may therefore write

(1 -- ^JT)-1 == n(z)ld(z)

where n is a holomorphic operator-valued function in (1.5).

The proof of this theorem is given in Section 3.

1.4. Remarks. — a) Theorem 1.3 also holds if we take r = (0, a), a > 0, but assume
that the 4'<o are differentiable. In that case z i-> ̂ (z) d{z) is analytic and without zero
in (1.4).

b) The assumption that X is compact is for simplicity. It would suffice to assume
that LJ(O V^ and Uo +^ V^ are contained in a compact subset of a finite-dimensional
(non-compact) manifold.

1.5. Corollary. — Under the conditions of Theorem 1.3, define an operator Jf^ acting on
the space off-forms of class G''"1 on X by

^^J^rfo))^,
yM.A^T^.a)^) ifxeV^

0 if^V,.
where {^<S>){x)==

Let also

trjT^ = J^(Aoi) ... (.(AoJ [det(l - D^) ̂  ... ̂ )]-1

Tr^(D^^ ... ̂ J cp<J^)) ?o^(^^(^)) • • • <Po>^o. • • • k>,̂ ))

z^r^ Tr^ ij ̂  trace of operators in A^(T^) X) and

^(^=exp- 2; ^trJT^.
m=i m

With these definitions ^(0) = jf, rf^^) == ̂ ), fl̂  ̂  ^^ra/ r^^ of Jf^ ^ < 6 .̂
Furthermore, iff ̂  1, ̂  essential spectral radius of^^ is < Ql1' I +^-1 ̂  ̂ ^^^ converges in

{z:\z\Q^^f-leJ'< 1 }

fl̂  ̂  zeros there are precisely the inverses of the eigenvalues of Jf^, with the same multiplicities.
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To obtain the corollary, we have to use the extension of Theorem 1.3 to vector
bundles (here the cotangent bundle) as explained in Remark 1.2 b). It is clear that the
spectral radius of Jf^ is < Q/ e5'. Note also that when I ^ 1, the degree of differentia-
bility r has to be replaced by r — 1. From this, the corollary follows. (For the case
where r — 1 < 1, use Remark 1.4 a).)

1.6. Corollary, — Under the conditions of Theorem 1.3, we may write

^)==n[^)]<-1^1,
where t ranges from 0 to dim X, so that the zeta function (1.3) is meromorphic in (1.5).

This follows from the identity
dimX

^== S (- 1/trjT^
/ = o

where ^ was defined in (1.2).

1.7. Corollary. — a) Let ^^ and Jf^ ^ operators on C''1 and (Y2 defined by the same
(Jt(Ao), V^ and ̂ , <p^ of class C''1, with r^> r^. Then, in the domain,

{\:\\\>Q^ep}
the operators .3f\ and Jfa have the same eigenvalues with the same multiplicities and the same gene-
ralized eigenspaces (which consist of Cy1 functions). If ̂ ^, <p^ are G00, it therefore makes sense
to speak of the eigenvalues and eigenfunctions ofc€ acting on G00, and d{z) clearly is an entire
function*.

b) 7/* | X | > 6 1 1 ' 1 ̂ , the elements of the generalized eigenspace of the adjoint Jf* of Jf*
corresponding to the eigenvalue \ are distributions in the sense of Schwartz, of order s for all

P - log | X |
s>

log 6

To prove a) note that the generalized eigenspace ofJTi maps injectively by inclusion
in the generalized eigenspace ofjTg, but both have the same dimension given by the
multiplicity of a zero of d(z). From a), one derives b) easily.

1.8. Expanding maps. — The case where the ̂  are local inverses of a map /: X -» X
has relations to statistical mechanics and applications to Axiom A dynamical systems and
hyperbolic Julia sets. Various aspects of this case have been discussed by Ruelle [12],
Pollicott [9], Tangerman [15], and Haydn [6], and a general review has been given
in [13]. Note that the conjectures A and B of [13] are proved in the present paper. The
real analytic situation, not considered here, has been discussed in Ruelle [II], Mayer [7],
and Fried [3], and leads to Fredholm determinants in the sense of Grothendieck [5].

* It would be interesting to estimate the growth of d(z) at infinity.
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Note that an erroneous statement about the growth of determinants in [4] and [11] has
been corrected by Fried [3]. For piecewise monotone one-dimensional maps see Baladi
and Keller [1].

The case of an expanding map f is analysed by using a Markov partition (for
which, see Sinai [14] and Bowen [2]). In the more general situation discussed here, there
are no Markov partitions. Our proofs will make use, instead, of suitable coverings of X
by balls. The present treatment is completely self-contained, but reference to [13] is
interesting in providing for instance an interpretation of the spectral radius e^ as expo-
nential of a topological pressure.

1.9. Other examples, — A class of examples where the results of the present paper
apply is described as follows. Let X be a compact manifold, X its universal cover, and
TT : X -> X the canonical map. We assume that ^ : X -> X is a contraction, such that
d{^x, ̂ y) < 6 d[x,y) and that y : X -> C is of class C1' and suitably tending to zero at
infinity. Define

(jro)M=:S^-x,<p(j00(4jO.
It is not hard to see that jf is of the form discussed above, and we have

00 yW,

W = exp S^ -^ 2;̂  _^ $(jJ ... 9(^2) 9(^1)

where the second sum is over w-tuples such that

^1 == ^fe^ • • • ? T^m-l == 7r^ Vm = ̂ l-

If X = R/Z and ̂  == Qy, then d^\z) = d(Qz), so that ^(z) = d(9z)ld{z).

2. Proof of Theorem 1 . 1

2.1. Coverings <?/*X by balls. — The following construction involves the constants 6, 8
of Section 1 and a constant K which will be selected later; for the moment we only assume
that 0< K < 1. Let (^)^i be a finite (K/2) 8(1 -— 6)-dense family of points of X. In
particular, the balls

X,=={x:d^x,)<812}

cover X. For eachj, <o with X^.C V^ we choose measurably u{j, co) such that

^o^,^.J<(K/2)8(l-6)

and therefore
4^x,cx^^.

For each integer m ̂  0 we shall now define a finite set J^ and a family (X(fl))^g j(m)
of open balls in X. We choose 6' such that 6 < 6' < 1, and we shall define J^ and (X(fl))
by induction on m.
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First, J^ == {(i) : i e I}, and we let X^ = X, be as before the balls of radius 8/2
and centers x°, = x, forming a (K/2) 8(1 — 6)-dense set in X. For m ̂  1, let
similarly (X^) be a finite family of open balls of radius 86 '"72 and centers x^
forming a (K/2) 8(6' - 6) O'^-dense set in X. We put

J^ = {(z, ..., ̂ ) : (z, .. .̂ ) ej^-^ and ^w ^-1) ̂  K86'—1}.

Choose now K = (1 - 6')/2. If a == (z, ..., k,l) ej^ we have X?»C X^1-1, and by
induction

x^cx^c... ex,.
We shall write x{a) == x^ X(a) == X?1. We define ̂  :J(W) ^J^-D by

^.. .^)=(^.. . ,A).

Given & = (z', ..., k ' ) ej^-1) and co such that X^CV^ we define
9(^0)) == (^ . . . ,A^) by

i = ̂  <o),

(?, . . . , A ) = »(^, (o) i f w > 1,

and I is chosen measurably such that

^ ̂ -1, ̂ w) < (K/2) 8(6' - 6) e'--1.

We have thus

^((i'), co) == ^(^ <o),

pv{b, co) = y(^ co) for m> 1 ,

^X(A)CX(^(O)).

2.2. Z^wfl. — H^ Aa^ y(6, co) ej^.

We write 6 = (f, ...,/, k ' ) . We only have to check that
d{xT, x^-1) ̂  dW, ̂  x^-1) + d{^ x^-\ ̂  ̂ -2) + d(^ ̂ -\ x^-1)

< (K/2) 8(6' - 6) 6'"1-1 + eK86'w-2 + (K/2) 8(6' - 6) 6'"1-2

^ K8(6' — 6) 6'"1-2 + K866'"1-2 = K8e'w-l

for m> 1, and a similar inequality for m = 1.

2.3. T& o/wfl^r ̂ . — We define
^ 1 ifX.CV, and i = ̂ (j, co),
^ '̂'̂  0 otherwise.

Let $<, (^^I))^ denote the restrictions of 0, JfO to X^ and X, respectively. We may
then write

(2.1) (JTO), W = Sj^(Ao) T,,((O) 9,^) (D,(^ x).



182 PAVID RUELLE

If S^gjX, is the disjoint sum of the X^, we may write

©^(X^G^SX,)
and define an operator ^( on that space by

(̂ 0), (^) = Sj^(^) ^(co) (p )̂ <D^ ̂ .

This is the same formula as (2.1), but the $, may now be chosen independently on the
various Xp If we identify G^X) with a subspace of ©^"(X^), we see that the res-
triction of Ji to C^X) is Jf. Note that

(2.2) (^0)^) == ̂  ..,̂ .J (̂̂ i) ... ̂ coj ̂ .JO •. . W î)

P^W • - • Po^oa • • • ̂  ̂ ) °<o(^^ • • • ^m A?)-

2.4. The operators ^(m). — For m ̂  1 we define an operator

^(w) : ®a6^) ̂ (X^)) -^ ©^^"(^

by the formula

(2.3) (^O)^) = J(x(^)... (x(rfcoj

yo^(^) 9o^i(^^ ̂ ) - • • y<oi(^^ - • • ̂  ̂ ) °t»(̂  5)(^o>i • • • ̂ ^)
where v{j\ (o) = »(!?(... ^((j), coj, . . . ) <0i). Define

Q^: ©^iG^X,) -> ©^^G^X^))

as the restriction operator such that

(Q(m)0)^OjX(fl),

when p^a = (t). In view of (2.2), (2.3), we have
(̂m) Qm) = ̂ m_

We shall also need the operator

T"': ©<,e;r(») G^X^)) ̂  ©,gj(«) C^X^))

such that
(T<""0)^= 0(^(a)).

We define the norm on ©< C^X,) by

|| 0 || = max^x (sup, | 0,̂  | + sup,^ . i^i^——^U)
\ ff ̂ 3 J'J /

and similarly for ©^jO^G^X^)).
Note that, with these norms,

I I Q ^ I ^ l , || T^ [1^1 .
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2.5. Proposition. — a) The spectral radius of Jl (and, thus 3^) is < the spectral radius ep

of\^\.
b) Given s > 0, we have

(2.4) \\JK^ - J(^ T""' || < cons^O" ep+t)m

and therefore the essential spectral radius of JSf (and thus JT) is < Q" 0s'.

Using (2.2) we have

K^Q) (x) - (̂ "(D) (jQ|
d(x,^

< II ̂ m llo II <r 1 1 + const ̂  || ̂ -» ||, || ̂ "-* ||, || 0 ||,,
so that

^ (|| ̂  1|)^ = ̂  (|| ̂  ||,)̂
< ̂  (|| | Jl |» ||,) v = ̂  (|| | ̂  I" 1 ||,)̂

= Jtm (|| | jr |» i ii,) v = jim^ (|| | jr i" |i,)'/»
and a) follows from the spectral radius formula.

Using the definition (2.3) and the estimate || 0> — T'-'^ ||,< \[<b || (SO""^)"',
we have also

^"'(l - T""') Q) (x) - (^""(l - T'"") $) (jy)|
^(^J)"

< ll '̂lloil*!' 11(89'")" + const S C(A).||<D|| (SO'"^)"
m

S
Jfc-1

where the const comes from the Holder norm of y and G{k) is estimated, taking absolute
values, by

c^xin^r^iio.iii^r-Miio
^lll^l^ll.ill^T-'ll.

From this the estimate (2.4) follows, and b) results from Nussbaum's essential spectral
radius formula [8].

2.6. The operators ̂  and ̂ \ — If k ̂  0, we shall define an operator ̂  on

©^..^G^X^n... nX^)

where the sum extends over the set 1̂  of {k + 1)-tuples i = (^, . . . , 4) such that
io < • • • < h and X^ n . . . n X^ =|= 9. Let M(J, <o) = (u[JQ, <o), . . . , ^(^, <o)) and

1 (or- 1) if X,^, . . . ,X^CV<, and u{j, co) is an even
T«(<o) = (or odd) permutation of i,

0 otherwise.
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We write then

(^<D)^M = Sj^co) ^(co) 9^) <&,(^).

Let now

©^,^GT?Wn... nX(^))

be the sum over those {k + 1)-tuples of elements ofj^ such that X(flo) n ... n X(^) + 0
and /^ OQ = (z'o), .. .3^ ̂  = (4), with z'o < • . . < 4- ^e define then

Q(^):®^....^Ca(X^n...nX^^©^,,^Ga(X(^)n...nX^^

so that Q^ is the restriction from X^ n ... n X, to X(flo) n ... n X(^).
We also define

^r:®(,o,...,o,>Ga(X(^)n... nX(^))^e«„...,,„Ca(X,,n... nX,,)
by

(̂ nl) 0), (x) = fv.{d^) .. . ̂ 0 y^(^) .. . y^(^ .. . ̂  ̂ )

(̂ .....̂ ((̂ i • • • ^A;)).

where s, and OQ, ..., a^ ej1*"' are determined as follows. If p" »{jo, <>>), .. .,p'mv{j^, (o)
are not all different, write s = 0. Otherwise, let TC be the permutation which arranges these
indices in increasing order, and write s = sign TC, («o» . . . ,0^) = w(i?(j'Q, d)), ..., z»(j'^, a)).

Finally, we choose an arbitrary point* x{d) e X(ao) n ... n X(a^) for every
(k + 1)-tuple a = (ffo> • • •; 0^) and define an operator T "̂*' on

©^, .,,̂ , G^X^o) n ... n X(^)) by (T^^), = <r(^(a)).

With these definitions we have

1 1 ry^ 1 1 < 1 n T^ 1 1 < ill y-fc 1 1 ^ l ) 1 1 -•-fc ll ^ 1

jy(w) f^(w) _ j/w
—Jfc 'XJfc — "^A •

Note that for k = 0 the operators ̂ , Q;̂ 5, ̂ w) reduce to Jl, Q^, ^(w).

2.7. Proposition. — a) The spectral radius of ̂ ^ is ^ ^p.
6^) GZ'̂ TZ s > 0, we have

\\Jiy - JK^ T^ [| < constCe'" ep+e)m

and therefore the essential spectral radius of^K^ is ^ 601 ^p.

The proof is essentially the same as that of Proposition 2.5.

2.8. Lemma. — Suppose that ^ • • • ^co ^as a fi^ poi^t x(u) e support y^ . Then

(2.5) S,(- ̂ ^,...,^1^^-^ • • • WO W î) = L

* When ^ = 0, take ^(^0) to be the center of X(flo) as before.
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Let I* == {j : X^ e V^ } and a : P -> I be the map such that there exist z\, . . ., i^_ ^
for which

^n-l̂ ) • • • ^"(̂ l) = L

By assumption I* + 0, and clearly al* C I*. Let I be the set of all a-periodic points in I*,
and a the restriction of a to I. Then I =t= 0 and a is a permutation of I. Let a consist
of c (disjoint) cycles. Then, the non-zero terms of the left-hand side of (2.5) are those
for which IQ consists of the elements off cycles of a, with/" ^ 1. The value of such a term
is thus

(^ l)^_ l)^i-^ (^ 1)^1

and the sum is ^,(-l)-«(^'l'l=l.
2.9. Corollary. — Write

(2.6) ^ = S,,,...̂ _^J(.(A»i) ... (.(AoJ

l̂olm-l̂ ) yo^"))) • • • (̂ ilo l̂) ̂ (^ • • • ^^(")))-

r̂ »
^=S,(-1)*^.

2.10. Proposition. — The power series
00 yW

^(^) = exp - S — ̂
w=l 77Z

converges/or \ z \ 6" f < 1, awrf ̂  -̂ m? ̂  ̂ ^ domain are the inverses of the eigenvalues of^K^^
with the same multiplicities.

Before proving this result, we note the following consequence.

2.11. Corollary, — The power series

1TO == exp - S z- ̂
m=i m

oo yin

>m

converges/or \ z \ 601 e^ < 1, and its zeros in this domain are the inverses of the eigenvalues of jf\
with the same multiplicities.

Corollary 2.9 yields

ITO = n^j^)]<-<
Corollary 2.11 therefore results from Proposition 2.10 if we can prove that, for | X | > O" ̂ ,

(2.7) ^-^(-l)^)
24
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where w(X) and ^(X) are the multiplicities ofX as eigenvalues ofjT and^j^ respectively.
To derive this result, let

G^e^.^^C^X^n.. . nX,,)

and define coboundary operators o^ : C^ -> C^.^ in the usual manner (i.e.,
Jk+l

(^<I>)«o,....i^) =^(- l)^(io.....Y.....<Wi) I x^- The existence of a C" partition of
unity associated with the covering (X,) ensures that the following is an exact sequence:

0 -> C^X) 4. Go -̂  GI -> ... -> C^ G î -->... ,

where (3 is the natural injection and G^ == 0 for sufficiently large k. We also have
pjf == ̂ Q (3^ a ;̂ c ;̂ == e ;̂ 4. i a^.

Let P^ = ,r—(p———,— (resp. P^ = —-.(p————\ where the integral is over a small
2.711 J Z — Jz- ^ Z,TCl J Z — •^jk/

circle centered at X. Then, P^ (resp. P ;̂) is a linear projection of G^X) (resp. Gj^) onto
the generalized eigenspace of oS? (resp. ^(^ corresponding to X. Furthermore

^XO P == ?1? ^XJk+l ̂  == ̂  Pxjb-

We therefore have an exact sequence
Q Q(^

0 -> im P^ -> im P^ -> im P^ -^ ... -> 0
so that

dim im P^ = S^^o (—- 1)^ dim im P^

which is precisely (2.7).

2.12. Proof of Theorem 1.1. — Theorem 1.1 follows from Proposition 2.7 and
Corollary 2.11. We are thus left with Proposition 2.10 to prove.

2.13. Proof of Proposition 2.10. — There is a finite number of eigenvalues X^ ofJK^
such that [ \y | > 6'" ^p. If m^ is the multiplicity of 7^, we may write

S, m,{\r = S, X?1 S, (T^(S^) = S,, o^(^ S,,)

where (0-^) and (S,y) are dual bases of the generalized eigenspaces of ^t^ and ^K^ res-
pectively for the eigenvalue X,.. Therefore
(2.8) S, m/X,)- == S,, <^((^ ~ ̂ > T^) Q<r S,,) + S,, ̂ (^^ G,,)

where G^ has the constant value S^y(^(a)) on X(flo) n ... n X(fl^).
Using Proposition 2.7 we have

(2.9) | S,, <r,,((̂ ' - JK^ T '̂) Q<?' S,,,) | < const(e'a .p+*)"1.

Let x, be the characteristic function of X(dg) n ... n X(a^) as an element of

^....^(X^n... nX(a»)).
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Then

(2.10) S,, a^r G,,) = S,, S. S,^(a)) o,̂ r Xa)
=:S,((l-^)^^)(^a))

where ^ is the projection corresponding to the part of the spectrum of ̂  in
{ x : | x | ^ e'"^}.

The right-hand side of (2.10) is the sum of two terms. The first can be written as

Sa(^TZa)^(a))

== ^(io....,^)eiA;^o:p»"ao=io • • • ^:pmo^J^(Ao3) • • • ^(^J

^ (sign TT) 8((^, . . ., ^), 7c(y(0?o). ^)> • • . . ^((4). (0)))
PcJ^a)) ... 9^(^ ... ^,^(a))

== ^o, .•^^^^^(^l) • • • ^(^J ̂ ^^(^m) • • • ^Ii(^2) ^^(^l)

9^(1^0^)1)) .. . 9.,(^... ^^(l^(io^)l))

where | y(i, <o)| is the permutation of (^(io, 0), .. ., y(4, co)) such that p"1 [ y[i, co)| === i.
If we replace in the right-hand side x{ \ y(ig, (o)[) by the fixed point x(u) of ̂  . . . ̂  ,
the error is bounded by cons^O'" ^p+e)w (using the same sort of estimates as in the proof
of Proposition 2.5). Therefore^ by the definition (2.6) of ̂ , we have

(2.11) | S,̂  x,) (^(a)) - ̂  | ̂  cons^e- .p+e)TO

We are left with the study of

S,(^rxa)(^(a)).
Remember that the sum is over the set J^ of those a = (^o, . . ., a^) e (J^)^1 such
that p^ a = (z*o, .. ., 4) with i^ < ... < i^. Note that, if 0 ̂  t ^ w, we may write

2;̂ )(^T ̂ ) (^(r-' a)) = 2:^^)(^^-'^ Xb) (^(b))

(lump together those a such that ^""^a == b). Therefore

S.(^^rXa) W} - S,ei,(^^Xi) (^(i))

=^s.((^^rx.) Wa)) - (^^rxa) (^(r-^1^))
=^s,e^)((^l^^-/^)zt) W} - (^^r-'^'xb) (^(/'b))).

From this we get, using (2.13) below,
(2.12) | 2,(̂ 7' /,) (^(a)) | < const 11 8^^ \ \

+ const^ || ̂ F1 II.Sbe.rf IK' Xb II. ̂ (b), ̂ b))"
W

< const [(e'aeI>+s)"l + Z; (6'a^p+6)CT-/(ep+6)/6'/a]

< const OT(e'°lep+6)"•.
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Putting together (2.8), (2.9), (2.10), (2.11), (2.12) we obtain

I s, '"A-)'" - ̂  I < const ?(6'°' ep+e)m

and therefore

iog(^)/n,(i - ̂ )"y = s ^(s^x,)" - ̂ )
w== i m

converges for | z \ Q/aeJ>+e< 1, proving Proposition 2.10.
In deriving (2.12) we have used the inequality

(2.13) S^^)||^)^||^const(.p+e/

which we shall now prove.
Given (3 > 0 we set y^ = | <p^ | + p [| ̂  ||. In the definition—Section 2.6—of

^ if we replace y^ by 9^ and suppress the factor s = ± 1 we obtain an opetaror M^o:

(M^$), {x} = J (̂0i) ... (x(rf(o/)

<P./pW • • • 9^ @(V^ ... k>/ ^) 0 ,̂ ...,»,)(̂  ... ̂  .r)

where (^o, .. ., a^ is a permutation of (z»(^, o), ..., o(^, <,))). In particular

l l ^ x J I o ^ H M ^ ^ H o .

If x,y e X,^ n ... n X,.^, we also have

I (*<' Xb)i (^) - (̂ ) Xt), (J') | < ft^i) ... (x(^/)

I yovW • • • ̂ (^ • • • ^/ X) - ̂ (y) . . . y^(^ . . . ̂ y) I

/ F
< ^S J (.(̂ i) . . . (.(̂ ) y^g(^) . . . y^p(^ . . . ̂  ̂ )

I yo),('L,,i • • • 4'<o/ x) - <p,,(̂ ;̂  ... ̂ ) [
yo,.lp(+<o, • • • <k>/J»') . . . <Po>^(^ . . . ̂ J>).

where the^ integrals are^ restricted to those (<»i, ..., co/) for which b is a permutation
of ("(Jo. t0); • • . , v { J k , t0)). We may write

I <P<o,(̂  • • • ^/ ^) - <Po,(^<o;̂  ... <)^.y)|

< I I <Pco, I I (O^-^^,^))^ const y^.3(^;^ ... ̂  ̂ ) e^-"^,^)"
and similarly

(2-14) ^p(^i • • • ^^y) < <p<o,p(^^ • . . ^/ a;) (l + const e^-^.
Therefore

l^x^W-G^x,.)^)! . . . - / , ,,——————-^^—————— ^ const t || M^ ̂  Ho

hence

(2.15) I I^XblKC^IIM^t l lo .
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From (2.14) we also obtain

M^^^^WM^^x)

where G'((3) does not depend on /. Therefore

2^) I I M^Xb l l o ^ C'((B) S,sup, |(M^ 1), {x)\ < G^p) || M^ 1 ||o

and with (2.15) this gives

Sbe^) II ̂  Xb II < C(P) G"((B) ^ || M^ 1 ||o < G-dB) (<W)-^y

where ^p(e) is the spectral radius with respect to the || [|o norm of the operator JKn
obtained if we replace 9^ by <p^p in the definition of JK. Note that ̂ 3 is close to | JK \
for p small:

ll^p-l^lllo^Pj^^)||9j|.

Using the upper semicontinuity of the spectral radius we may thus choose (3 such that

^eJfll^)Xbll<C' / /(p)(.p+e/

i.e., (2.13) holds as announced.

3. Proof of Theorem 1 .3

3.1. The essential spectral radius of C^. — We shall follow the proof of Theorem 1.1
in Section 2, and note what changes have to be performed to deal with the differentiable
situation.

First of all, we make a choice of charts for the balls X,, which will thus be identified
in what follows with subsets of Euclidean space. We may assume that the balls X, have
small radii and that the Riemann metric is closely approximated by the Euclidean
metric. Confusion between the two metrics is then inconsequential. The linear structures
which we have chosen will allow us to define Taylor expansions.

Replacing G" by G1' everywhere, we define J(, Jl^\ Q^\ ̂  JK^\ Q^ as
before. The operator T^ on ©^j(m) Cr('X.{a)) is now defined by

(T^ 0)o = Taylor expansion of order r of 0 at x {a)

and similarly for T^. We have then

|| 0 -T^O |[o^ const||0 || O^l''!.

Following the arguments of Sections 2.5, 2.6, 2.7 with obvious changes, we get
(3.1) || ̂  - Jl^ T^ || ̂  cons^O'l1'!^6)"1

and therefore the essential spectral radius of JK^ is < O1''1^. In particular, the same
estimate holds for the essential spectral radii of JK and Jf.
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3.2. Proposition. — Define

Tr^F = J(^) ... (X(AOJ (det(l - D^ ̂  . . . ^))-i

(̂ JO 9^(co))) .. . (T^(coi) y^(^ ... ̂ (S))).
Then, the power series

<TO==exp- S ^Tr^
r o — l OT

converges/or | z | 6''' I ('P < 1, a^ ifa ^gro^ in this domain are the inverses of the eigenvalues ofJl^
with the same multiplicities.

Before proving this result, which corresponds to Proposition 2.10, we note that it
allows us complete the demonstration of Theorem 1.3. We have indeed

^) = n^, ww-^
by Lemma 2.8. The proof of Corollary 2.11 again applies, and yields that the zeros of d{z]
in (1.5) are precisely the inverses of the eigenvalues of .at, with the same multiplicities.

3.3. Remark. — Before embarking in the demonstration of Proposition 3.2, we

prove a necessary estimate. Let n = {n^ ..., n^) be a multi-index, -^ the corres-

ponding derivative, and »! = n^. ... n^x'- We assume that [ n | = n^ + ... + n^^< r.
Define then

E^ = ̂ .o, ...,.,,-iĴ l) • • • (^Oj ̂ JO • . . T (̂(0i)

a1*
-^ (y^W • • • <PA •. • ̂ ) (^... ̂  - ̂ (^, o)))») |̂ «.,»)

and assume that ^ e X(o(^, (o)) for A; = 1, 2, 3. Replace in E^ the expression

^ ( . . . ) by its Taylor expansion around ^(t'o, <»), keeping derivatives of total order up

to r, and then put x = ̂ (iy, u). The error thus made is bounded by

cons^e"")''''-''1!.^15)"^'"1)!''' = const(ep+le'l''l)'».
Define now

Ee=S„^^^E^ ) i.e.,

(3.2) ES = S^,,,^, T,^ ,^^JEX(^) . . . (A(^J T^(^((OJ . . . T (̂(0i)

1 a»
nt ~8x- ̂ {x) • • • ̂ A • • • ̂ x) ̂  •••^x- S(»o, "))")|,-e(,,,.).
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Introducing limited Taylor expansions as explained above in each term of E^ , we simply
obtain E^ . Therefore
(3.3) | E^ - E^ | ^ const^-^O'1'"!)"1.

3.4. Proof of Proposition 3.2. — We shall prove the proposition for ^(====^0)
rather than * .̂ (This simplifies notation, and the general case is easily recovered by
reference to Section 2.13.)

There is now a finite number of eigenvalues X, ofJK such that | X, | > 6'11'1 ^p.
Let m^ be the multiplicity of X,, and (<r^), (S,y) be dual bases of the generalized eigen-
spaces of^F" and Jl respectively for the eigenvalue X,. Then
(3.4) S^^r^S^^^-S,,)

= S,, ̂ ((^ - ̂  T^) ̂  S,,) + S,, < (̂̂  G^)

where G^y | X(fl) is the Taylor expansion to order r of S^ at x{d). Note that (3.1) gives

(3.5) | S,̂  ̂ ((^(OT) - ̂ (ro) T^) Q;̂  S,̂ ) < const(e/lrj ep+6)m.

Let /<, denote the characteristic function of X(a) and write 8^ for the derivative of order
n = (n^ ..., »dfanx) evaluated at ^. We have

(3.6) S,̂ (̂ G,,) =S,,S,S,^^^^S^^(^^((. --^))nxa))

=S,S^l„^^a^((l-^)^^((.-^))wxa))

where '̂ is the projection corresponding to the part of the spectrum of ^ in
{ X : | X | < e'^^}. Further,

(3.7) S, S, ̂  a^^-'^. - <(a))» x,)

= S. S^ J(i(Aoi) ... (x(rfo)J 8(a, .(r a, S))
o

^ (y^W • • • V<A, • • • ̂  x} {^ •••^x- ,v(a))») |._.(,)

= îo, ...,im-lJ ̂ "̂l) • • • t̂ m) îm-i ("») • • • ̂ ("l)

1 o

s" »' ftc" ̂ "-^ • • • <p6)l(ka " • 4'""'()

( î • • • ̂  •» - •^(^ ")))") |«-«wio,5»
=E^

Where we have used the notation (3.2) with Si^o?^) = ^(^^o? 0)))* If we choose
Ss^o? 0)) = A?((o)5 we get
(3.8) | E^ - E^ | < const(e''^' ^+e)w
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in view of (3.3). Furthermore, since A-(co) is a fixed point of ̂  ... ̂  ,

^3 = ̂ io, ...̂ -J l̂) • • • t^J T^JtoJ . . . T,̂ (<0i)

y<J^)) •.. <pA •. • k^(")) s,̂ ,̂ ,̂.
^!

where Y,, is a polynomial of order | n | in the elements of the matrix D ̂  ^ )
of derivatives at ^(<o), and SYJn! is invariant under linear changes "of coordinate's.
It is easily recognized that ST»/n! is the development of (det(l - D,̂ , ̂  ... ̂  ))-i
to order r (take D to be in Jordan normal form). Therefore lt6> "i

(3.9) | Es, - tr^f" | < cons^O^ es'+t)m.

From (3.7), (3.8), (3.9) we get

(3.10) S^ S» ̂  a:(„^(B>)(( • - ̂ (a))» xj - tr^" ^ const(6'l'•l <p+t)ro

There remains to estimate

SA|,|^<^,^<»'((. - ̂ (a))"^).

Note that, if 0 < / < m, we may write

S.e ̂  S, ̂  a;,̂ -/,, ̂ ^"»'((. - ̂ -t <,))» ̂ )

= ̂ e^' S, ̂  ̂ , ̂ ^»- '̂/>((. - ̂ ))»^).

Thus

S,e,r"")S^a^^^"»'((.-^))»^) - S,^2^a^^»((. -^)»^)

=S^^^S^(a^,^«»-/^'/>((. - ̂ &))»^)

- ̂ ^m-t^{\{. - xwr^)}.
The absolute value of the right-hand side can be estimated in terms ofTaylor expansions
(as in Remark 3.3). Using also (3.12) below, we get a bound

m j

const^ S»ej</> S» -, d{x(b), x{pb))^-^\

ll^^'-'ll.ll^^.-^))"^)!!
m ^

< const 2; S„-j•(6'^l'l-ln'.(e'lr^p+e)w-^(^p+e)^(6^)lnl

= const y^O'1''1^6)"1.
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Therefore

(3.11) S.^-^a^^^-^. ^x[d)Y^) ^const^e'l1-'^4-5)-.

From (3.4), (3.5), (3.6), (3.10), (3.11) we conclude that

I ^•^A-)"1 - tvjym I ^ const 771(6^1 <?p+e)w

Therefore

log(€ (^)/n,(l - \- ^wy) = S ^(Sm/X,)- - tr^-)
w=l W

converges for | z \ 671111 ^p+e < 1, proving Proposition 3.2.
We have used the inequality

(3.12) S^^)||^^((. -^))CT^||< const(^+e/(6'Qln '

which is proved like (2.13).
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