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HYPERBOLIC 4-MANIFOLDS AND TESSELATIONS
by NICOLAAS H. KUIPER (1)

Dedicated to Rent Thorn.

1. Introduction and survey

The remarkable discovery of complete hyperbolic manifold structures on non
trivial plane bundles over oriented closed surfaces and of Moebius structures (that is
conformally flat structures) on the corresponding non-trivial circle bundles by M. Gromov,
B. Lawson and W. Thurston in the preceding paper [GLT], can be generalized by
putting emphasis on tesselations and discrete actions of groups I\^. This makes the cons-
tructions more transparent and yields moduli, in particular rigidity a) for certain
tesselated hyperbolic d-manifolds, b) for certain tesselated Moebius d — 1-manifolds
(called tesselated CP^structures for d — 1 = 2) (see [Go]), and therefore moduli and
rigidity for discrete actions of groups I\ ̂  on the hyperbolic space W and certain
hyperbolic rf-manifolds S^ as well as on Sd~l and certain Moebius d — 1-manifolds
M^"1. The groups I\ „ are generated by involutions g : g ^ = e .

Our main interest is in dimension 4. Higher dimensions are simpler. To set the
stage we describe in § 2 the classical tesselations of H2 [Gox] by v-gons congruent to
one of them, call it P, and n ̂  v meeting at each vertex. The group I\ „ is generated
by the v involutions (half turns) about the middles of the sides of P as fixed points. We
will see that necessarily the sum of the angles of P is A == 2'^fn. Sufficient conditions
are obtained by adding symmetry conditions on P in case the greatest common
divisor gcd(v, n) ofv and n is < v. Tesselation and action are rigid if 3ind only ifgcd(v, n) == 1.
Then the tiles (v-gons) must be regular. Then also the " orbifold " H2/^ „ is rigid.

If r C I\ „ is of finite index and <c acts " freely on H2, then S2 = HP/r is a Riemann
surface tesselated by, say, Vv-gons, with I\ ̂  acting as group of symmetries which are
all orientation preserving (!). A very simple example is for n = 2v, with v odd (resp.

(1) The author acknowledges hospitality at the institute de Matematica Pura e Applicada, Rio de Janeiro,
in August-September 1987, where part of this research was done. He thanks the authors of [GLT] for their inspiration.
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n == v even). The tiling then has a map colouring with two colours and we can choose
for r C I\ „ the freely acting subgroup of index 2 of the colour preserving elements
ofr,^.

In § 3 we carry all of this over to higher dimensions, to tesselations by " v-Gons " P, n at
each <c Vertex ", of the hyperbolic space H'' (resp. S^ == H^/F) for d == 4 and 3 with
the same abstract groups I\ „ acting. There is one more necessary and sufficient condition
for tiling expressed in terms of a global invariant for P called torsion. There also are
included Moebius tesselations in

S^1 = ̂  IT and M^-1 == ̂  S4.

For d == 3 we get special CP^tesselated surfaces with injective development maps
into CP1 and Julia-curve limit sets. For dimension d == 4 we reproduce in particular
the examples of [GLT],

By comparing deformation space dimensions in table 1 we conclude ([GLT])
that limit sets ̂ C Sd~ l^ self similar embedded circles called Julia knots, are in general
not round circles and may be everywhere knotted hence nowhere tame. Any mani-
fold S4 we construct is homotopy equivalent to its polyhedral core-surface S, and if ^ is
unknotted, then S4 is a smooth 2-plane bundle over a smooth surface S2. The tesse-
lations and the actions of I\ „ are rigid if and only ifgcd(v, n) === 1. Also the Julia knot^
is then rigid with respect to the group of symmetries I\ ^ and the tiles then must be
"regular" (homogeneous).

Our main observations are summarized in Theorems 1 to 6.
With their " template method " the authors of [GLT] discover the construction

of polyhedral surfaces in H4 which in our approach appear as core-surfaces 2p. They
study in detail the case where the template is a " regular " (homogeneous) standard
v-gonal {p, ^-torus-knot in a metric unit 3-sphere S3. They calculate the non zero
normal Euler number ^1 of the plane bundle S4 when the regular torus-knot is unknotted
q = 1. In § 4 we explain this relation of our paper with [GLT], in particular in Theorem 4.
The formulas (4.2), (4.4) and (4.7) for the normal Euler number /1 survive as for-
mulas for the self intersection number of the polyhedral surface S in S4, in case S is locally
knotted.

In § 5 we use the formulas of [GLT] and obtain simple explicit examples for all
plane-bundles for which | / | > 3 | •y11, where % is the even Euler number of a closed
surface and •y1 the Euler number of a 2-plane bundle over S. See Theorem 6.

In § 6 we elaborate the case of a complete hyperbolic 4-manifold tesselated by
two regular 13-Gons, that has a locally knotted core surface S with ' y 1 = — 7, / == — 10.

2. Tesselations of H2 and of Riemann surfaces S2 ; actions of I\,»

There are two models of the hyperbolic d-space W onto the interior D^ of the
unit d — 1-sphere

qd-l _ J y c t t 4 - II y l l 2 _ Vv2 _ 1 \C H^^(l) - - t A ? e K • | | ^ | | — 2^ — 1 }^. .K
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in the euclidean space R^: H^ and H^. For d == 2 they are related by stereographic
and orthogonal projection of a lower half-sphere into the horizontal plane containing
its boundary as illustrated in fig. 1 a). In H^ (fig. 1 b)) the convex sets and the straight
lines are the same as in R^. In H^ (fig. 1 c}) the straight lines are the intersections
with those circles in R^ that meet 8^71 orthogonally. Angles (between curves) are
the same as in R^.

® ©
FIG. 1. - a) Stereographic and orthogonal projection

b) c) Orthogonal lines pq and rs

The groups of motions of W are the projective transformations of D C R^ C RP^
for H^p and they are the conformal transformations of D C R ^ C S ^ for H^. In
this case we can compactify J^ by one point to get a Moebius sphere 3d, and we can
consider the group of isometrics of H^ as a subgroup of the Moebius group of 3d.
These groups induce Moebius groups in the boundary, the d — 1-sphere and Moebius
space 3d-1 = Sffi = ̂  HP, also denoted RP1 for d - 1 = 1 and CP1 for d - 1 == 2.
The groups are then the rational transformations of RP1 and CP1. A common notation
for the group is S0(rf, 1).

By a tesselation of a locally homogeneous space in the sense of Ehresmann [Ehr]^
like a hyperbolic space or a Moebius space, we mean a covering by mutually equivalent
(isometric resp. Moebius equivalent) connected pieces with boundary, called tiles, whose
non-void interiors are disjoint. By way of introduction recall that the Euclidean plane
has a tesselation obtained from any triangle or any quadrangle by the group of isometrics
generated by half turns around the middles of the edges as fixed points!

A general tesselation T ,̂ „ of the hyperbolic plane by mutually congruent convex
v-gons with n ̂  v meeting at each vertex is obtained as follows: Start from one convex
v-gon P with vertices ^, edges [y,, z^J and angles 0^3 i mod v. Then fit a congruent
v-gon by an orientation preserving involution g?, (^°)2 = e = identity, that is a rotation
over TT, around the centre of the side [^, z^J as fixed point. If P has sides of mutually
different length then this is the only way to start a tesselation. We can fit more copies

7
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around the vertex v = v^ by analogous involutions denoted^, ̂ 3, etc. (See fig. 2 a), b}, c)).
Note that the involutions around the centres of the sides of P are respectively
(2.1)

Sl =gl, g2 =glg2gl, '• gi gs gs gs, gn • • • ?

g^ == gigs • • • gv • • • g^gr

SigSgl

= Si g3 gi

FIG. 2. — a) (v,n) = (5. 5); b) (v,n) = (4,5), x, = g, . ..,g^g^ rigid
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FIG. 2. — c) (v,n) == (4,6); d) A non-convex tile (v,n) = (5,5); gi : Short for [giY^
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Note that g^ ^ == g^. If our tesselation succeeds, then this set of involutions, or equi-
valently the set ^i, ... ,^, generate a group I\ „ of isometrics of H2, which contains
all involutions about all side centers of the tesselation.

As the Euler characteristic of a tile is /(tile) = 1, and the Gauss-curvature is
K = — 1, the theorem of Gauss-Bonnet yields:

(2.2) 27r/(tile) = jKd area + S^TT - 8,),
hence (v — 2) TT — S^ 8, = area(tile) > 0.

Therefore the angle sum A == S^ 8, is bounded between 0 and (v — 2) TC. It is obvious
(push in at one vertex) that A is an analytic function with no critical points on the
2v-dimensional manifold of convex v-gons in H2.

After v steps around the vertex v == »i, this point v has the same position with
respect to the new polygon as with respect to P. Therefore g^ ... g^ g^ is a rotation
around v, and we have more generally:

Lemma 1. — The product

(2.3) g i . ' " g 2 g i - { g . ' " g 2 g i ) \ ^0,

is a rotation in H2 around u == v^.

After n steps we must have the first selfoverlap of interiors of tiles with complete
incidence with the original tile {g^ ... g^ g-^) (P) == P, and more generally for any integer
J ^ 0:

Lemma 2. — We have

(2.4) (̂  ... g,g,) (P) == (^ ... g,g,Y (P) == P forj^ 0,

uni also

(2.5) 81 + 82 + . • • + §n = 27T, 8, = 8^ for j = i mod v.

From the geometry expressed in (2.2, 3, 4, 5) follows
(2.6) 7 z ^ v ^ 5 , or 7z>o4, or 7^7>3==v .

Let A = gcd(v, n) be the greatest common divisor of v and w and put
(2.7) v = tk, n == mk, gcd^, w) = 1.

Then, for i = TTZ> 1, j ==/ '^ 1, Lemmas 1 and 2 yield the identity

(2.8) . == (^ . . . ̂ l)" = {gn . . . 5l/ == ^

as this isometry leaves fixed v === v-^ as well as P. We conclude:

Lemma 3. — The rotation & • • • <?2 5i has order m, the rotation gn • - ' gzgi has order t.
The polygon P has rotation symmetry of order t. In particular^ it has no imposed symmetry for
f = 1, i.e. gcd(v, n) = v.
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We now distinguish various cases mainly by the value of gcd(v, n) = k.
I. The case n = v = k ̂  5, / = 1. — See fig. 2 a) for v = n = 5. Then A == 2n,

8v ' ' ' 8281 = e (2 • 4, 5 I) and there is no obstruction to continue tiling at each new
vertex and filling in the plane. The tesselations so obtained are isotopic and can be
parametrised modulo isometrics of H2, by the initial tiles modulo isometry, that is by
a family which is an open subset of a real algebraic variety of dimension 2 (v — 2). To
get this dimension, fix one vertex 0 of a tile P C H^ C R2 and a half-line with origin 0
containing a side of P, move the other vertices preserving convexity, then multiply R2

by the unique scalar which restores the condition A = 2n. The dimension of
the family ^(I\ ̂ , H2) of all discrete representations of the group I\ ^ in H2

found in this way, is obtained by substracting 2, as only the centres of the sides
count (^ ...^i ==^!):

(2.9) dim.^(I\,, H2) == 2v - 6.

Note that I\ ^ acts simply transitively on the tiles of the tesselation.
Observe also that c^(I\ ̂ , H2) has a stratification so that any two points in any

open top-dimensional stratum represent non isometric I\ ^-representations.
Next, let in general F C I\ „ be a subgroup of finite index acting freely on H2.

Then S2 = HP/F is a Riemann surface (K = — 1) tesselated by V congruent tiles P. The
family of such tesselated structures on the smooth surface S2 has dimension 2v — 4
for a given FC I\ ^, and the family of actions of I\ ^ on S2 has dimension (as for H2)

(2.9) dim (̂I\,, S) = 2v - 6.

II. The case n = m\ = mk, t == 1, m ̂  2, n > 8. Then

A = 27r/w = 27rv/%, 8 n ' " 8281=^ and g, ... g^g^

is a rotation of angle 2nlm. Given the value of A and no other condition, there is again
no obstruction to continue tiling at each new vertex and filling in the plane. The family
of tesselations so obtained has dimension 2v — 4. As the vertices such as v are defined
in terms of the generators for i = 1 (see 2.3)), the family of tesselations has the same
dimension as the family of representations, in H2 as well as in S, namely

(2.9) dim^(I\^, H2) = dim^(I\^, S) = 2v - 4.

III. The case gcd(v, n) = k = 1, I == v. See fig. 2 b) for (v, n) — (4, 5). Here
8n • • • 82 8i + e ls a rotation sending P to P, and v is the smallest for which

c?n. -••^ir^-
The fixed point of this rotation, denoted x, is the centre of P which is (up to isometry)
the unique regular v-gon with angles §1 = ... = 8^ = 8 = 27T/7Z,

A = S^i 8^ = 27r/w = 2^/Tz.
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The action is rigid:

(2.9) dim^(r^, H2) =-- dim^(I\^ S2) = 0.

The convex polygon P* with vertices x, x^==g^x, x^=g^x^ x^ = ^3 x^ ..., ̂  = A:,
see fig. 2 ^), is also regular, has centre v and can be used for a dual tesselation with
vTZ-gons at every vertex. The angles are 27r/v.

IV. The case 1 < gcd(v, n) = k < v < n. — See fig. 2 ̂  for (v, %) = (4, 6), k == 2.
Here ̂  .. . ^2 g^ 4= ^ is a rotation around x carrying P to P, and t is the smallest integer
for which (^ .. . g^g^ = e. P has rotational symmetry of order ^ A == 2^/72 = 2nl'/w.
One easily finds

(2.9) dim^(r,^, H2) = dim^(I\^ S2) = 2yfe - 2.

We summarize and complete in

Theorem 1. — Let T^ „ ̂  a tesselation of H2, or of a closed orientable surface S = H2/?,
by congruent v-gons called tiles, with angles §1, ..., 8y, ^ files meeting at each vertex^ invariant
under the group I\ „ 3 F ̂  ̂ ^rf <z^o^, ^^^ ij generated by involutions about the side centres
of one tile P. Let k == (v, 72) 6^ the gcd (?/' v a f̂ n, v == £k, n == mk. Then:

a) The total angle of a tile is

(2.5) A==8i+ ... +8,=27rv/^

v
the area of a tile is (y — 2) n —- - 27r.

72

^ V g^^? 72) = v == ^ ^TZ P ^ arbitrary except for (2.5). If gcd(v, n) == A < v
^7i P has a center of symmetry for rotations of order t == v/^. If gcd(v, n) == k == 1 ^TZ P is
unique and regular.

c ) dim^(I\^H2) dime^(I\^S)
= 2k — 6 /or 72 = v = k ̂  5,
== 2^ — 4 y^r 72 = 77ZV, 771 ^ 2, 7Z ̂  83

= 2 ^ — 2 for 1 ̂  k == gcd(v, 72) < v.

/7Z particular.
d) The action of I\̂  ^ rigid for k == gcd(v, 72) = 1.
e) Each family or isotopy class of tesselations T^ „ is connected and contains one tesselation

by regular v-gons with angles 8 = 27T/7Z.

Non-convex tiles. — We have not really used the convexity of the polygon P in our
arguments. The condition A = 27cv/7Z, together with the rotation symmetry of order /
for k == gcd(v, n) < v = M, permits one and at most one reentrant angle §1: n < 81 < 27r,
and this only if n = v ^ 5. The families JK(Y^^ H2) and ^(I\^, S2) should be enlarged
correspondingly. See fig. 2 d) for an example.
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Deformation and I\ ̂ -module dimension. — Let I\ „ denote a specific action for a
specific tesselation T^, obtained from a specific polygon P. If gcd(v, n) == v then
F^ „ = P is a fundamental domain in H2 for the action of I\ ̂ . That means it covers the
quotient space H2/^ „ completely and every interior point of F^ is met exactly
once. If gcd(v, n) == k < v = M, then P has a centre x, and ^fundamental domain we can
take the polygon F,̂  with successive vertices x.g^v^g^ ...,^. See fig. 2 b ) .
Let F^n, T^, F^, P7 be a second set of data for a tesselation in the same family.
Consider a diffeomorphism h: F^ ̂  -> F^ of fundamental domains which respects
the correspondance of vertices and sides and the identification of the isomorphic abstract
groups I\ „ and F^. Then h can be extended in a unique way to a homeomorphism
h: H2 -> H2 for which

rL=M\,A-1.
Note that h is quasi-conformal.

Vice versa, let A : H2 -> H2 be a homeomorphism. Given I\ „ we obtain an action
by homeomorphisms T\ „ = AI\ „ A~1, generated by involutory homeomorphisms hg^ h~1,
i == 1, ..., v, and with all the consequences we had for I\ „. Suppose 1̂  „ is an action
by isometrics of H2. Then F^ is called module equivalent to I\ „. Clearly A sends the
points (defined by involutions) ^, ...,^ to analogous points for F^. The "conse-
quences " are now in terms of isometrics, e.g. involutions and periodic rotations like (2.3).

Now suppose the point hg^ A~1 is very near g? for i = 1, ..., v. Then these points
form a configuration in H2 belonging to some tesselation in the family, say T^. But
by continuation by reflections in side centres we then see that all vertices of suitable
fundamental domains F^ „ and F^ „ coincide, and so do all their images under F4 „
and r^. So the actions of F^ „ and F^ coincide and the family which we denoted
by ^(I\ ,n,H2) contains with any F^ all nearby actions F^.

Let us now consider a one-parameter family of actions I\ ̂ (t) beginning with
a tesselation action for t = 0 and such that, for some value oft, the action does not belong
to a tesselation. Then there is a smallest such value ^. The tesselations and the v-gon
for 0 ̂  t < tQ would converge to a situation where at least one of the angles of the v-gon
is 8, == 0, and the action I\ ̂ {t) degenerates for t-^to. Therefore

Theorem 1 A. — Deformation components of our tesselations give full deformation components
of discrete actions of I\ „ on H2.

Example 1 (see Figure 3). For odd v = 2g + 1 ̂  5, n = 2v, there is a tesselated
surface S2 === H2/!", where FC I\ ̂  is of index 2 and consists of the colour preserving
elements of the map colouring with two colours of the tesselation in H2. The surface 22

is the double covering of S2 = H/I\ „ branched at (< the middles of the sides of P 5?

and at one more point, represented by each of the vertices of P. A fundamental domain
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is P u g^ P and the corresponding tiling is seen for v = 5 in Figure 3. The involution g^
acts on S2, it interchanges the two tiles and has v + 1 fixed points. We use this example
generalized to dimension 4 in § 5 and § 6.

FIG. 3. — Fundamental domain P U ̂ i(P) for S2, a convex 4 -̂gon for g ^ 2

3. Tesselations and actions of I\^ in H^

3.1. v-Gons as tiles. — In this section we formulate the case d == 4 in detail, but
cover the case d === 3 as well by side remarks. A convex v-Gon P C H4^ ̂  R4 is by definition
the intersection of v successive half-spaces bounded by hyperbolic 3-planes, such that
the boundary ^P is the union of v successive slices called Sides and denoted by
[^5 ^i+iL ^ mod v. The Side [y,, ^4.1] is bounded by two complete 2-planes y, and v^-^y
called Vertices. The closures of these Vertices in R4 are assumed disjoint. The interior
angle of P along ^ is 8^, and the total angle of the v-Gon is
(3.1) A = & i + ... +a,.
We want to tesselate H4 with v-Gons as tiles. For a special example we can start from
a tesselation v-gon in H2 C H4, as in § 2, figure 2, and define the v-Gon in H4 by 3-planes
orthogonal to H2 through the sides of the given v-gon. Figure 2 illustrates the relations
(the same as before) between the generators g^, g^ 5 of F^ „ which we will define now
in the higher dimensional context. Given a v-Gon P, the intersection H = ̂  P of its
closure P in R4 with S3 = ̂  H4 is called a Moebius v-Gon in S3. Its complement in S'̂
is a collar N of successive round balls (^ beads " } in S3, whose successive boundaries meet
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in v successive circles ̂  v^ and no other two beads meet. The case of dimension d = 3
is illustrated in figure 4 a), where

a, P = % P u a, p = Q== Q+ u Q-
is a pair of collared Moebius v-gons in S2 = CP1 with circle arcs as sides and each collared
by the collar NCS2 .

For d == 4 the collar < c necklace 93 N is a topological solid torus with a well defined
isotopy knot class [N] possibly unknotted (and a unique isotopy class [y] for any <( core
curve 5? Y c N (see figure 4 ^)). F^ zwja, a collar NCS 3 has as closed complement a
Moebius v-Gon Q^ and it determines a tile PCH4 by the definition

P == [convex hull QJ n H4, H4 = H^C R4.

The 2-planes ^ and v^^ have as unique shortest connecting arc, an orthogonal line
segment [d,, a,^] from ^ e ^ to ^ + i £ ^ + i ("a? " fo r departure, cc ^ " for arrival).
See figure 5 c ) . In figure 5 a), b), d) and e ) y the case rf == 3 is illustrated. The 2-plane in
the Side [v^ y,+i], orthogonal to [</,, ^+J and meeting it in the middle, is the 2-plane
of symmetry of this Side. Next we introduce the involution ^°, an isometry ofH4 with
(&0)2 == ^ which has this symmetry plane as fixed point set (^0)F. It carries P to a congruent
copy ^°(P), that fits precisely along the common Side [v^ y»+i]. If no two Sides of P
are congruent, then this is the only way to start a tesselation.

In figure 4 b) we use a special model for S3, where a^Q^)11 is a straight line in
euclidian space R3, and S3 == R3 U { oo } is the one-point compactification. Then we
see that the union of the Moebius v-Gons 9^ P and ^°(a^ P) has as closed complement
in S3 a new collar, the connected sum
(3.2) Ng = N ff ^(N) C (N u ̂ (N)).

Its isotopy knot class is seen to be the connected sum (symbol #) of the isotopy knot
classes [N] and [j^(N)] = [N]. Similarly, the isotopy knot classes of the core-curve N3
is, with obvious notation

[TKEY^M*2.
Adding more v-Gons while keeping the union connected gives a nested sequence of
collars N3 N3 3 N 3 . . . , where [N,] ^[N]^, which converges to a compact set
^ == n^.N,. The analogous nested sequence also exists for a collared Moebius v-gon
in S2 for d = 3. Given the tile PC H4 we can fit copies around the Vertex v = v^ by
involutions g^ == g ^ y g z y g s , etc., as in § 2 and illustrated in figure 2. If the tesselation
succeeds then g^, .. .,^ or equivalently ^?, .. .3^ generate a group action of I\ „
by isometrics of H4, a group which contains involutions about symmetry-planes of all
Sides of the tesselation. After v steps around Vertex y, that Vertex has the same
position with respect to the tile g^ ... ^i(P) as with respect to P. Therefore the
product g^ .. . g-^ e I\ ^ is the product of a rotation about v over the angle A, and the
normal extension to H4 of an isometry T of the hyperbolic 2-plane v. This T is called
the torsion of P; up to motions it is an invariant of the Moebius v-Gon B^ P = Q in S3,
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and of the Moebius collar N in S3. The equations (2.4, 5, 7, 8) hold now as before. In
particular we deduce the following necessary and sufficient conditions for a ^-Gon in H4 to
produce a tesselation of type I\ „, gcd(v, n) == k, v == Ik, n = mk:
(3.3) The total angle is A = ZTTV/TZ.
(3.4) TA^ total torsion is periodic of order m: T"1 = id | v

In particular T has a fixed point
(3.5) c^ == c ev^== V,

and
(3.6) T is an elliptic 2-plane isometry.

The torsion angle is 6 = 2-^jfm f o r j = = 0 , l , ..., or m — 1, and 6 is an isotopy invariant
of the tesselation and a deformation invariant of the I\ ^-action on H4 as well as on S3.
The above conditions are sufficient in case gcd(v, n) = v, as we can just continue adding
tiles and fill H4 like in § 2.

For gcd(v, n) == k < v we have one more condition for sufficiency, namely P must
admit a symmetry of order i
(3.7) (^...^=^

(cf. (2.8)). For dimension d == 3 the torsion T is a translation in a line in H3. In S2 == 8H.3

it is expressed by a dilatation with two fixed points. Then (3.4, 5, 6) are replaced by the
condition that the torsion (a distance in H3, a dilation invariant in S2) is
(3.8) 6 = O e R .

See figure 5 d) and e). The other conditions are unchanged.

3.2. The core surfaces of P and H4, and the Julia knot J. — With c^ev == v^
we find c^ e v^ i == 1, ..., v inductively by c^^ = g^(c^) and a unique Cg e gv for
any g e I\ „. The points c^y ..., c^ form a v-gon in 8P. Take a point x in the interior
of the convex set P, but choose it in the fixed point or fixed plane (,?„... g^ of the iso-
metry g^ ... g^ in case gcd(v, n) < v and /' > 1 in (3.7). The cone from x on the polygon
in 3P is called a ^or^ co^ ^(P) of P. Of course P can be retracted radially into
A: e PC H^C R^ By an isometry of HP we can assume x = 0 e PC H^C R^ We
can easily modify the retraction, keep the core cone pointwise fixed and let the Sides
of P move over themselves, in order to obtain a retraction of P as well as P onto cc{P) C P.
We can assume invariance of the retraction under the isotopy subgroup of P in I\ „.

Let U(^(P)) be a tubular neighborhood of cc(P) C P which is the union of an
s^neighborhood of cc(P) in P and an s-ball around x e P, where s > 0 is small and
refers to hyperbolic distance. Then we see that there is also an isotopy of (P, 8P) inside
(P, 3P), moving each Side and Vertex of P inside itself, carrying
(3.9) (P,BP) onto (U(^(P)), BU(^(P)))

and keeping the core cone ^(P) pointwise fixed.
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The unions of the transforms under all g e I\ „ of the spaces cc(P) C U(^(P)) C P
yield respectively

a) a complete polyhedral core surface Sp C H4 tesselated by core cones congruent
to ^(P),

b) a tubular neighborhood U, and c ) the whole of H4.

The sequence Sp C U C H4 is invariant under I\ „. Set

Q==S3V=U^Q,, Q=^P.

The invariant isotopy extends to an invariant isotopy of t2, carrying Q, onto 8U C H4,
invariant under the action of I\ „ on H4.

The set / is the limit set of the action of I\ „ on H4 and on S3. That is, it is the
limit set of the set

{g^g^^n}

for any y e P, or y e ̂  P = Q. It is compact, connected, and invariant under any
g 6 I\ „. It is therefore self-similar under Moebius transformations of S3. Below, we
prove that / is an embedded circle. We can call it the Julia-curve or Julia knot of the
tesselation and of the action of I\ „ in H4, S3, resp. (for d == 3) in H3, S2.

Consider the tesselation of H2 by regular v-gons with 8, = 2-^fn and group I\ „.
There is a piecewise projective homeomorphism

K:H^->Sp

which carries the regular tesselation ofH2 onto the tesselation ofSp and which commutes
with the action of I\ „. It is a quasi-conformal homeomorphism which extends to a
continuous one-to-one map

^K^^H2-^^^.

Therefore ̂  K is an embedding and / is a self-similar knot. It may be unknotted, possibly
lying in a round S2C S3, or even a circle. I fJ^S^sa circle, then the action is called
Fuchsian. This happens if and only if the action is the natural extension of a tesselation
action in the 2-plane H2 C H3 with 8VL2 === S1. A non-Fuchsian action has a limit set /
in a round S2 C S3 if and only if it is the natural extension of a non-Fuchsian tesselation
action in a 3-plane HPC H4. If [N] is properly knotted (not unknotted), then / is knotted
in any neighborhood of any of its points and / is nowhere tame. See [Ma], p. 202,
example F.4, and p. 212.

3.3. The tesselated manifolds Z4 and M3 and the deformation dimensions.
— Suppose the group I\ „ acts on a regular tesselation in H2 and a sub-group F C F^ „
of finite index and acting freely is fixed once and for all as abstract subgroup in I\^.
If I\ „ acts as before on H4 and Q, C S3, then F is seen to act freely also on H4 and on £1.
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Therefore 24 = H^F is a tesselated smooth complete 4-manifold with hyperbolic struc-
ture and M3 == Q/F is a compact tesselated Moebius-3-manifold (i.e. a conformally
flat 3-manifbld) with 0. as a covering space. The number of tiles is V.

The surface S == Sy/F is a polyhedral core surface to which S4 retracts tile by tile.
So 24 is homotopy equivalent to the surface S. The smooth 4-manifold with boundary
(H4 u Q.)IF is isotopic to the 4-manifold with boundary Uy = Up/F by a tile by tile
isotopy. Then M is PL-equivalent to the boundary 8\J of the tubular neighborhood U
of the core surface 2 of 24. The PL manifolds U, U and 8V, can be made smooth and
the smooth structures are unique up to equivalence.

Clearly the polyhedral manifold S4 is obtained from the tesselated surface S by taking
a disc bundle over the complement of the union of small discs around the centers of the
polyhedral tiles of S, and sticking in balls, shaped like (i.e. homeomorphic to) the
tiles P, and attached along their boundaries 8P. The 3-manifold M bounds this manifold.
Some topological invariants of S4 are the homotopy type of S, the self-intersection Ho(S n S)
of the core surface S, and the possibly very complicated homotopy type of the end M3 ofS4.
All these invariants are also invariants of the (deformation family of the) tile P.

The isotopy families of tesselations or F^-actions on H^ are modulo hyperbolic
motions parametrized by their tiles, the v-gons modulo motions. It is easy to calculate
their deformation or module dimensions as in § 2 for d = 2. The deformation components of
tesselation actions of F^ „ on HP consist of tesselation actions only. See Theorem 2. g.
and Remark 1 below.

Let DIM(rf) be the common deformation dimension of the families JK(T^ „, W),
.^(F^S^, .^(F^.S^-1), and ^(F,^, M"-1). As ^(F.^.H^1) has a natural
embedding (by extension of the action on HP^CH^ to HP) into ^(F^ „, H^) we
have the inequalities

DIM(2) ^ DIM(3) ^ DIM(4).

Here is the table of dimensions (see the relations (2.9) and Theorem l c ) ) ; "diff"
denotes the common value of DIM(4) — DIM(3) and DIM(3) — DIM(2):

TABLE 1

DIM(rf) d==2 3 4 DifF.

n = v ̂  5 2v — 6 3v — 10 4v — 14 v — 4
. T v ^ 4 2v -~ 4 3v — 8 4v — 12 v — 4

.=^^2(^3 2 2 2 0
gcd(v, n) = k < v and v ^ 3 2k — 2 3k — 3 4k — 4 k — 1
gcd(v, %) = 1 0 0 0 0

We summarize our earlier observations, as well as conclusions from table I, in
theorems 2 and 3.
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Theorem 2. — The case of dimension d == 3. A ^-Gon P in H3 or S3, or a collar bounded
Moebius v-gon Q, in S2 or M2, c^ ̂  a tile of a tesselation with I\ „ acting on it if and only if

a) The angle sum is A == 2n^/n and the torsion is 6=0, and
b) P as well as Q^ admits a symmetry, that is a rotation of order £ == v/^, k = gcd(v, n).
c) The action is rigid if and only if gcd(y, n) = 1. Then it is regular, Fuchsian, and it

is the natural extension to H3 of the rigid regular action of I\ „ in H2 C H3.
d) The Fuchsian caracter is rigid but not the action if and only if v = 3 or 4, and

gcd(v, n) == v.
e) In all other cases, except for a proper algebraic subset of the deformation space, the limit

set / C S2 = B^ H3 is a proper self-similar Julia-Jordan curve.
f) For I\ ^-tesselations non-convex tiles with one angle ^ n must be admitted and included

in the deformation families.
g) The I\ ^-actions of our tesselations form an open set in the deformation space of discrete

r^ ̂ -actions on H3, S3, in S2 and on M2.
h) All our tesselated 3-manifolds S3 are dijfeomorphic to each other and to 22 x R.

Remark 1. — For a collar-bounded Moebius v-gon Q^ in S2 we obtained the limit set
^ = Ft, N, as an intersection of an infinite sequence of collars in S2. The union of the
tiles is then embedded (by the c< development map ") in S2.

We can also start, more generally, from an immersed disc whose boundary is immersed
as a v-gon of circular arcs, with a collar, suitably immersed in S2 as a union of embedded
round discs (beads). Here, we seem to need v ^ 9 (two tiles). Such a <( v-gon " can be
used as tile for a tesselation of an open disc X with CP^structure (obtained by gluing
tiles) under the conditions a) and b) as before. But the development map X -> S2 is
in general not a covering of its image, and the action of I\ „ is discrete on X but not
in S2. The deformation dimensions are the same as before. See [Go] for a beautiful
deformation theory of CP^structures on surfaces.

Remark 2. — The condition b) is empty when gcd(v, n) = v.

Remark 3. — Question: Are all discrete I\ ^-actions in S2 obtained from our
tesselations?

Theorem 3. — The case of dimension d == 4. A \-Gon P in H4 or S4, or a Moebius ^-Gon Q^
with collar N in S3 resp. M3, can be a tile of a tesselation with I\ „ as an invariant group action,
if and only if

a) The anglesum is A == 27rv [n and the (elliptic) torsion has value 9 = 2njlm mod 2'n:,for
j === 0, 1, ..., or m — 1, and

b) f as well as Q^ admits an isometry resp. Moebius transformation of order t = V/K,
k === gcd(v, w), n = mv.

c) The action is rigid if and only if gcd(v, n) == 1. Then the tesselation is regular as
described in Theorem 4.



64 NICOLAAS H. KUIPER

d) The Fuchsian caracter is rigid but not the action if and only if v = 3 or 4, and
gcd(v, n) == v.

e) In all other cases, except for a proper algebraic subset in the deformation space, the
limit-set J C S3 is a self-similar proper Julia knot, everywhere knotted and nowhere tame or nowhere
knotted. It will be seen to be tame in some cases in Theorem 5.

f) For I\ ^-tesselations non-convex tiles with one angle ^ TT must be admitted and included
in the deformation families, also for knotted isotopy classes [Nj.

g) The I\ ^-actions of our tesselations form an open set in the deformation space of dis-
crete I\ ^-actions on H4, 24, in S3 and on M3.

h) The set of diffeomorphism types or homeomorphism types of hyperbolic manifolds S4 we
constructed is enormous. Apart from their homotopy type (that of the core surface ^L), they can be
distinguished further by

1. the diffeomorphism type of M3 X R (by \S\), and
2. the self-intersection number of the core surface 2 C S4. In particular for the unknotted

case, this is the Euler number (see (4 A)) of the normal bundle of a smooth core surface ^C S4.
Observe that the diffeomorphism type of M3 is a metric but not a diffeomorphism

invariant of 24.

Proofs.

c ) As DIM(rf) == 0, no deformation is possible.
d) As DIM(rf) — DIM(2) == 0, the extension of the actions in the deformation

class on fPC H^ exhausts the actions on H^ (with S1 = 8^ IPC 3d"1 = 8^ tf as
invariant limit set).

e) As DIM(2) < DIM(3) < DIM(4), the extension of the actions on H2 to H3

and on H3 to H4 do not exhaust the deformation classes, So / is a proper Julia knot
in 3d"1 in general. This is precisely the case if the boundaries of the beads do not have
a common orthogonal circle or two-sphere, an algebraic condition.

g) The proof is analogous to that for case d = 2.

Note that for dimension d == 3 (Theorem 2), the core surface SC S3 is nowhere
knotted; it can be smoothed (made G00) in a smoothed tubular neighborhood U to
give S2C U(S2) C U(S2), where U(S2) is diffeomorphic to S3 and to the trivial segment
bundle over the surface S2. For dimension d == 4, see section 4.

4. The normal Euler number, regular tesselations. Connection with [GLT].

4.1. The normal Euler number ^(S) of the core surface ScS4 in the
unknotted case. — Suppose the collar N = S3^ P is unknotted in S3. Then S C S4

is unknotted at every vertex of the polyhedral core surface S. There are V vertices with
congruent surface germs at (( centers " gx of broken 2-tiles of 2 for g e I\ „. There is
a dual tesselation of S by F dual broken 2-tiles with " centers " in gc, with v of then
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meeting in each vertex g ' x, g^ e I\ „. They have mutually congruent surface germs
at their centers gc. As in [GLT] one has

(4.1) V V = F T Z .

Over the complement of the union of small round balls with radius e around the vertices
of S in the hyperbolic 4-manifold S4, the surface 2 can be smoothed to have a locally
parallel (flat connection) normal plane bundle. The remaining part of the surface can
be smoothed by inserting discs, to give a smooth surface S2 C S4 whose normal plane
bundle is diffeomorphic to S4. The normal Euler number is obtained by an integration
over S2. This integral is equal to a sum of contributions (see [GLT], also [Ba2])

^(S)^^)

over the vertices y of S. In our case this gives

(4.2) ^(S^V.^W+F.x1^.

It remains to find an expression for the normal Euler number ^(jO °^ a nowhere
knotted polyhedral surface at a vertex. An expression was proposed by Banchoff [Ba2]
for a polyhedral surface in R4. In [GLT] the authors present the beautiful formula (4.3)
below. To describe this we cut the polyhedral cone induced by the surface S at a vertex y
in the tangent space R4 ofy e 24, by a unit 3-sphere, and get a polygonal geodesic
unknot ^(j) in S3. Let 2nT(jy) e R be the total torsion (see [GLT] for the definition
of total torsion) and SL(j) e Z be the self-linking number of^(jy) (2). Following [GLT],
the normal Euler number at y is given by

(4.3) x1^) = TO/) - SLQO.

Substitution in (4.2) yields the integer

,(4.4) ^(S) == V. (TM - SLM) + F. (T(.) - SLM).

Let S' be obtained from S by a small isotopy. For a generic S' the intersection number
S' n S is (always) equal to %, (S) and called the self-intersection number of S. The for-
mulas (4.3), (4.4), (4.7) remain valid for the cases where the core surface S is knotted
at some vertices. We use this in § 6. Note that, by ([GLT]),

-x(S)=V.((v/2)-l-(^)).

4.2. The template construction. — Following [GLT] we construct special so
called template ^-Gons as tiles. Start from a collar of v beads in S3, any two consecutive
ones being tangent but no other two meeting. Let A,"" be the half space in R4 (!) which

(2) The self-linking of a curve in 3-space was first defined by Galugareanu [Cal] in 1959 and studied with
interesting results by W. Pohl [Po] in 1968. Banchoff [Bal] defined it in 1976 for polygons, and he also defined a
normal Euler class for a polyhedral surface in R4 in 1984 [Ba2].
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meets the i-th bead of the collar exactly in its boundary. The closure h^ of its complement
contains the whole bead. Multiply the convex set

Ko=n^-
in the vector space R4 by a scalar t < 1 to obtain K( = tVi^ and a convex set in the pro-
jective model H4 = H4^
(4.6) V^ =K, nH4.

Clearly there exists ^ > 0 such that P( for t > ̂  is a v-Gon in the sense of our definition.
The collar in S3 of the v-Gon P( has beads th^- n S3, i == 1, ..., v.

Example. — Any collar of congruent beads in the Euclidean unit sphere S3, whose centers
are the vertices of a polygon in S3 with equal sides, can be so obtained.

As t > t^ increases, the angle sum A decreases, so there is HQ such that any angle
sum A = 2m In can be attained for n > HQ. The condition mQ = 0 mod 2n is harder to see.

The centers of the beads form a geodesic v-gon y in the Euclidean unit sphere S3 C R4

called a template. Let G(y) be the cone from x = 0 over y. The template surface G(y) n P(
is a cone in P( with vertices ^ ev°, (v^ a Vertex (2-plane) in P() and m, e [zf, z^.J,
where [^°, y^_ J is a Side of P( . Our real surprise is now first that g^ carries ̂  to g^ c^ = ^+1,
so that c == c^ e v^ == v is just the invariant point of the elliptic torsion T in the 2-plane »,
and second that the template surface and its images under g e I\ „ form the polyhedral
core surface SpC H4, which happens to be flat at every vertex gc e gv. The dual tiles ofS
are flat n-gons of which v come together in every point gx, g e F^. The formula (4.4)
for the Normal Euler number •y1^) now reduces to
(4.7) ^(S^V.CTM-SLM)

for template tesselated 4-manifolds 24.
For the regular tesselations (see 4.3) the core surface is the same as that in [GLT],

where the full group of symmetries of this core surface leads to a different description.

4.3. Regular tesselations. — A v-Gon P is called regular if there is an elliptic
isometry of W sending P to P, and every Vertex and Side onto the next. For the case
gcd(v, n) == 1 there is such an isometry ( ,?„. . . g^)3 for some j by (3.7).

In dimension d == 3 assign to the Vertex (a line) ^ of P the distance 6, between a,
and d, with factor + 1 (resp. — 1) if the vector from ^ to ^ points in the direction
of B^ P (resp. 8^ P). The sum of these numbers clearly is the torsion 6 = S6, == 0.
For a regular v-Gon 61 == 63 == . . . ==6^, and as 6 = 0, each 6, must be zero and
^ = ^ for i == 1, . . ., v. Then we have a plane v-gon with vertices a^ ..., a^ which
must be regular, and the lines ^ meet this plane orthogonally. It follows easily that our
regular 1̂  ̂ -tesselation or action is the natural extension of that in H2 C H3 to H3 as
announced in theorem 2 b).

In dimension d == 4 we assume for a regular v-Gon P in H4 == H^ that
x = 0 eR4 is a fixed point of the elliptic isometry that carries y, to ^4.1. The collar
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ofv beads is invariant, so that all beads in the Euclidean three-sphere S3 = 8WC R4

are congruent and successive centers have constant distances. So we get a template tile.
These centers form a regular polygon in S3. If it is not a plane regular v-gon in S1 C S3,
then in suitable complex coordinates ^, ^ for R4? the elliptic isometry is

(^ ^2) -^ (^1 < ,̂ ^2 ^p)

where co = exp 2w/v, and p and y are coprime. The regular v-gon (template) is the
standard regular v-gonal {p, q) -torus-knot with vertices

(4.8) (z^ ^) == (cos e.c^, sin e.co^)

for j == 0, 1, ... v.
These vertices are equidistant on the smooth {p, ^-torus-knot

(4.9) (^, ^) == (cos e. co38, sin e. (o^), s e R,

on the standard torus | ̂  | == cos s, | ̂  | = sin e, in S3. A specific template tesselation
is now obtained by choosing A = 2n^ln for n> ̂  and e is restricted by a condition
on the total torsion 27rT(j/) of the template. (This condition should correspond to our
condition on 6.) In [GLT] the normal Euler number is calculated in the unknotted
case (q = 1!), where the self-linking number is SL{x) = p:

^)=V.{T-p).

With x(S) = V.((v/2) - 1 ~ (v/7z)) it is found in [GLT] that

| ̂ (S)/^) | < 1.

Then the plane bundle 24 -> S2 has a transversal foliation by Milnor [Mi] and Wood [W].

Question. — Is every tesselation of H4 with unknotted collar N in the deformation
class of a regular tesselation? If true, this would imply the inequality (4.9) for all
c( unknotted " tesselations, and the existence of a transversal foliation whenever S4 is
a 2-plane bundle constructed with our tesselation method.

We summarize in

Theorem 4. — Rigid tesselations are regular, a) Regular tesselations in H4 are c< template5).
I/not Fuchsian then the template is a regular standard v-gonal (p, q)-torus-knot (4.8). b) ([GLT])
In case / is unknotted, then the 4-manifold 24 is a plane bundle with normal Euler number (4.4),
simplified to (4.7) for template tesselations. For the regular non Fuchsian case one has
0< | ̂ -(Z;)/^) | < 1, and the plane bundle has a transversal foliation.

We also note

Theorem 5. — If the 1^ „ tesselation T of W can deform to a Fuchsian tesselation T',
then its limit Julia curve / is tame unknotted.
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Proof. — There is a quasi conformal homeomorphism h from H4 u Q onto H4 u Q',
which commutes with the action of I\ „ and extends to H4 U S3. It carries / to the
circle / ' = S1. Take H4 == H^C R4, and define h first on a fundamental domain for
the action of I\ „ on H4 u Q. Then extend.

5. Calculations

In this last section we use the formulas in [GLT] to calculate simple examples.
We find:

Theorem 6. — a) Let ^ = 2 — 2g be the even Euler number of an oriented closed surface S
of genus g, and •/1 the Euler number of a real 2-plane bundle over 2 with total space 24. If

(5.1) l x l > 3 | x 1 ! ,

in particular if g ̂  3 and \ /1 | == 1, then 24 has a complete hyperbolic metric and the total space M3

of the corresponding circle bundle has a Moebius structure (conformally flat structure).
b) The (chosen) examples have a tesselation by two congruent (resp. Moebius equivalent)

tiles. The tesselated manifolds S4 and M3 have deformation dimension 4v — 14, where
v = | ̂  ] 4- 3 ̂  7 is the number of <c Sides " of the tile. The tile can be chosen " regular ". The
fundamental group V of S4 is of index 2 in the group I\2v

J^ote. — The simplest example is for ^ == 3, v = 7, 71 === 14, ^ = — 1, ^ == — 4,
and S4 is then covered by two regular (< 7-Gons " as tiles, with beautiful symmetry.
See Figure 3. The greatest value for ^1/^ we obtain is 7/11 = 0.428. In [GLT] the
upper bound, 1, is found for all regular unknotted template constructions: | /1/^ [ < 1.
The authors also recall that then, by Milnor-Wood [W], the groups of the bundles
R2 _^ ^4 _^ ̂ 2 gj^i §1 -> M3 -> S2 reduce to discrete subgroups of Diffeo(R2) and
Diffeo(S1) respectively. This implies the existence offoliations of S4 and M3 transversal
to the leaves of the bundles. In fact all cases which we calculated obeyed the stronger

inequality | ^1/^ | < -. Then by Milnor [Mi] a reduction of the groups is possible to

discrete subgroups in GL(R, 2) C Diffeo(R2), and in GL(R, 2) C Diffeo(S1) respec-
tively, in which 7Ti(2) is represented by the holonomy. The corresponding transversal
foliation in S4 has one compact leaf in S4, namely S2, the leaf of 0 C R2.

proof. — We want to construct the regular examples with group I\^, where
n == 2v ^ 10. We start from the unknotted case (q == 1) of the standard {q,p) -torus-knot
(5.2) {(cose.^, sine.^1) :0^ t< 27r} C S^ C2 = R4.

The points obtained for t ==j2n^, j == 0, 1, . . ., v — 1, are the vertices of a regular
template. We want to construct in S3 a regular embedded collar of congruent " beads "
with centers in these vertices. If such a collar shall exist then all diagonals of the template
must be longer than the sides. To determine how much we need some preparation.
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Let a(^) (resp. a{t) == 2 sin(a(^/2)) be the distance in S3 (resp. in R4), between
the points (coss, sins) and (coss.^, sins.^1). Then
(5.3) a(tY == 2[cos2 £(1 - cos t) + sin2 s(l - cos^],

and, if we let

(5.3') u==tg^ and B(^)==1^)2

then

(5.4) B(^) = { sin2^) + u sinW2) }/(! + u).

The distances in S3 (resp. R4) between the vertices for j == 0 andj =j of the regular

template are denoted by o^ ^resp. a, == 2 sin . a,.) and, if B, = a^/4, then

(5.5) B^_,=B^==B(2j7r /v) .

Now recall that the " outer angles 9? of the collar must be 2^ == TC/V (see § 2). By
straightforward spherical trigonometry we find that the collar is embedded if and only if
(5.6) a\^ = Bi/B, < cos^v) < 1 for 2 ̂  j < v - 2.

FIG. 6

In figure 6 a) and Table II the values of B^ for p = 2 and some values of v with
" associated" values of u are illustrated in the graph of the function B(^). Idem in
Figure 6 b) for p = 3. See also Table II. Observe that (5.5) is not satisfied for p = 2,
v = 5 and for p = 3, v = 7. Note that, by (5.3), B(^) is the sum of two sinusoidal
functions for 0< ̂  2n with minimal values zero at the ends, and zero, resp. p — 1,
relative minima in between. Therefore if u is small or if v is large for given p, then evi-
dently (5.6) is satisfied.
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TABLE II

p v u BI Bg B3 B4 COS^TC^)

2 5 2.118 .725 .524 .90
7 .714 .364 .752 .633 .95
9 .522 .219 .604 .750 .677 .97

oo .35

3 7 2.604 .739 .305 .705
9 .626 .361 .542 .461 .885 .97

11 .391 .216 .485 .493 .617 .98
29 .204 .0270 .1004 .2006 .304 .997

4 9 2.879 .750 .193
11 .584 .355 .395 .390 .884
13 .330 .211 .379 .344 .618
15 .244 .143 .327 .345 .452

There remains to discuss the values of u for given p and v. The torsion T e R^
ofthe template was calculated in [GLT]. The authors found for 1 ̂  q < p, p, q coprime,

. - cos2 s.sin^yTC/v) .cos(27T^/v) + sin2 e.sin^T^/v) .cos(2?7r/v)
(5.7) cos T == —————————————————————————————————————
' / cos2 e. sin^^/v) + sin2 e. sin^^/v)

sin2 2qw.cos 2pw + u sin2 2/w.cos 2qw
sin2 2qw + u sin2 2pw

where w == TT/V, u == tg2 e, v ^ 2p + 1^ and we need q == 1 (unknot). As cos T is a mean
of cos 2pw and cos 2w, we have

(5.8) 2w<-v<2pw, KT<p, l^T^-1

where 27cT == VT is the total torsion of the template, p the self-linking number, and
2{p — T) = — /1 must be an integer.

Solving (5.7) for u we obtain

sin2 2w cos 2Tw — cos 2pw

(5.9) u

sin2 2pw cos 2w — cos 2Tw

sin2 2w sin{p — T) w.sinQ& + T) w
sin2 2/w sin(T — 1) z^.sin(T 4- 1) w
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We choose T = {p + 1)/2, so that

-X 1 = =2^--T)=^-1 .

Then (5.8) simplifies to

(5 10) u - sin22M; sin((3^ + 1) ie;/2)
sin2 2pw * sin((j& + 3) w/2) '

For ^ == 2, -- 5c1 == 1, we find

sin22w sin(7w/2)(5.10.2)
sin24w sin(5w/2)
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The values of u for v == 5, 7 and oo are shown in Figure 6 a). The value u decreases
with increasing v ^ 7 so that the existence condition (5.5) is clearly always satisfied in
these cases.

Tor? = 3 the values ofu corresponding to v == 7, 9 and 29 are used in Figure 6 b).
The crucial feature of B(^) is the smallest relative minimum greater than zero, which
is the first minimum ofB(^) to come for increasing t > 0. See Table III for the calculated
smallest useful values of | / |, given — -y1 == p — l ,v == | ̂  | + 3 ̂  2p + 1, for 2 ̂  p ^ 10.
Note that Table III suggests that

I X I ^ 3 | x11 - 2,

instead of (5.1), already suffices for existence in case | y1 \ ̂  6.

FIG. 6 c). — A marginal cases: p = 7, v == 19, | /-1-/̂  | == 0.375
BI == 0.242319, Bg == 0.244345, Bs == 0.253583, ̂  = 0.632146
B^ == 0.955579, B^/Bg = 0.991706 < 0.993181 == COS^TC^)
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TABLE III. — m = minimum (x/x1 = (v — 3)/(/> — 1))

m

4
3
3.67
3
2.80
2.67
2.86
2.75
2.89
2.80
2.99

P

2
3
4
5*
6
7*
8
9*

10
11*

221*

3?

*

*

•

•

-3 3^-

*

*

19

25

31
661

2 3p

*

11

17

23

29

— 1 3p

9

15

21

27

33
663

3^+1

7

9

19

25

31

We now prove that asymptotically for increasing^ the relation (5.1), i.e.

I X I ^ 3 | x11,

suffices for existence.
Substitute v = 3/» (that means | % | == 3 [ x1 |) and w = TC/V == 7t/3^ in (5.10).

This yields
== (Z^^sin^+l)^)

sm2(2^TC/3/»).sin((/»+3)7T/6/0 ' " /

^ ^m sin(./2)
(3/4) (sin(7t/6) + {^2p} cos(7r/6)) ' {y n

hence

'5-"' -^[l-^-e^•
Next we calculate with (5.4), (5.5) and (5.11):

BI _ sm^TT/S^) + u sm^TT/S^)
Bg — sm2(27T/3^) + u sm^TT/S^)

= (TC2^2)+^•^4) + ̂ -<)
(47c2/9^) +y.(3/4) ^ ^ /

= 1+8(1-(.V3^))
4+8(1-.V3/2^) + [p )

= (9/12) + 0{p-1) = (3/4) + (P(/>-1).



HYPERBOLIC 4-MANIFOLDS AND TESSELATIONS 73

(S. 12) J-; = .+8(1^/3/2,)) ^ ̂  = 1 - 4^3 + .(,-•).

AS COS^TC^v) = COS^TC/G^) = 1 — (TC2/36/»2) + (P(/»-8),

we conclude that (5.6) is satisfied forj = 2, 3, and clearly for other small values ofj,
and for all 4 < j < v — 4 since the corresponding f-values 2j7i/v are beyond that of the
first relative minimum of the function B(f) for t > 0. The asymptotic fulfilment
of (5.6) for p —>• oo can be extended to all values by checking for small values
for which the term 0{p~2) in (5.12) might be large. The existence in the interval
3-1 X1 I < X I ^ 3. | 71 [ +4 and for small values of p is seen in table III. The existence
for | ^ | > 3. | /1 [ + 4 is then a consequence, and Theorem 6 is proved.

Remark. — By taking n = v instead of n = 2v we can obtain slightly higher values

of | x^X 1» but we need V > 2 tiles to cover 2*. Then | ^ | == - (v — 4) .V is relatively
large. Now the champions for small p are as follows:

P » = v 1 X^X 1

2 7 0.333
3 9 0.400

4 11 0.428

5 15 0.364
6 17 0.385
7 19 0.400
8 23 0.368
9 25 0.381

= {P - l)/(v - 4)

6. Complete hyperbolic 4-manifolds with a knotted core surface covered by
two regular tiles

6.1. An example. — We start from the regular trefoil knot
(6.1) Y={(cos£.^,sme.^) : 0 ^ t< 27r}C S8.

We would expect to need many beads with centers in the v vertices on y of a regular
template, in order to get an embedded regular necklace in S3. This can be guessed from the
graphs (for variable u) of the <( self-distance functions "3 defined as before, but now
for (6.1):

(6.2) l a\t) == B(^) = (sin2 t + u sinW2))/(l + u).

10
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For the total torsion 2nT == VT we have

2==q<T<p==3 and 2TeZ

as the torsion condition also holds for this knotted case. Then T == 1.5. From the torsion
formula (5.7) we obtain

__ sin2^) sin( 11^/2) _
u = sin2(6w) ' sin(9w/2) ? w = ' *

The smallest value for v for which the collar embedding inequality (5.6) is satisfied
is v == 13. The genus of the core surface is then 6. With the formulas, we find u = 0.753642
and the values ofB, = B^_, == B(2;7r/13):

BI = 0.312, Bg = 0.810, B3 == 0.853,
B^ == 0.523, Bg = 0.344, B^ == 0.408.

The condition (5.6) is satisfied as is also illustrated in the graph of the self-distance
function B(^) in Figure 7.

FIG. 7. Self-distance trefoil knot

As the self-linking of a regular (p, ^-torus-knot (or, equivalently, a regular
^-gonal {p, ^-torus-knot) is SL(X^, q) = pq (see 6.2), Lawson's formula (4.7) gives
the seK-intersection number of S C S4 for our example with knotted core surface:

^ = 2[T(j/) - SL(j)] = 2 (2J ~ 6) = - 7.

Note that % == ^(S) === — 10. The core surface S is topologically isotopic to a smooth
surface with two branching points. Question: can that surface have minimal area?
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We also find a simple compact conformally flat 3-manifold, tesselated by two
congruent regular Moebius 13-Gons, whose interiors are homeomorphic to the comple-
ment in S3 of a trefoil knot.

6.2. The self-linking (number) SL(y) of the regular (homogeneous)
(p, ^-torus-knot Y = Yp,a C S8 C C2.

Lemma. — SL(y) = pq for y == { (^i, ^2)} == { cos e^", sin se^ }.

Proof. — Note that SL is the same for the smooth regular (p, q) -torus-knot as for
the regular v-gonal {p, q) -torus-knot. For small s> 0, y approaches a y-fold covering
of the circle ̂  = 0 in S3, with the principal normal turning around^ times. If we replace
the principal normal vector field by the normal in the direction of the point
(0, 1) C S^C C2, the new vector field defines a (< quasi-self-intersection " which is p less.
Now we move the torus, its knot and this new vector field over S3 in the direction of (0, 1)
until the torus becomes the boundary of a very thin (82) -tubular neighborhood of a
round circle with small radius 8 and center (0, 1) 6 S3. The new vector field % has
become the principle normal vector field. We turn it over Ti/2 and obtain roughly parallel
vectors orthogonal to the " plane 55 of the circle, which we now consider as being in
a euclidean 3-space. Orthogonal projection into that plane yields a knot diagram with
[q — 1) p crossings. If we exchange in all those crossings <( up " and " under 5?, then
the self linking SL(^) is replaced by — SL(%) and so

SL(x) - ( -SL(x) )=2(?~l )^ .

Hence SL(/) == {q - 1) p and SL(y) =p + (? ~ 1) p = qp.

Open problems.

1. Is T(^) ^ SL(y) for any unknotted v-gon in S^R3) with all sides equal and
each diagonal longer than a side?

2. Is the unknotted Julia knot / in our examples of S4 always tame in S3? What
is the Hausdorff dimension of^? (See [SY].)
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