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GENERALIZED PICARD LATTICES ARISING
FROM HALF-INTEGRAL CONDITIONS

by G. D. MOSTOW (*)

i. Introduction

Set
d+l

FA •.., ^+1) = J^-'° {u -1)-^ n (u - ̂ * ̂
where g, h e{oo, o, 1,^2? • • • ? ^d+i}- Then for fixed p.o? - • - 5 ^d+n F^ is a multivalued
function on the subset M of (P1)^4'3 defined as

M == {(^) | ^ =f= o, i, oo and ^ =f= Xj for i =(= j}.

For topological reasons, the C-linear span of these functions form a d + i dimen-
sional vector space that is invariant under monodromy. Taking d + i such functions
as the homogeneous coordinates in projective flf-space Vd, we get a map

w : M -> Pd

where M is the universal covering of the space M. Set

^t-oo === 2 — ^o + ^1 + • • • + ^d+l)-

Assume hereafter that ^ is real and strictly positive for all i (o < i <^ d + i
or z == oo). Let F denote the image of 7t:i(M) in PGL(rf + i, C) under the mono-
dromy action. In the preceding paper, the following sufficiency condition was proved:

If for all i, j in {oo, o, i, ..., d + i}
(INT): (i — ^ — ^j)"1 ls an integer for all i ^ j such that (JL, + ̂ <^ I? then T is a
lattice in the projective unitary group PU(</, i).

In the case d === 2, this condition is essentially equivalent to Picard's, and under
condition (INT), I call F a Picard lattice.

(*) Supported in part by NSF Grant MCS-8203604.
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92 G . D . M O S T O W

The purpose of this paper is to relax condition (INT) in case some of the (JL/S are
equal. The main result, proved in § 3, states:

Let S^C S == {oo, o, 1,2) ..., d + i } and assume that (ig == ^ for all s, t e S^.
If [Lg > o yor all s e S <W (pij satisfies the condition
(S INT): For ^/ j + t such that ^ + ^< i

(i - ̂  - ̂ )-1 ij
^ integer if s or t is not in S^,

a half-integer if s, t e Si;

^ r ^ a lattice in PU(</, i).

When condition (S INT) is satisfied, we define in § 2 a finite extension F^ of F.
The lattice F^ arises from an extension of order n\ of the fundamental group TCi(M)
where n = card Si. If (^) satisfies condition (S INT) but not (INT), then 1̂  == F;
if ([jig) satisfies (INT) too, then F^/F is the symmetric group on n letters (cf. (3.11)).

In § 4, it is shown that each lattice rQ&, t) ofPU(2, i) constructed in my paper [2]
via three C-reflections is contained in the lattice F^ arising from monodromy of a hyper-
geometric function satisfying condition (S INT) for a three element subset Si. Conver-
sely, each such lattice F^ lies in an extension (of order at most 3) of a lattice r(p, t) for
suitable p and t; in § 6 (p, t) is expressed in terms of (^3)5 ̂ g . This r{p, t) description
of r applies to most of the 27 Picard lattices, since for 22 of them, at least three of the
(P-.).es are equal.

In § 5 there is a list of all sequences (^4, ..., ̂ ) satisfying condition (S INT) but
not (INT) for N> 4. It is seen that N <^ 12; that is, one gets lattices F in PU(rf, i)
satisfying condition (2 INT) for d <^ 9 but not for d > 9.

The description of F^ in terms of F(^, t) makes it possible to give an explicit,
fundamental domain for F^ (cf. [3]) and a two generator presentation for F^ in case
d == 2$ this fundamental domain is the one described in [2] for p < 5.

None of the groups r(p, t) in [2] coincide with a Picard lattice F; the lattice F(^, t)
of [2] is commensurable with a Picard lattice only if p is even (i.e. p == 4), in which
case r/r n F(^, t) has order i or 3 and F(^, ^)/r n F(^, t) has order 6.

2. The Main Theorem

We continue the notation of the preceding paper, referred to hereafter as DM,
except that we write PU(rf, i) for PU(i, d).

Let S == S^ u Sg be a decomposition of the set S into disjoint subsets and assume
that ^ = (JL< for all s, t e Sj^. Let 2 denote the permutation group of S^. Then S
operates on P8 by permutation of factors and hence on the set M of injective maps of S
into P. It stabilizes the local system L on the family of punctured projective lines over M.
The action o f S o n M and B(a)^ descend to an action on Q ,̂ Q^gf, Q,sst? an(! on t^e
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GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS 93

bundle B(a)o. Consequently, the bundle map B(a)q ->• Q, descends to a bundle map
B(a)o/s -> 0,/S. The section w^ of the bundle B(a)o is preserved by S; hence it descends
to a section, also denoted w^ of the bundle B(oc)Q,s.

Let Q' denote the subset of Q^on which S operates freely; Q̂ ' is an open dense
submanifold of Q. From the flatness of the bundle B(a)o over Q,we infer the flatness
of B(a)o/s restricted to Q,VS; this latter bundle is denoted by B(a)Qy^.

Let o be a base point in Q '̂, let ~o denote the orbit So, and let
6s:7ri(Q:/S,-o)->AutB(a),

denote the monodromy homomorphism. Then

B(a)Q^ = Q:/S ̂  ̂  B(a), - 5/S X^ B(a),

where Q,7S denotes the simply connected covering space ofQJ/S, F^ = 71:1 (Q'/S, 'o) /Ker 6^,
and

(2.1) Q^^Q^/Keres.

Theorem. — Assume that (^5)5^3 satisfies the condition

(2.2) (S INT) 7<or ̂  s^ t in S J^A that ^ + ̂ < i, (i — ̂  — p.<)-1 ^

a^ integer, if s or t is not in S^,
a half-integer^ if j, / e S^.

rA^T? Im Q^ is a lattice in PU(card S — 3, i).

3. Proof of the theorem

(3.1) The basic idea of the proof is to show that under hypothesis (S INT) QJ/S
plays the same role that Q plays in DM under hypothesis (INT). We begin with some
remarks about morphisms of completions of spreads.

(3.2) Let Y^ be a locally connected Hausdorff space (i = i, 2) and Y '̂ an open
dense connected subset in Y^. Assume that each point y e Y -̂ has a base of open neigh-
borhoods Y^ satisfying

(3.2.1) for V in ̂ , V n Y '̂ is connected,

(3.2.2) for V 'CV" in ,̂ ^(V n Y;) ̂  ̂ (V" n Y;).

Let p^ : X^ ->• Y^ denote a covering map. Considered as a map of X '̂ to Y^, p^ is a
spread. Let p,:X,->Y, denote the completion of pj (z = i, 2) (cf. DM 8.1).
Then X^ and Y^ are locally connected and p^ is a complete spread.

Assume in addition that there are maps </ : X^ -> Xg and T : Y^ -> Y^ such
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94 G. D. M O S T O W

that pa o' = Tpi. Then by (8.1.1) of DM there is a map <r : X^ -» X^ such that the
diagram below is commutative

X^ -̂ -> X^

Xi —> X^

Yi -̂  Y,

Lemma (3.3). — ÎjJMm^ in addition that

(3.3.1) CT' is a surjective covering map,

(3-3-2) T ts an OP€n map,
(3 •3*3) /or ^y V e YI ̂  V e Y^ (̂ . (3.2)), V zj connected component ofr~1 T(V).

rA^w ̂  waj& o- z'j o/^ flyzrf surjective.

Proof. — Let V be an open connected set in Y^ small enough so that V is a connected
component ofr'^V) (cf. (3.3.3)). In order to prove that a is open, it suffices, by
definition of a spread, to prove that for any connected component pr^V)6 of piT^V),
^(pr^V)^ coincides with a connected component ofpg^^V).

Commutativity of the diagram and surjectivity of CT' yields
p^V) nX^^p^T-^V) nX,).

Set Ci = (pr1^"1^) n Xi)', the connected component of pr1^1^) n X^
contained in [pr^""^^)]6, the connected component of pF1 ̂ '"^(V) which con-
tains pF^V)'. We have pg Gr'(C^) == r(V) n pa(X,). Inasmuch as a , ̂  and pg are cove-
ring maps, <T'(Ci) coincides with a connected component Cg = [p^^V) n Xg]6 of
P^^V) n Xg, because one sees easily that <r'(Gi) is both open and closed in Ca. By
definition of the completion of a spread, one deduces at once that

^[pr^-^v)]^^--1^)]6,
the latter denoting the connected component of pg"1 r(V) containing ^(pr^V)6)- But

[pr^TWc p^lT-^v)]0 = pr-^v)0,
the last equality by (3.3.3). Consequently ^(pr^V)0) = [pg-1 r^)]6. Hence o is
open. Verification that <s is surjective is direct. This completes the proof.

Remark (3.4). — By taking Xg = Y^, Xg == Y^, CT == pi, pg = identity, (3.3)
implies that the map pi is open and surjective if Y^ is connected and X[ is not empty.

Lemma (3.5). —Let <?': X[ ->• X^ W (T : Xi -> X^ ^&?t» (3.3), aW^ 9^ : Xi -^ B
be a continuous map. Then the commutative diagram of solid arrows
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GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS 95

identity

can be completed as shown.

Proof. — By (3.3), the map a is a surjective open map. Given q e Xg, it suffices
to prove that (pi(cr~~1 q) is a single point, i.e. the map 9^ descends to a continuous map 92
of Xss.

Let p ea~~1 q, let U be a connected neighborhood of q in Xg and let (y~l(U)c

denote the connected component ofp in cr~l(U). Then

^P) = lim ^W =hm
x-^p

^eo-^u^nxi
Hn^ ?2(^W) = i™ ?2(j0

^eo-^U^nXi yeUnX,

since (y(CT~l(U)c n X^) == U n Xg because cr' is a surjective covering map. It follows
at once that <piQ&) is independent of the choice of p in a~~1 q.

(3.6) We shall apply (3.2) with X[ == C[' = Q'/Ker 6, the smallest covering
space of QJ on which the monodromy acts trivially, Y^ = Q^sst or Q-st an(l î == Q.sst
or Qgt? the completion of X^ over Y^, Xg == QJ/S, the space defined in (2.1),

Yg == QggJS or Qgt/S, and X2 the completion of Xg over Yg. We write Qsst/2

(resp. Q^/S) for Xg. In both cases the map T is the orbit map x [-> SA:, and

a : €>' -> QJ/S is the lift of T given by the map Q'/Ker 6 -> Q;/Ker 6s.

Remark. — Q. — QJ ^ a finite union of subvarieties some of which may be of
C-codimension i in Q^. Although 7^(Q^, o) -> ̂ (Q^, o) and Q,' -> Q, may fail to be
injective, Q,' -> Q, is injective, because Ker ^(Q '̂, o) ->7Ti(Q,,o) lies in Ker6; this
last assertion follows immediately from the fact that the map co^ : Q,-> B^a),, is etale
(DM Proposition (3.9)). In particular, Q^is the completion of Q' over Q^. Here the
simply connected Q '̂ is identified with Q,'/̂  vla CT'? ^e lift of a':

a' Q'/s

(3.6.1)
I I

Q:/Ker 6 == Q: ̂  Q7/^ = 0:/Ker 9^

Q: Q:/s
ff5



96 G . D . M O S T O W

6 is the monodromy homomorphism of ^(Q^ o) to AutB(a)^ ^(QJ, o) is identified
with a subgroup of ^(Q^'/S, ~6); ^(Q^'/S, "o) thereby acts on the space C[' and thus
Ker6s n TCi(Q^', o) == Ker 6. It is perfectly clear that the hypotheses of (3.2), (3.3)
and (3.5) are satisfied, and that (3.2) and (3.5) are applicable.

(3.7) Let ^i denote the set of all stable partitions T of S such that
card T == card S — i.

By definition each T e ̂ \ has only one element in each coset except for a single coset
with two elements {.$•, t} satisfying (ig + (^ <^ !• As in DM, Q^rp denotes the subset of
all y e P8 such that for any s^s^ e S, y{s^ =y(s^ if and only if ^, ̂  are in the same
coset. For each T e ̂  let Q ,̂ denote the subset of elements in Q^rp which are fixed
by no elements of S other than the permutation of the two elements occuring in the same
coset of T in case they are both in S^. Set

Q^Q^A.ClT.

The degree of the orbit map QJ -> Q,'/S is card S, but locally in Q^\ around a point
of Q.T? ^e degree of orbit map is 2. Clearly Q^"~" Q.'i ls a subvariety, QJ^ — Q'
is a smooth divisor in Q^, and the same is true for their images in QggJS, even though
QggJS may have singularities. In fact, Q,'i/S is an open non-singular subvariety of
the variety Qsst/2-

Let Q^ denote the completion ofQJ over QJ^ and let (Q,'/^)i denote the comple-

tion of Q,'/S over Q^i/S. Then Q^ is a branched cover with branch locus along the
disjoint union of C-codimension i submanifolds II Q^ and ramification along Q^

T£ ̂ "i
given by the order in R/Z of i — ^ — (JL( where {.?, t} is the two-element coset of T.

(3.8) Let p : Cl'i ->Q;i (resp. ps : (Q^/S)! -^ QJi/S) denote the completion of

the covering map p' : C[' ̂  Q; over Q;i, (resp. ps : 5/S -^ Q:/S over Q;i/S).
Consider the commutative diagram

^ -^ (Q:7s)i

p PS
v ^

Q'I ^> Q:i/s.

The action of ——p——J- := r^ on '̂ extends to CL'i by the universal property ofj^^er v
completions (cf. DM (8.1.1)) and CT may be regarded as a morphism ofF^ spaces.

Let y e Q^ — Q' and let V be a neighborhood ofy in Q^ small enough so that the
image of ^(V n Q '̂) in ^(Q', o) is the decomposition group Dy ofj/ and the image
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GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS 97

of TC^(T(V n Q '̂)) in ^(Q^'/S, ^) is the decomposition group D^) of T(j/). We have
y e Q ĵ, where T e ̂ \. As V one can take the product of a disc in Qy with a disc trans-
versal to Q^y and stable under the permutation of the two-element coset ofT. Clearly
Z^Dy^D^y^Z, the injection being z\->2z. We recall (cf. DM (8.2)) that
p"~1 (j/) == Ker 6\7Ci(CV, o)/Dy, and thus the stabilizer in ^(CY, o) of a point in ^~l{y) is
a conjugate of Dy Ker 65 and it equals Dy Ker 6 for a suitable choice base of point o.

Lemma. — Suppose
(3.8.1) D, Ker 6^ 3 D^)

Then any element of Ker 9^ which fixes the point y e Q ,̂ ^m ;̂A ^o^ of p'"1^).

Proo/. — Let j^e p"^^) and let V denote the connected component ofy in p""1^).
Since o-' : QJ —>• QJ/S is a covering map, cr(V) is the connected component of c[J)
in p^^V). By hypothesis (3.8. i) 3 we can assume that the stabilizer ofj^in T^(QJ, o)
contains the stabilizer of <r(^) in ^(QJ/S, ' d ) modulo Ker 6^;.

Let h be an element of Ker 9^ with A^ ==j/. Then h^== gy with ^ e TCi(QJ, o).
Hence ga{y) == G{Hy) == ^(Y). ^ Consequently g is in the stabilizer of^in TT^QJ, o) mod 6^.
Since ^ e 7Ci(QJ, o), we get g == gih^ with /^ e ̂ (QJ? °) n Ker 6^ === Ker 6 and

/^/ y /^/ ^fc/ /̂ nr'i -P y/>^ /v/ ^^/

<?^=^lAl^==<?lJ /==J• Therefore AJ/=.?J/=J/.

Remark. — From (3.11.1), one can see that ( 3 . 8 . 1 ) holds if (A satisfies (S INT)
but not (INT).

Lemma (3.9). — Let S^C S, let S denote the permutation group of S^, and assume that
^ == ^ ybr fl// s, t e Si. Z(?^ s^, s^ be distinct elements of S^, and let [s^, s^] denote the element
o/'TCi(Q^/S, ~o) coming from a positive loop in Q,'/S around the C-codimension i submanifold of'Q^/S
/^^ &^fow ̂  submanifold of Q^ 0% wA^A the Jj flTZfi? Jg coordinates coincide. Suppose that

2
(3.9.1) i — 2{ji, = . k integer, all s e Si.

k

Then
order 6^ ([^"i, ^2]) == ^-

Proo/'. — The proof is very much like the proof of Proposition (9.1.1) in DM.
Let TI be the tree with vertices {^5 s^} and let Tg be a tree with vertices in S — { s ^ , s^}.
Let (B : TI u T2 -> P be an embedding with (B | S == o, the base point of Q\ Without
loss of generality we may assume that (B(T^) CD, (i == i, 2) where D^ and Dg are discs
having disjoint closures. Choose a base {f{a) .(B | fl; ^ an oriented edge of T^ n Tg} of
H^(P — o(S), L) as in (2.5) of DM. The monodromy, being the result of horizontal
transport, is effected by an isotopy Y] of Pp which is the identity map on P — D^ and
turns (0(^2)5 o{sl)) mto (^i)? 0{S2)) by one positive half-turn. This isotopy has no
effect on £[a) (B | a for an oriented edge aC Tg. To keep track of the change in the sec-

97
13



98 G. D. M O S T O W

tions of the local system along varying arcs, fix a point UQ e PQ — D^, let po denote the
singular chain given by an arc from UQ to the point P(^i), let a denote the oriented edge
from s^ to s^ and let £(^o) be an extension of the section I {a).

^ uo

/^ ftW \f<Sl} .7^(S2)

We can assume that the value oft(uo) remains unchanged during the isotopy. We have
7),(/(a). p| a) = ̂ (/(po) (Bo + ̂ ). (B | a) - ̂ (/((Bo). Po)

=-^t(a)^\a.

Inasmuch as the local system L is stable under S, the monodromy [^1,^2] effects on
H^(P — S, L) a linear transformation with matrix relative to the base {^(fl) .(3 | a; a an
oriented edge ofT^ or Tg}

^^(-a.;1^ I. • • • . l)-
2

By hypothesis, i — 2pi^ = , with ^ an integer. Hence
/?

• ^ ^a,. == exp 2m^, == exp 27rt - - ,
\2 R]

2TCt
and — a~1 = exp ——. From this result follows.t k

Corollary (3.10). — Let ^^ denote the set of partitions in ̂  whose two-element coset

lies in S^. Assume (3.9. i). Let a : Cl'i -> QJi/S ^ rf^^ ̂  in (3.6) flnrf (3.3). r^w

(1) if k is even, a is a covering map;
(2) if k is odd a has local degree 2 at each point of p'^Q^r) for oil T e ̂  ̂ .

Proof. — The map a is open and surjective by (3.3). Consider p : ^\ ~^QJi
at a point J of p"1^) with j^ e Q^ where T e ̂  ̂  Then

, , , . , D. , D.KerOslocal degree of p = order _——JL—. == order -JL———
D n Ker 9 Ker 9^

= order 6s([^i, ^]2)

where {^, ̂ } determines T. Hence

|A/2 if ^ is even,local degree of p =
[k if k is odd.
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GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS 99

Similarly, the local degree of p^ : (Q7^)i -> Qlil^ ls ^e order of 9s ([^i, s^) above
any point ofT(Q^.), where T : Q^ -> Q^/S is the orbit map. Since the local degree
ofr atj is 2, one can verify from the commutative diagram of (3.8) the asserted local
degree of a at points of p""l(Q^T) fo1' a^ T e ̂  ^. Since CT is a covering map on Q',
the result follows.

(3. n) The exact homotopy sequence of the fibration of Q^ by S orbits gives the
exact sequence

i -> î(Q» ̂ (Q:/S,.) -^S -> i.

Assume (3.9.1) with ^ orfrf. Then, by Lemma (3.9)3 Qsd^i? ^2]) ^les m t^le group gene-
rated by 6s ([^i? ^]2) ^or any 2-element coset {^, s^} of a partition in ^\ i. It follows
at once that
(3. ii . i ) 6 (̂0:, o)) == 6s(7Ci(Q:/S, ?), or equivalently

7Ti(Q^5 o) Ker 6^ = -n:i(QJ/S, o), or equivalently,

Ker Os _
S.

Ker 6
K.er uy <v /^

Hence the action of S on Q'i has a faithful lift to the action of ——— on Q\ and to Oo.,*"1 Ker 6
as well. Thus if k is odd, we may write, by abuse of notation

(3.11.1) ' 0..t/S=CC/S.

The action of the transposition of two elements ofS on Q^ssi 1s clear from (3.8).
If on the other hand (3.9.1) holds with k even, then for all T e ^ i and

y e Q^rp (under the identification of ^(Q^ o) with a subgroup of 7^(Q^5 °))
D^/Dy = 6^(D^)/6(Dy), since each side is isomorphic to Z/2Z, by Lemma (3.9)
for the right side and by the local degree of T being 2. It follows that D^ n Ker 9^ C Dy.
Hence

Dy n Ker 9 == D^) n Ker 9s.

Since these subgroups together with { D y ; j / e Q ^ — Q ^ } generate Ker 9 and Ker 9^
(because Q^ and Q^ are simply connected), we get Ker 9 = Ker9^. Consequently

,, ,_ . Image 9^((y/S, ?))
^"^ Image 9(̂ Q:, .)) == rs/r == s

and

(3.11.2)' ^t-Qt/S.

Theorem (3.12). — Let S^ ^ a subset ofS and let S denote the permutation group ofS^.
Assume that (ptg)sgs satisfies condition (2 INT) {cf. (2.21)). Then Im 9^ is a lattice in
PU(cardS-3,i).
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Proof. —We can assume that S^ has more than one element. Set i — ̂  == 2
8 k

for s e S^. By hypothesis (S INT), A is an integer. If A is even, then Im 6^ is a finite
extension of Im 6 by (3.11.2) and moreover condition (INT) of DM is satisfied.
Hence Im 6 is a lattice by the main theorem of DM. Thus Im 6^ is a lattice if k is even.

Assume now that k is odd. Set

U^ = Q,JS, U^o = Q:/S, U^ == Qi/S
U =Q,t, Uo =Q:, U, =Q^

Us = Q.JS, U^o = Q?S, U^, == £/S

where Q,i = Q, u 1̂1̂  Q ,̂ and CL/S is the completion of Q;/S over CL/S. By (3.5)
we have a commutative diagram

^ ^
B^a),

(S-'a-i)

Q^/S -^ B+(a),

Inasmuch as ̂  is etale on C[ by Proposition (3.9) of DM, it follows at once that w^ is

etale on Q/S, the completion of Q;/S over Q/S and that Q/S is non-singular even
though Q/S may have singularities. As in DM, we take a stratification y of Q^ with
strata Q ,̂ where T ranges over the stable partitions of S. Let y^ denote the image
of y under a. We wish to apply Proposition (10.16. i) of DM to the diagram

U^o —> U^ —> U^ -^ B-^-(a),

U2.0 uS.I U.

All of the hypothesis of Proposition (10.16. i) descend from U^ to U^ » except possibly
the assertion in i [e) : w^ \ Us,i is a local homeomorphism. This last condition follows
directly at all points except those in (r(Q/r) wlt!1 T e^i. However, at such points
we use in diagram (3.12.1) that a has local degree 2 by Corollary (3.10). Consequently

at o(Q^) with T e^i, the map w : Q^sJS -^B^a)^ has local degree 1- (the degree
2

°f w^: Q^^ ->B+(a)o at Q^). The computation in DM § 9 shows that ^ | Us,i has
local degree i at points of(r(Q^) for T e ̂  i. By Proposition (10.16. i), w^: Us -> B^a)^
is a local homeomorphism. The proof of Theorem (10.18.2) of DM applies verbatim

to yield that w^: Q^gJS -> B+(a) is a homeomorphism onto an open subset
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GENERALIZED PICARD LATTICES ARISING FROM HALF-INTEGRAL CONDITIONS 101

ofB'^a)^ in the DM (5.4) topology and maps QsJS homeomorphically onto B^a)^.
The image is a lattice, by the same reasoning as in DM. This completes the proof.

4. RCP

In [2], there is a geometric construction of a fundamental domain for groups F(9)
in PU(2, i) generated by C-reflections on a 3 dimensional complex vector space V(<p)
with Coxeter diagram

(P = 3,45)

and ibid p. 248 there is a list of the groups r(<p) which satisfy the condition (CD2) ensuring
discreteness. Let Ar(cp) denote the group obtained by adjoining to r(<p) the group of
cyclic permutations of its generators. Then card(Ar(<p)/r(<p)) = i or 3.

Theorem. — Let d == 2, (^o == î == ^2? an^ ̂  ̂  denote the symmetric group on {o, i, 2}.
Then each of the groups AF(9) satisfying condition (CD2) coincides with the group r^for suitable
{p.J i == o, ..., 4} satisfying condition (S INT).

Proof. — Set T) == ^"yp, p = order '̂(p3, c = order ^'ip3, t == - arg <p3. The list
7C

of r(y) is specified by the values of t, p, a with o<^< 3 | - — - j . We write
^ == (i - ̂  - pi,)-1, o ̂  i <j ̂  4 and F(A ^) = F(9). V2 p'

i i
^"^Set .̂o

^03 = P?

CT if 0 < ^ < ^ — ^ ,
- -2 ^5

-a i f^ - I<^<3( I - I l
2 p " \2 ^3

^04

I I

^03 ^04

By a lenghty but straightforward calculation (cf. [3]), the map Ri(<p) l-^9s([01])?
^2(9) ^^(C12])? ^-3(9) ^^(t20]) yields an isomorphism of Ar(<p) onto F^ induced
by an isometry of V(<p) onto (H^Pp, L), ^). (For a geometric proof, cf. [4]).

We list the groups F(9) and the corresponding (^). From p. 248 of [2] we see
where Ar((p)/r(9) has order i or 3. In the last five cases, AF contains a Picard lattice
as a subgroup of index 6 by (3. n .2). In the last column, write AF if F^ =(= F(^, t).
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102 G . D . M O S T O W

# P Acs ^04 f (AO (Jtg ^4 Arith Fs == F or AT

1 3 12 12 o 1/6 9/12 9/12 AF
2 3 Io I5 I/30 1|Q 22/30 23/30 NA F
3 3 9 i8 1/18 1/6 13/18 14/18 AF
4 3 8 24 i / i2 1/6 17/24 ^/^ NA F
5 3 7 42 5/42 i/6 29/42 34/42 NA F
6 3 6 oo i/6 i/6 4/6 5/6 AF
7 3 5 — 3 0 7/3° I/6 19/30 26/30 F
8 3 ^ — 12 i/3 i/6 7^2 n/i2 r

9 5 5 Io I/10 3/10 5/10 6/10 r
10 5 4 20 1/5 3/10 9/20 13/20 NA F
11 5 3 —3° ^^e 3/10 ^^ 22/30 NA AF
12 5 2 — 5 7/10 3/10 2/10 9/10 r
13 4 8 8 o 1/4 5/8 5/8 F
14 4 6 i2 1/12 i/4 7^2 8/12 NA AF
15 4 5 20 3/20 1/4 n/20 14/20 NA F
16 4 4 oo i/4 i/4 2/4 3/4 r
17 4 3 — 12 5^2 i/4 5^2 io/i2 AF

5. Lattices Fs in PU(N - 3, i) for N ̂  5 satisfying (S INT), p odd

(5.i) N> 5.
There are groups F^ satisfying condition (S INT) only for N <_ 12. We list all

cases with 6 <_ N <^ 12, p odd. All are arithmetic. For p == 3, all are centralizers of

a subgroup of the first one except for ( - , ^, ^, ^, ^, —, — ) .\ b b b b b i 2 127

N p (Ao

12 3

" 3

3

io 3

9 3

Multiplicity
of (Jig Remaining (i,

12

io

3 3
6 6
2 2

6 6
1
3
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N

6

P

3

3

3

3

3

3

3

3

3

3

3

5

3

3

3

3

5

5

Vv

I
6
i
6
i
6
i
6
i
6
i
6
i
6
i
6
i
6
i
6
i
6
3.
10

i
6
i
6
i
6
i
6
J^
10

3
10

of

7

6

7

6

6

5

5

5

5

4

4

6

4

4

3

3

5

4

Multiplicity
of (Jig Remaining (A,

2 3
6 6
2 2 2
6 6 6

4 2
6 6
3 3
6 6
2 2 3
6 6 6
3 4
6 6
2 5
6 6

-7--7-
12 12

2 2 4
6 6 6
2 3 3
6 6 6
2
10

4 4
6 6

3 5
6 6
2 3 4
6 6 6
3 3 3
6 6 6

_5.
10
- 2 6

10 10

103



104 G . D . M O S T O W

(5.2) N=5 .

In addition to lattices listed in § 4 which satisfy condition (S INT) but not condi-
tion (INT), we have the following.

p y^o Multiplicity Remaining ^ Arith

5 JL 4 -8-" 10 " 10

5 -3- 2 9-,9-,1- NA10 20 20 2

^ 4 t
9 ^ 4 ^ NA

1. . A Io NA
18 3 18' 18 ^A

( Q Q Q Q § \

The lattice corresponding to [JL= —, —, —-, —, — deserves mention.
10 10 10 10 I0/

1. Let Mgt denote the subset of pi-stable points in (P1)5 and let n: M^ -> Q^g,
denote the map to PGL orbits. The group £4 of permutations on the first four coordi-
nates descends to an action on Pg^;. We have

(.Vi, x^ i, o, oo) = (i — A-i, i — ^2, o, i, oo) mod PGL
= CT(I — A-g, i — A:i, i, o, oo) mod PGL

where a denotes the permutation (1,2) (3, 4). Hence or fixes each point of the line

L = {-n:{x, i — x, i, o, oo) : A-+ 00} and this line punctured at x = o, -, i lies in the
2

set Q,— QJ (cf. Remark of (3.6)). In this example, Q^ is the projective plane and o-
descends to the involution \x^ x^, i] -> [i — ̂  I — ^i? I] in the line x^ + ̂  == i.

2. The lattice 1̂  is the lattice r(5, -j of [2] by the result in § 4 above. On the

other hand, it is proved in [2] that F (5, -( is isomorphic to F (5, -7-). Using the result

in §4, n5, —\ coincides with the group I\, v == (-3-, -3-, -3-, -2-, -9-). Consequently,

r^ ^ r^. It is clear that I\ contains a complex reflection of order 2, a fact that is not
so obvious for 1 .̂ The existence of this reflection in 1̂  is related to the involution in
the line L above.
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We take this opportunity to insert 3 errata for the proof that F^ ^ ̂  F^ -7-^
in [2]: \ 2; \^' io]

Read on page 273, Equation (21.1): ... — ay ' ~ Yl + 2^ 2
1 + f\ + YI

line 12: I\2 not F^

line 13: ... subgroup of F n PU(2).

6. AF(y) as extensions of Picard lattices in PU(2, i)

The 27 Picard lattices are listed in (14.3) of DM. For all except five of these
lattices, at least three of the (A'S are equal; we relabel these (XQ, y.^ ̂  The corresponding
extended lattice F^ with S the permutation group on {o, i, 2} coincides with the group
Ar(<p) by § 4. We list below the p and f-parameters of the corresponding 1 ,̂ labelling
each Picard lattice by its position on the list of DM (14.3).

-i
Clearly p = ̂  - pj . By § 4,

1 = ^031 — ^041 = (I — h) — f-s) — (i — V-o — ^4) = (^4 — (Ag.

We order the indices so that ^3 ̂  ̂ . As a result Ao3> o and k^< |̂ |.
(Of the five Picard lattices not on the list, two are non-arithmetic.)

DM* D D(A<, D^ DEX, p t k,, k,, r ,=Arorr
i1 3 i i 2 6 3 oo AF
3

2 4 2 I I o o o 4 4 F

3 4 1 2 3 4 ^ 4 0 0 r
4

4 5 2 2 2 io o 5 5 r
5 6 2 3 3 6 o 6 6 AF
6 6 3 1 2 co ^ 3 6 AF

8 6 2 T 5 6 2 2 - 6 F
0

9 3 3 3 4 8 ^ 4 8 F8
5 5 4 o 8 8 T10 8 2

" 8 3 i 6 8 j 2 - 8 T

12 9 4 2 4 i8 4 3 9 AFi8
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DM* D D(io Dpi3 D^ ^ ^ A^ k^ I\ = AF or r

6
13 to 4 I 7 10 — 2 — 10 F

14 12 5 4 5 12 ^ 4 6 F

16 12 5 3 6 12 ^ 3 12 AF

^ i2 4 5 7 6 — 4 12 F

21 12 5 I 8 12 -^ 2 — 12 r
12

22 12 3 7 8 4 -L 6 12 AF

23 12 3 5 ^ 4 -5- 3 - 12 AF

24 i5 6 4 8 io ^ 3 i5 AF

25 i8 8 i ii 18 ^ 2 - 18 rib
r- 32b 20 5 ii 14 4 — 5 20 r

27 24 9 7 i4 8 ^- 3 24 AF
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